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Appendix: Definition of the core set

Assume that N — 1 individuals of the core set have already been created and
let b be the breed of the Nth individual. For creating the Nth individual of
this idealized offspring population, two gametes are randomly chosen from all
individuals of breed b from the current generation. This procedure defines a
sequence C = (Cn)nemn of offspring populations, whereby Cy consists of the first
N individuals from the core set. Because of random mendelian sampling, Cy is a
random offspring population. Thus, for a function D measuring some property of
a population, the value D(Cy) is also random, but it may convergue almost surely
for N — oo. In this case, we are interested in the limit D(C) = limy_,o D(Cx)
and D(C) is said to be the value of D for core set C. The value of D for a set
S of breeds is defined as the maximum value D can achieve in a core set if only
breeds from S are allowed to have nonzero contributions. That is,

D(S) =sup{D(C) : C is a core set with ¢, =0 for b ¢ S}

Appendix: Proofs

Equation 1:
1
TTD(C) = c'Va,+c' (§<§?1T — 288 + 1@?)) c. (1)

Proof:
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We have
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where g, € IRY contains the genotypic values of all individuals from Cy for trait
t.

Let By, C {1,..., N} be the set of individuals in the offspring population Cy
belonging to breed b, N, is the number of individuals from breed b in the off-
spring population Cy, and 1, € IRY is a vector with zeros and ones, where
ly; = 1 if individual ¢ from the offspring population belongs to breed b. Let
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we have
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The definition of TTD shows that adding a constant to all genotypic values
does not change the value of the objective function, so the vector with genotypic
values is

g = (Z — 21p})a,,
where a; € IRM is the vector with true SNP effects (as, = 0 if SNP m is not
a QTL), and py € IRM is a vector containing arbitrary values. The matrix

Z ¢ IRN*M is the gene content matrix for the 1-alleles with entries 0,1, and 2.
We can write Z; = m; + s;, where Z7 is the ith row of matrix Z, m; € RM is



the vector with maternal SNP alleles, s; € IRM is the vector with paternal SNP
alleles of individual . We have
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Since the offspring population was created by random mating within popula-
tions, the maternal and the paternal alleles of an individual were independently
chosen from the current population, so

lim — mls = lim — s;m; = I
Np—o0 Nb 7,ZB:b Np—o0 Nb zZB:b pbpb
Let H, be random M-vector containing the SNP alleles of a gamete randomly

chosen from individuals of breed b in the current population. Since maternal and
paternal alleles are identically distributed, we have

lim —me = lim —Zss = E(H,H}),
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and E(H,) = py. Since the additive variance of trait ¢ in population b is Vg, =



2al cov(Hy)a; and g, = (2py — 2po)” ay, it follows that
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Since 17¢ = 1, it follows that

TTDy(C) = c"(Va;+8;)—c'ggl c,

Equation 2:
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Proof:

From Equation (1) it follows that

1 . _
NTDy(C) = c"E(Va,)+c” <§E(g31T — 28,8, + 1g?T)) c.

From conditions A) and B) we obtain
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v, | S _
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Thus,
NTD,(C) = Vic"(1—-F) + %cT (F1" —2f + 1F") c.

The analogous equation obtained by Bennewitz and Meuwissen (2005b) using a
pedigree based approach can be written as

NTD{*(C) = Vic" (1 —-Fp)+Vic" (Fpl" —2fp + 1Fp")c,

where fp denotes a pedigree based kinship matrix, Fp = diag(fp), and V, is a
scaling parameter. Since we would like that the marker based kinship matrix has
similar properties as the pedigree based kinship matrix, we use o = i.

In the following we derive the explicit formulas for computing f. From condi-
tion A) we get
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where f/t = pQTLagtM . From condition B) we get for a = %‘:
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The scale parameter V; may be chosen arbitrarily. However, in order to ensure

that fiy, > 0 for every vector p, containing allele frequencies, V; > 3+ should be
chosen. In the paper we used

- E - PQTLUiM
K K

Vi

with k = 2 in order to get a high variability of the marker based kinships. In this
case, the formula for fy; can be further simplified:



fu = %(QPb —1)"(2p; — 1).

Thus,
| M
f = M Z(Qp(m) — 1)<2p(m) — 1)T.
m=1
Equation 4:
M
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Proof:

The equality on the right hand side holds because

NGD(C)

N =N = DN =



