
Supplementary material

Supplementary Methods: Macro-environmental effects

In the previous setting, the parameter σ2
P = σ2

E + σ2
A conditions both the phenotypic distribution (the

expected phenotypic variance is σ2
P ) and the residual variance of the mean of the population (expected sam-

pling variance σ2
P /N ). However, in some experimental settings, the mean phenotype is expected to vary

more than by sampling effects only. For instance, the quality of the environment (food quality, tempera-
ture...) can be variable even in controlled lab experiments, changing randomly between generations. Not
accounting for such effects may bias the estimate of σ2

E upwards, and provide an imprecise picture of the
variance components.

It is possible to introduce an additional layer of residual variance, by splitting the environmental effects
into a micro environmental variance (σ2

E , as defined previously), and a macro-environmental variance, σ
2
me,

quantifying the amplitude of generation-specific shifts in the mean phenotype. In this setting, the phenotypic
values at generation t are normally distributed around a phenotypic mean mt, which is itself a random
number drawn into a normal distribution of mean µt, the expected mean given the genetic architecture
model, and of variance σ2

me. Equation (16) thus becomes:

P(Yt|µt,mt, σ
2
Pt
, σ2

me) = φ(mt|µt, σ
2
me)

Nt�

i=1

φ(yit|mt, σ
2
Pt
). (22)

It is unnecessary, as well as technically challenging, to estimate mt independently for all generations
by maximum likelihood. Indeed, generation-specific meansmt represent nuisance parameters that have no
particular interest by themselves, but should be included in the model to avoid biasing other parameters of
interest. It is thus possible to consider them as random effects, and to eliminate them from the vector of
parameters Θ. The joint distribution of yit and mt is multivariate normal, hence the marginal distribution
of yit multivariate normal, so that

P(Yt|µt, σ
2
Pt
, σ2

me) =
1

(2π)N/2det(V )1/2
exp

�

−
1

2
(yt − µt)

TV −1(yt − µt)

�

, (23)

where yt is the vector of phenotypic observations at generation t,
T denotes the transposition operation, and

V is the N ×N variance-covariance matrix of phenotypic observations:
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equation (23) can be rewritten as:

P(Yt|µt, σ
2
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, σ2

me) =
1
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This probability can be expressed in terms of observed mean and variance:
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2
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, σ2
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+ (ȳt − µt)
2] + Nts

2
yt
σ2
me

σ2
Pt

+ Ntσ2
me

�

. (25)

As expected, replacing σ2
me = 0 in equation (25) gives equation (17).



Supplementary Figure 1: phenomenological models, ’up 1’ line

Illustration of the fit of phenomenological models of increasing complexity on the first "up" line. The
broken line corresponds to the predicted additive genetic variance.
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Supplementary Figure 2: Fitting phenomenological models (lag 2) on individual lines.

The broken line corresponds to the predicted additive genetic variance.
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Supplementary Figure 3: Fitting phenomenological models (lag 2) on combined lines.

The broken line corresponds to the predicted additive genetic variance.
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Supplementary Results 1

Precision of the estimates in the constant-variance model (equation (6)) for three population sizes (N =
20, 100, and 1000) and three lengths for the times series (G = 5, 10 and 50 generations). 100 simulations
were run according to the ’stochastic simulation’ procedure described in the Methods section, and for each
parameter are indicated the relative bias of the estimate (difference between the mean estimate and the
true value), and the standard error (standard deviation of the estimate). Simulated parameter values are
µ0 = 0.04, σ2

A = 0.0001, and σ2
E = 0.0004, selection strength is β = 50.

µ0 = 0.04 Bias: ( ¯̂µ0 − µ0)/σP Precision: sd (µ̂0)/σP

G=5
N=20 0.025 0.159
N=100 0.006 0.074
N=1000 - 0.001 0.023

G=10
N=20 - 0.006 0.120
N=100 0.000 0.059
N=1000 0.001 0.017

G=50
N=20 0.001 0.056
N=100 0.002 0.028
N=1000 - 0.001 0.009

σ2
A = 0.0001 Bias: (

¯̂
σ2
A − σ2

A)/σ
2
A Precision: sd (σ̂2

A)/σ
2
A

G=5
N=20 - 0.001 0.003
N=100 -0.000 0.001
N=1000 0.000 0.000

G=10
N=20 0.000 0.001
N=100 - 0.000 0.001
N=1000 - 0.000 0.001

G=50
N=20 0.000 0.001
N=100 - 0.000 0.000
N=1000 0.000 0.000

σ2
E = 0.0004 Bias: (

¯̂
σ2
E − σ2

E)/σ
2
E Precision: sd (σ̂2

E)/σ
2
E

G=5
N=20 0.001 0.003
N=100 - 0.000 0.001
N=1000 - 0.000 0.000

G=10
N=20 0.001 0.003
N=100 - 0.000 0.001
N=1000 - 0.000 0.000

G=50
N=20 0.001 0.001
N=100 - 0.000 0.000
N=1000 0.000 0.000



Supplementary Results 2

Flexibility of the phenomenological models. The autoregressive-like design of the phenomenological
models aims at providing a simple but efficient way to catch the dynamics of genetic and environmental
variances during the selection response, without a priori constrains on what the variance dynamics are sup-
posed to be. In order to illustrate the flexibility of this framework and to test its limits, some totally arbitrary
genetic variance dynamics were simulated in a population of size N = 100 under constant directional se-
lection (β = 50) for 20 generations. The environmental variance is constant (σ2

E = 0.0004), while σ2
A

varies as illustrated in the figures. A: linear decay of the variance, B: fast decay in the first generations,
followed by an equilibrium (similar to what would be observed with a strong Bulmer effect). C: Arbitrary
down and up dynamics, D: complex arbitrary shifts in the additive variance. The figures present the phe-
notypic variance observed in the simulation (dots), the theoretical phenotypic variance (bold dashed) and
the predicted phenotypic variance from the model (plain thin line). The theoretical additive variance (bold
dotted line) and the predicted additive variance (thin dashed line) are also represented. Models fit on cases
A and B are simple models (only lags 0 and 1), while cases C and D required to involve lags 2 and 3 as well.
In D, the phenomenological model manages to catch the general pattern by predicting cyclical changes, but
some details of the dynamics are not precisely handled.
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Supplementary Results 3

Accuracy of the model selection procedure. Two genetic architectures were considered: (i) a constant-
variance model (µ0 = 0.04, σ2

A = 0.0001, σ2
E = 0.0004) (equation (6)), and (ii) a negative directional epis-

tasis model (same parameter values, plus ε = −1) (equation (12)). Times series of different lengths (G=10
or G=30) were generated from these two models, either only an "up" selected line (T=1, with β = 50),
either two selected lines (T=2, β = 50 and β = −50). Sampling stochasticity was then simulated accord-
ing to the ’stochastic simulation’ procedure detailed in the Methods section, with two sample sizes (N=20
or N=100). Six models were then fit to each simulated data sets: the constant-variance model (equation
(6)), the drift model (7), the mutation model (including drift) (8), directional epistasis model (12), joint
effect selection model (without drift) (14), and a canalization model with both genetic and environmental
canalization (equation (13)). Two model selection criteria were considered, AIC and BIC. AIC aims at
identifying a good model among a set of candidates, and is therefore adequate when exploring a real data
set, while BIC is good at picking the right model among a set of simulated results (and is thus expected
to perform optimally in this particular test). Each table presents for two situations (top: constant-variance,
bottom: epistasis; ’true’ models are indicated in bold) the mean AIC and BIC scores obtained over 100 sim-
ulations relative to the best average AIC/BIC (i.e. the best model has a score of 0), as well as the percentage
of cases in which the model had the best AIC/BIC score among the six tested.

AIC Constant Drift Mutation Epistasis Selection Canalization

T=1
G=10

N=20 0.0 (87%) 1.7 (2%) 3.7 (0%) 3.2 (1%) 4.0 (0%) 2.7 (10%)
N=100 0.0 (86%) 1.7 (5%) 3.7 (0%) 2.8 (2%) 4.0 (0%) 3.0 (7%)

G=30
N=20 0.0 (86%) 1.6 (6%) 3.5 (0%) 3.0 (1%) 3.6 (0%) 2.9 (7%)
N=100 0.0 (85%) 1.8 (3%) 3.7 (0%) 2.7 (3%) 3.9 (0%) 3.1 (9%)

T=2
G=10

N=20 0.0 (79%) 1.8 (2%) 3.8 (0%) 2.3 (8%) 3.9 (0%) 2.6 (11%)
N=100 0.0 (76%) 1.9 (0%) 3.9 (0%) 1.5 (14%) 4.0 (0%) 2.4 (10%)

G=30
N=20 0.0 (73%) 1.8 (4%) 3.8 (0%) 1.8 (7%) 2.7 (3%) 1.9 (13%)
N=100 0.2 (41%) 2.7 (0%) 4.6 (0%) 0.0 (38%) 3.1 (1%) 1.2 (20%)

Constant Drift Mutation Epistasis Selection Canalization

T=1
G=10

N=20 0.0 (87%) 1.9 (0%) 3.9 (0%) 2.9 (2%) 4.0 (0%) 2.8 (11%)
N=100 0.0 (79%) 1.9 (2%) 3.9 (0%) 2.2 (9%) 4.0 (0%) 3.1 (10%)

G=30
N=20 4.1 (24%) 6.2 (0%) 6.6 (2%) 0.0 (16%) 2.4 (5%) 0.3 (53%)
N=100 38.4 (0%) 40.5 (0%) 32.5 (8%) 0.0 (35%) 9.0 (6%) 4.9 (51%)

T=2
G=10

N=20 0.0 (81%) 1.8 (3%) 3.8 (0%) 2.4 (9%) 4.0 (0%) 2.9 (7%)
N=100 1.0 (44%) 2.9 (0%) 4.9 (0%) 0.0 (44%) 4.9 (0%) 3.5 (12%)

G=30
N=20 109.3 (0%) 111.4 (0%) 113.1 (0%) 0.0 (98%) 14.8 (2%) 107.4 (0%)
N=100 579.2 (0%) 581.7 (0%) 582.9 (0%) 0.0(100%) 70.8 (0%) 561.7 (0%)



BIC Constant Drift Mutation Epistasis Selection Canalization

T=1
G=10

N=20 0.0 (95%) 2.8 (2%) 5.9 (0%) 5.4 (0%) 6.2 (0%) 4.9 (3%)
N=100 0.0 (94%) 2.8 (2%) 5.9 (0%) 4.9 (1%) 6.2 (0%) 5.2 (3%)

G=30
N=20 0.0 (96%) 3.7 (3%) 7.8 (0%) 7.2 (0%) 7.9 (0%) 7.2 (1%)
N=100 0.0 (97%) 3.9 (2%) 8.0 (0%) 7.0 (0%) 8.2 (0%) 7.3 (1%)

T=2
G=10

N=20 0.0 (97%) 3.6 (0%) 7.4 (0%) 5.9 (2%) 7.5 (0%) 6.2 (1%)
N=100 0.0 (93%) 3.7 (0%) 7.5 (0%) 5.1 (2%) 7.6 (0%) 6.0 (5%)

G=30
N=20 0.0 (98%) 4.6 (0%) 9.4 (0%) 7.4 (0%) 8.3 (0%) 7.5 (2%)
N=100 0.0 (96%) 5.3 (0%) 9.9 (0%) 5.4 (3%) 8.5 (0%) 6.6 (1%)

Constant Drift Mutation Epistasis Selection Canalization

T=1
G=10

N=20 0.0 (95%) 3.0 (0%) 6.1 (0%) 5.1 (0%) 6.2 (0%) 5.0 (5%)
N=100 0.0 (82%) 3.0 (2%) 6.1 (0%) 4.4 (3%) 6.2 (0%) 5.3 (3%)

G=30
N=20 0.0 (52%) 4.2 (0%) 6.7 (2%) 0.2 (8%) 2.6 (0%) 0.5 (38%)
N=100 34.2 (0%) 38.4 (0%) 32.5 (8%) 0.0 (35%) 9.0 (6%) 4.9 (51%)

T=2
G=10

N=20 0.0 (97%) 3.6 (0%) 7.4 (0%) 6.0 (3%) 7.6 (0%) 6.4 (0%)
N=100 0.0 (74%) 3.7 (0%) 7.5 (0%) 2.5 (21%) 7.5 (0%) 6.0 (5%)

G=30
N=20 103.7 (0%) 108.6 (0%) 113.1 (0%) 0.0 (98%) 14.8 (2%) 107.4 (0%)
N=100 573.5 (0%) 578.8 (0%) 582.9 (0%) 0.0(100%) 70.8 (0%) 561.7 (0%)



Supplementary Results 4

Impact of genetic drift on parameter estimates. A constant-variance genetic architecture model (equa-
tion (6): µ0 = 0.04, σ2

A = 0.0001, σ2
E = 0.0004) was implemented in an individual-based simulation.

Selection response was simulated for 30 generations in populations which size varied between N=20 and
N=1000. Each generation, 0.4N individuals were selected according to their phenotype (the 40% highest
phenotypes), as described in the Methods section. 500 simulations were carried on for each population
size, and the table below reports the bias of the parameter estimates, as well as the frequency at which the
estimated 95% confidence interval contained the true value.

( ¯̂µ0 − µ0)/σP (
¯̂
σ2
A − σ2

A)/σ
2
A (

¯̂
σ2
E − σ2

E)/σ
2
E

N=20 0.03 (21.4 %) - 0.22 (6.0 %) 0.10 (27.8 %)
N=50 0.03 (24.0 %) - 0.10 (9.0 %) 0.05 (61.4 %)
N=100 0.00 (34.8 %) - 0.05 (22.4 %) 0.02 (87.6 %)
N=200 0.00 (51.0 %) - 0.03 (27.6 %) 0.01 (99.0 %)
N=500 0.00 (71.4 %) - 0.01 (47.0 %) 0.01 (100.0 %)
N=1000 - 0.00 (86.2 %) - 0.00 (64.4 %) 0.01 (100.0 %)



Supplementary Results 5

Comparison between various methods. In order to assess the properties of our framework compared to
alternative methods, simulations were run and their output was analyzed with three families of models.

(a) Fixed-effects approach

A constant-variance model was considered as detailed in equation 18.

(b) Random-effect model

The data considered (phenotypic means and variances) do not allow the use of the "animal model" as
such, but a random-effect model can still be fit, as described in the methods section (equation 21) and in
(Le Rouzic et al. 2010).

(c) Least squares regression

The ratio between additive and phenotypic variance (heritability) can be roughly estimated by a least
square regression of the realized cumulative selection response on the cumulative selection gradient (forcing
the regression to pass through 0). More elaborated methods (e.g. accounting for correlations in the selection
responses) exist but were not tested here.

Individual-based simulations were carried on in a purely additive context. During 10 generations, 40%
of the N = 100 individuals were selected to form the next generation. The initial parameters were σ2

A =
0.0001 and σ2

E = 0.0004. 1000 simulations were run and the output was analyzed with the three models
described above. The bias of the estimate of parameter x is calculated as (¯̂x−x)/x, the precision is sd(x̂)/x,
and the estimated standard error is the average of the standard error calculated from the Fisher information
matrix. Only parameters that are directly estimated are presented, with the exception of h2 for the random-
effect model (the software ADMB can estimate the statistical properties of parameter combinations).

All models are somehow biased, but the relative bias remains < 7% in all tested conditions. The simplest
regression method severely underestimates h2, partly because Bulmer effect is not accounted for. Fixed-
effect models show satisfactory precision, but underestimate seriously the standard error of the additive
variance, which leads to confidence intervals that are too narrow. Random-effect methods seem slightly
more biased, but provide very good estimates of the standard error.

σ2
A Bias Precision Estimated se

Fixed-effects - 0.04 0.17 0.07
Random-effects -0.07 0.18 0.20

σ2
E Bias Precision Estimated se

Fixed-effects 0.01 0.05 0.06
Random-effects 0.01 0.05 0.05

h2 Bias Precision Estimated se
Random-effect -0.07 0.16 0.16
Regression - 0.22 0.13 0.03



Supplementary Results 6: Replicated selection responses

It is a common design to repeat selection lines, often twice, and sometimes more. Duplicated selected
lines are generated from the same initial population, and are thus expected to share a common initial genetic
architecture. Since they are submitted to the same selection pressure, any potential difference between them
can be attributed to genetic drift.

1000 simulations were preformed in order to assess whether neglecting drift when analyzing such
repeated time series could be problematic. The fixed-effects model was compared with a random-effects
setting, which does account explicitly for drift (Supplementary Methods 2). Simulations were individual-
based, with N = 100 and 40 individuals selected, σ2

E = 0.0004, and σ2
A = 0.0001 initially. A constant

selection gradient (β = 50) was applied on both lines, and the following table gives the bias, the standard
error, and the mean estimated standard error, normalized by the true value of the parameter, for single and
duplicated selection experiments, and for both the fixed-effects approach and the random-effect model. The
slight bias affects the estimate in the same way for one or two time series. As expected, a random-effect
approach provides wider (in this case, more accurate) confidence intervals, but parameter estimates appear
to be more biased (especially for duplicated lines) in this implementation. Duplicating time series does
not seem to provide more information than e.g. doubling the duration of the series, as already suggested in
Le Rouzic et al. (2010).

σ̂2
A Bias Standard error Estimated standard error

Fixed effects
One ts - 0.02 0.19 0.07
Two ts -0.03 0.12 0.05

Random effects
One ts - 0.06 0.19 0.20
Two ts -0.18 0.11 0.14



Supplementary Results 7

Impact of generation-specific macro-environmental stochasticity on the estimates. A and B: phenotypic
times series were obtained from the constant-variance model (equation (6)) and submitted to the ’stochastic
simulation’ procedure described in the Methods, including macro-environmental effects (independent shifts
in the mean phenotype each generation). The average maximum-likelihood estimates were calculated over
500 simulations, for a macro-environmental variance parameter ranging from σ2

me = 0.04×10−4 = 1%σ2
E

to σ2
me = 8 × 10−4 = 200%σ2

E . Parameter values are µ0 = 0.04, σ2
A = 0.0001, σ2

E = 0.0004; selection
strength is β = 50. C: the consequences of not estimating the macro-environmental variance were assessed
from a more realistic model, the genetic and environmental canalization model (equation (13)), which
happened to be the best of the mechanistic models when fit to the fly wing time series. Parameters were:
σ2
A1

= 0.000142, σ2
E1

= 0.000102, kc = 11.9, kg = −3.34, θ = µ1 = 0.042, Ne = 9.46. The model
was run assuming that the optimum was equal to the initial mean, and the population size was fixed at its
true value. Three macro-environmental variances were tested, σ2

me = 0, σ2
me = 0.0001, σ2

me = 0.0002,
visual inspection of the simulated time series confirms that these figures are higher than what can be usually
observed in real time series.

A: No Macro-environmental effects

¯̂µ0
¯̂σ2
A × 10−4 ¯̂σ2

E × 10−4

σ2
me = 0 0.0400 0.999 4.054

σ2
me = 0.04 × 10−4 0.0399 1.001 4.086

σ2
me = 0.08 × 10−4 0.0401 0.992 4.129
σ2
me = 0.2 × 10−4 0.0399 0.997 4.228

σ2
me = 0.4 × 10−4 0.0401 0.999 4.419

σ2
me = 0.8 × 10−4 0.0401 0.992 4.803
σ2
me = 2 × 10−4 0.0398 1.001 5.904

σ2
me = 4 × 10−4 0.0401 0.996 7.728

σ2
me = 8 × 10−4 0.0404 0.995 11.450

B: Macro-environmental effects activated (likelihood equation (25))

¯̂µ0
¯̂σ2
A × 10−4 ¯̂σ2

E × 10−4 ¯̂σ2
me × 10−4

σ2
me = 0 0.0400 1.000 4.037 0.004

σ2
me = 0.04 × 10−4 0.0399 1.001 4.045 0.034

σ2
me = 0.08 × 10−4 0.0399 1.000 4.042 0.072
σ2
me = 0.2 × 10−4 0.0401 0.995 4.046 0.182

σ2
me = 0.4 × 10−4 0.0400 1.001 4.050 0.375

σ2
me = 0.8 × 10−4 0.0402 0.997 4.056 0.744
σ2
me = 2 × 10−4 0.0402 0.997 4.042 1.873

σ2
me = 4 × 10−4 0.0399 1.001 4.053 3.760

σ2
me = 8 × 10−4 0.0396 1.004 4.042 7.497

C: No Macro-environmental effects with a canalization model (equation 13))
(mean estimate over 500 simulations ± standard deviation of the estimate)

¯̂µ0
¯̂σ2
A1

× 10−4 ¯̂σ2
E1

× 10−4 ¯̂
kg

¯̂
kc

σ2
me = 0

0.042 1.423 1.037 -3.394 11.87
± 0.0002 ± 0.024 ± 0.083 ± 0.447 ± 1.094

σ2
me = 0.0001

0.042 1.428 1.946 -3.343 7.999
± 0.0012 ± 0.142 ± 0.383 ± 2.565 ± 2.729

σ2
me = 0.0002

0.042 1.451 2.867 -3.594 6.369
± 0.0019 ± 0.228 ± 0.827 ± 3.928 ± 3.993



Supplementary Results 8: macro-environmental effects and ’false’ models

Illustration of the potential side effects of macro-environmental variance on the model fitting interpre-
tation. A complex time series was generated, using the parameters estimated from the 11-parameter phe-
nomenological model fit on all experimental Drosophila lines (Table 2 and Supplementary Figure 3), and the
’stochastic simulation’ procedure described in the ’Methods’ section, setting the macro-environmental vari-
ance parameter σ2

me = 0,N = 100, and β = ±50. The goal was to obtain a time series in which there is no
macro-environmental variance by definition, but too complex to be perfectly fitted by mechanistic models.
Drift models (equation (7)) were then fit, without (top panel) and with (bottom panel) macro-environmental
variance. Circles represent simulated values, and solid lines illustrate the model predictions. Although
the fit is not perfect, the drift model without macro-environmental variance catches the trend of phenotypic
means, and provides meaningful parameter estimates. On the contrary, when macro-environmental variance
is activated, the best model predicts a high macro-environmental variance, which allows a loose fit. Both
models perform as expected when the data is generated from the ’true’ model (Supplementary Results 7),
and the discrepancy observed here is only due to different ways to handle the misfit. This illustrates a lim-
itation of the macro-environmental effects setting when analyzing real data, due to a situation in which the
scientist may prefer a model having a lower likelihood, but providing better predictions for a quantity of
interest (the phenotypic mean) at the cost of biased estimates of σ2

E . Alternatives may include e.g. a penalty
for high macro-environmental variances with a prior distribution in a Bayesian setting.
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