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Supplementary Material
Analytical methods
Conglomerate clasts were cleaned of any remnant matrix material with a diamond saw. All samples were crushed in a jaw crusher and milled into fine powder in a swing mill. The powder was washed gently on a Wilfley table to remove fine material, and heavy minerals were separated with heavy liquid. For granitoid clast samples, the separation was followed by multistage Franz magnetic separation, usually yielding apatite-zircon residue from which only the largest and cleanest zircons were handpicked. Large zircons (>100 μm) are more likely to resist lead-loss events and facilitate better ablation. Franz separation was not used for the sandstone samples in order to avoid possible biasing by removing slightly magnetic zircon grains (Sircombe & Stern, 2002). Sample sizes were variable, but despite this some small samples were rich in zircons and some very large samples were extremely poor in zircons. One sample contained practically no zircons and was therefore not dateable. This indicates variable zircon saturation in the source area granitoids (Moecher & Samson, 2006), another biasing factor. Zircons were mounted deeply into epoxy and a small window exposed by polishing in order to facilitate maximum ablation times. Before analysis, all grains were imaged by BSE/CL in a scanning electron microscope to detect inherited cores and metamorphically disturbed zones.
U-Pb
For the samples in this study, U-Pb dating and isotope analysis were performed using a Nu Plasma HR multicollector ICPMS and a New Wave/Merchantek LUV-213 laser microprobe at the Department of Geosciences, University of Oslo.
U-Pb analyses were made according to analytical protocols described by Rosa et al. (2009). A single U-Pb measurement included 30 s of on-mass background measurement, followed by 60 s of ablation with a stationary beam. Laser conditions for U-Pb analysis were: beam diameter: 40 μm; pulse frequency: 10 Hz; beam energy density: c. 0.06 J/cm2. Masses 204, 206 and 207 were measured in secondary electron multipliers, and 238 in the extra high mass Faraday collector of the Nu Plasma U-Pb collector block. 235U was calculated from the signal at mass 238 using a natural 238U/235U=137.88. Mass number 204 was used as a monitor for common 204Pb. Analyses which yielded peak/background ratios at mass 204 of less than 1 + 3RSDB (where RSDB is the observed relative standard deviation of the on-peak background measurement), were considered to have common lead below the detection limit.

The data were regressed using mainly two (occasionally up to four) calibration standards. Standard zircons used for calibration were: 91500 (1065 ± 1 Ma; Wiedenbeck et al., 1995), GJ-01 (609 ± 1 Ma; Jackson et al., 2004), Plešovice (337 ± 0.4 Ma; Sláma et al., 2008), Temora 2 (Woodhead & Hergt, 2005), and an in-house Palaeoproterozoic standard A382, which is a zircon separated from a hypersthene granite from Voinsalmi, Finland, and has an average age of 1877 ± 2 Ma by isotope dilution (ID)-TIMS U-Pb (H. Huhma, pers. comm.). The calculations were done off-line, using an in-house interactive Microsoft Excel spreadsheet program. The estimated uncertainties in isotope ratios incorporate error terms from counting statistics on signals and backgrounds for the relevant masses measured on standards and unknowns, the standard error of the regression line determined from standards, and the published uncertainty of the calibration standards. The terms have been propagated through, using standard error propagation algorithms (e.g. Taylor, 1997).

IsoplotEx 3.34 (Ludwig, 2003) was used to plot concordia diagrams and for calculating the concordia ages (Ludwig, 1998) and weighted averages. Additional runs of zircon standards 91500 and Plešovice were used in each analytical session to monitor the accuracy of the method. Outlier calibration standard analyses were rejected when the monitoring standards did not come acceptable. In each session the monitoring standard is not more than c. 5 m.y. off from published value.
Lu-Hf
The Lu-Hf protocol follows Heinonen, Andersen & Rämö (2010). For Lu-Hf isotope analysis of zircon, masses from 172 to 179 were measured. The isobaric interferences on 176Hf by 176Lu and 176Yb were corrected by an empirical procedure (cf. Andersen, Graham & Sylvester, 2009; Heinonen, Andersen & Rämö, 2010). A value for the decay constant of 176Lu of 1.867 x 10-11 year-1 has been used in all calculations (Söderlund et al., 2004; Scherer, Münker & Mezger 2001; Scherer, Whitehouse & Münker, 2007). We have adopted the depleted mantle model of Griffin et al. (2000) and CHUR model of Bouvier, Vervoort & Patchett (2008). Reference zircon Mud Tank (Black & Gulson, 1978; Griffin et al., 2004; Woodhead & Hergt, 2005) and Temora-2 (Black et al., 2004) were used as standards. Laser settings used were: c.50% power, 55μm spot size and 5Hz repetition rate.
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