Geological Magazine

Evidence for prey preference partitioning in the Middle Eocene high-diversity crocodylian assemblage of the Geiseltal-Fossillagerstätte, Germany utilizing skull shape analysis

Alexander K. Hastings & Meinolf Hellmund

Supplementary Material

Table S1. List of specimens for extant crocodylian data set used for geometric morphometric analysis (n = 218). **Institutional Abbreviations: AMNH**, American Museum of Natural History, Herpetological Collections, New York, NY, USA; **CMNH**, Carnegie Museum of Natural History; **ICN**, Herpetological Collections of the Universidad Nacional, Bogotá, Colombia; **UF-H**, University of Florida, Florida Museum of Natural History, Herpetology, Gainesville, FL USA; **UF-VP**, University of Florida, Florida Museum of Natural History, Vertebrate Paleontology, Gainesville, FL USA; **USNM**, Smithsonian United States Natural History Museum, Washington D.C. USA.

Taxon	Collection	Specimen #
Alligator		
A. mississippiensis	UF-H	39618
A. mississippiensis	UF-H	22215
A. mississippiensis	UF-H	34788
A. mississippiensis	UF-H	34886
A. mississippiensis	UF-H	35156
A. mississippiensis	UF-H	37230
A. mississippiensis	UF-H	39106
A. mississippiensis	UF-H	42548
A. mississippiensis	UF-H	42872
A. mississippiensis	UF-H	43151
A. mississippiensis	UF-H	50125
A. mississippiensis	UF-H	61483
A. mississippiensis	UF-H	67824
A. mississippiensis	UF-H	84197
A. mississippiensis	UF-H	109038
A. mississippiensis	UF-H	10941
A. mississippiensis	UF-VP	147700
A. mississippiensis	UF-VP	177250
A. sinensis	UF-H	67829
A. sinensis	UF-H	105540
A. sinensis	AMNH	R-139672
A. sinensis	AMNH	R-139673
A. sinensis	AMNH	R-23898
A. sinensis	AMNH	R-23899
A. sinensis	AMNH	R-23900
A. sinensis	AMNH	R-23901
A. sinensis	AMNH	R-23907

<u> </u>		
Caiman	CMANI	0007
C. crocoallus		9997
C. crocoallus		19067
C. crocoallus		39062
C. crocoallus		45439
C. crocodilus	UF-H	80910
C. crocodilus	UF-H	80911
C. crocodilus	UF-H	80912
C. crocodilus	UF-H	80913
C. crocodilus	UF-H	80914
C. crocodilus	UF-H	80915
C. crocodilus	UF-H	80916
C. crocodilus	UF-H	80917
C. crocodilus	UF-H	80918
C. crocodilus	UF-H	80919
C. crocodilus	UF-H	80920
C. crocodilus	UF-H	80921
C. crocodilus	UF-H	80922
C. crocodilus	UF-H	80923
C. crocodilus	UF-H	80924
C. crocodilus	UF-H	80925
C. crocodilus	UF-H	80926
C. crocodilus	UF-H	80927
C. crocodilus	UF-H	80928
C. crocodilus	UF-H	80929
C. crocodilus	UF-H	80930
C. crocodilus	UF-H	80931
C. crocodilus	UF-H	80932
C. crocodilus	UF-H	80933
C. crocodilus	UF-H	80934
C. crocodilus	UF-H	80935
C. crocodilus	UF-H	80936
C. crocodilus	UF-H	80937
C. crocodilus	UF-H	80938
C. crocodilus	UF-H	80939
C. crocodilus	UF-H	80940
C. crocodilus	UF-H	80941
C. crocodilus	UF-H	80942
C. crocodilus	UF-H	80944
C. crocodilus	UF-H	80945
C. crocodilus	UF-H	80946
C. crocodilus	UF-H	80947
C crocodilus	UF-H	80948
C crocodilus	UF-H	80949
C crocodilus	UF-H	80050
C. crocodilus	UI-II UIE U	80950
C. crocodilus	ОГ-П ПЕ Ц	80052
$C_{\rm c}$ crocoallus	ОГ-Н ШЕ П	00732
C. crocodilus	UF-H	80953
C. crocodilus	UF-H	80954
C. crocodilus	UF-H	80939

C. crocodilus C. latirostris C. yacare C. yacare C. yacare	UF-H UF-H UF-H UF-H	154567 62649
C. latirostris C. yacare C. yacare C. yacare	UF-H UF-H UF-H	62649
C. yacare C. yacare C. yacare	UF-H UF-H	101021
C. yacare C. vacare	UF-H	121251
C. vacare	01 11	121249
01) 110 11.0	AMNH	R-73622
C. yacare	AMNH	R-97299
C. yacare	AMNH	R-97300
C. yacare	AMNH	R-97303
C. yacare	AMNH	R-97304
C. yacare	AMNH	R-97308
C. yacare	AMNH	R-97309
C. yacare	AMNH	R-97329
C. yacare	AMNH	R-97330
Melanosuchus		
M. niger	UF-H	53600
M. niger	UF-H	62641
M. niger	UF-H	72914
M. niger	AMNH	R-58130
M. niger	AMNH	R-58134
M. niger	AMNH	R-110179
M. niger	AMNH	R-15171
M. niger	AMNH	R-58132
M. niger	AMNH	R-71172
Paleosuchus		
P. palpebrosus	CMNH	113091
P. palpebrosus	UF-H	62509
P. palpebrosus	UF-H	75020
P. palpebrosus	UF-H	75023
P. palpebrosus	UF-H	87980
P. palpebrosus	AMNH	R-137161
P. palpebrosus	AMNH	R-137162
P. palpebrosus	AMNH	R-137170
P. palpebrosus	AMNH	R-93812
P. palpebrosus	AMNH	R-97327
P. palpebrosus	AMNH	R-97328
P. trigonatus	CMNH	113092
P. trigonatus	CMNH	55624
P. trigonatus	CMNH	55625
P. trigonatus	AMNH	R-129259
P. trigonatus	AMNH	R-129260
P. trigonatus	AMNH	R-137174
P. trigonatus	AMNH	R-66391
Crocodylus		
C. acutus	CMNH	145676
C. acutus	CMNH	6450
C. acutus	CMNH	9993
C. acutus	ICN	1850
C. acutus	UF-H	49953
C. acutus	UF-H	54201
C. acutus	UF-H	56429
C. 11CHIND	01 11	50727

C. acutus	UF-H	63929
C. acutus	UF-H	115691
C. acutus	UF-H	151167
C. acutus	UF-H	151168
C. intermedius	ICN	1849
C. intermedius	ICN	1851
C. johnstoni	USNM	299810
C. johnstoni	AMNH	R-86540
C. mindorensis	USNM	228407
C. moreletii	UF-H	29160
C. niloticus	UF-H	54812
C. niloticus	UF-H	55787
C. niloticus	UF-H	154251
C. niloticus	AMNH	R-10081
C. niloticus	AMNH	R-23463
C. niloticus	AMNH	R-23464
C. niloticus	AMNH	R-23465
C. niloticus	AMNH	R-23466
C. niloticus	AMNH	R-7134
C. niloticus	AMNH	R-7136
C. niloticus	AMNH	R-127255
C. niloticus	AMNH	R-137239
C. niloticus	AMNH	R-23468
C. niloticus	AMNH	R-23469
C. niloticus	AMNH	R-07852
C. niloticus	AMNH	R-23471
C. niloticus	AMNH	R-24717
C. niloticus	AMNH	R-29291
C. niloticus	AMNH	R-29292
C. novaguinae	UF-H	145927
C. novaguinae	UF-H	149214
C. novaguinae	AMNH	R-64425
C. palustris	AMNH	R-77632
C. palustris	AMNH	R-96134
C. porosus	CMNH	39674
C. porosus	UF-H	71779
C. porosus	UF-H	134586
C. porosus	AMNH	R-32338
C. porosus	AMNH	R-62632
C. porosus	AMNH	R-62633
C. porosus	AMNH	R-66639
C. porosus	AMNH	R-66640
C. porosus	AMNH	R-76853
C. porosus	AMNH	R-24958
C. porosus	AMNH	R-58016
C. porosus	AMNH	R-74958
C. porosus	AMNH	R-15179
C. porosus	AMNH	R-24957
C. porosus	AMNH	R-74957
C. porosus	AMNH	R-06581
	1 11/11 111	11 00201

C. porosus	AMNH	R-07131
C. porosus	AMNH	R-29949
C. porosus	AMNH	R-58015
C. raninus	AMNH	R-29294
C. rhombifer	UF-VP	225401
C. rhombifer	AMNH	R-154087
C. rhombifer	AMNH	R-57773
C. rhombifer	AMNH	R-75033
C. rhombifer	AMNH	R-77595
C. siamensis	AMNH	R-118712
C. siamensis	AMNH	R-49231
C. siamensis	AMNH	R-72640
Mecistops		
M. cataphractus	UF-H	145926
M. cataphractus	AMNH	R-10075
M. cataphractus	AMNH	R-107634
M. cataphractus	AMNH	R-160902
M. cataphractus	AMNH	R-29300
M. cataphractus	AMNH	R-57772
M. cataphractus	AMNH	R-75424
Osteolaemus		
O. tetraspis	UF-H	33749
O. tetraspis	AMNH	R-10082*
O. tetraspis	AMNH	R-10083
O. tetraspis	AMNH	R-101417
O. tetraspis	AMNH	R-101418
O. tetraspis	AMNH	R-117801
O. tetraspis	AMNH	R-117802
O. tetraspis	AMNH	R-160900
O. tetraspis	AMNH	R-160901
O. tetraspis	AMNH	R-24740
O. tetraspis	AMNH	R-29889
O. tetraspis	AMNH	R-69057
O. tetraspis	AMNH	R-75420
O. tetraspis	AMNH	R-75421
O. tetraspis	AMNH	R-7743
Tomistoma		
T. schlegelii	UF-H	54210
T. schlegelii	UF-H	62020
T. schlegelii	UF-H	84888
T schlegelii	UF-H	107493
T. schlegelii	USNM	52972
T. schlegelii	AMNH	R-113078
T. schlogelii	AMNH	R-15177
Gavialis	2 21011 011	N°131//
G gangeticus	AMNH	R-110145
G gangeticus	AMNH	R-131377
G gangeticus	AMNH	R_15176
G. gangeticus	AMNH	R-7132
0. gungencus	AMINII	K-/130

Table S2. Percent of total variance and correlation statistics generated from the geometric morphometric analysis of all Geiseltal crocodylians. Statistically significant correlations are bolded in red. **Abbreviations: RW**, Relative Warp; ρ , Pearson's correlation coefficient.

Avia	% of Total	A	ge	Centro	oid Size	Tapho	onomy
AXIS	Variance	ρ	p-value	ρ	p-value	ρ	p-value
RW1	12.7000	-0.0962	0.6262	0.2403	0.2181	0.0203	0.9183
RW2	8.8808	-0.0418	0.8329	0.2416	0.2156	0.0366	0.8532
RW3	7.7253	0.4662	0.0124	-0.6046	0.0007	0.3269	0.0895
RW4	6.7721	-0.0088	0.9647	-0.2830	0.1445	0.0759	0.7010
RW5	5.9385	-0.2562	0.1883	0.1255	0.5244	-0.3091	0.1095
RW6	5.8992	0.0689	0.7274	0.2011	0.3049	-0.4492	0.0165
RW7	4.9501	-0.1518	0.4408	0.1783	0.3639	-0.4533	0.0154
RW8	4.3973	-0.3165	0.1008	0.1534	0.4358	0.0659	0.7389
RW9	4.1082	-0.1620	0.4101	0.0538	0.7856	0.0475	0.8105
RW10	4.2705	-0.0811	0.6815	0.3795	0.0464	-0.1535	0.4354
RW11	3.8757	0.0020	0.9920	0.0381	0.8474	-0.1420	0.4711
RW12	3.3946	-0.2689	0.1665	0.0729	0.7123	0.0727	0.7133
RW13	3.1647	-0.0577	0.7704	0.1465	0.4570	-0.1390	0.4807
RW14	2.7056	0.0625	0.7522	-0.0215	0.9137	-0.0257	0.8967
RW15	2.2675	-0.0925	0.6395	0.2133	0.2759	0.1456	0.4598
RW16	2.2452	-0.1404	0.4760	0.0186	0.9250	0.1860	0.3433
RW17	2.3901	0.1201	0.5429	-0.2216	0.2571	0.2430	0.2127
RW18	2.0617	0.3046	0.1150	-0.0691	0.7268	0.0732	0.7114
RW19	1.9265	-0.0604	0.7600	0.0921	0.6413	-0.2033	0.2994
RW20	1.8476	0.0070	0.9720	-0.0478	0.8093	0.0925	0.6396
RW21	1.6496	-0.0338	0.8646	-0.1229	0.5331	0.0489	0.8049
RW22	1.5372	0.1756	0.3714	-0.1488	0.4499	0.2381	0.2225
RW23	1.2577	-0.2245	0.2508	0.0145	0.9417	0.1494	0.4481
RW24	1.1142	0.1931	0.3249	-0.0026	0.9896	0.1403	0.4763
RW25	0.9635	0.0550	0.7811	-0.0015	0.9940	-0.0617	0.7551
RW26	1.0731	0.3613	0.0589	0.0147	0.9408	0.0065	0.9737
RW27	0.8833	0.2707	0.1636	-0.0544	0.7833	-0.1795	0.3606

Table S3. Percent of total variance and correlation statistics generated from the geometric morphometric analysis of all *Diplocynodon* specimens (n = 14). Data for this taxon were isolated from the geometric morphometric analysis of all Geiseltal specimens. Statistically significant correlations are bolded in red. **Abbreviations**: **RW**, Relative Warp; ρ , Pearson's correlation coefficient.

	% of	% of	Age		Centr	Centroid Size		Taphonomy	
Axis	Total	Taxon		· .					
	Variance	Variance	ρ	p-value	ρ	p-value	ρ	p-value	
RW1	12.7000	9.9727	0.4371	0.1181	0.2284	0.4323	0.4251	0.1297	
RW2	8.8808	9.0088	0.4901	0.0753	0.5065	0.0646	0.2675	0.3552	
RW3	7.7253	8.6845	0.1472	0.6157	-0.3243	0.2580	0.1213	0.6795	
RW4	6.7721	6.7182	-0.2319	0.4250	-0.0889	0.7626	0.2291	0.4309	
RW5	5.9385	6.0218	-0.3449	0.2272	-0.3144	0.2736	-0.2267	0.4357	
RW6	5.8992	7.0127	0.0503	0.8645	-0.2764	0.3388	-0.2716	0.3476	
RW7	4.9501	4.6091	0.3475	0.2234	0.2731	0.3448	-0.6344	0.0148	
RW8	4.3973	3.8747	-0.5162	0.0588	-0.5053	0.0653	0.1422	0.6276	
RW9	4.1082	4.2693	-0.1468	0.6164	-0.0695	0.8135	0.0345	0.9068	
RW10	4.2705	3.9047	-0.1109	0.7059	-0.1317	0.6535	0.5660	0.0349	
RW11	3.8757	4.7908	0.3050	0.2890	0.1468	0.6164	-0.3340	0.2432	
RW12	3.3946	4.1737	-0.2493	0.3900	-0.3047	0.2895	0.2113	0.4684	
RW13	3.1647	3.1212	0.2677	0.3548	-0.0573	0.8459	-0.1979	0.4976	
RW14	2.7056	2.2894	0.2291	0.4308	0.1228	0.6759	-0.1122	0.7026	
RW15	2.2675	2.7927	-0.0726	0.8052	0.0293	0.9208	0.2068	0.4780	
RW16	2.2452	2.4285	-0.0791	0.7881	-0.2580	0.3731	0.0471	0.8729	
RW17	2.3901	2.1785	-0.3751	0.1864	-0.5091	0.0630	0.2615	0.3666	
RW18	2.0617	1.6429	0.1739	0.5520	0.4972	0.0705	0.3190	0.2663	
RW19	1.9265	1.9705	0.1278	0.6632	-0.2189	0.4521	-0.1666	0.5691	
RW20	1.8476	1.8413	-0.4850	0.0788	-0.3480	0.2228	0.1177	0.6886	
RW21	1.6496	1.7817	-0.4506	0.1058	-0.4624	0.0959	0.0643	0.8270	
RW22	1.5372	1.5830	0.1987	0.4958	0.1491	0.6109	0.1969	0.5000	
RW23	1.2577	1.1957	-0.0440	0.8812	-0.2688	0.3527	0.2163	0.4576	
RW24	1.1142	1.1980	0.2133	0.4641	0.2007	0.4914	0.1298	0.6584	
RW25	0.9635	0.8459	0.1332	0.6499	0.0391	0.8943	-0.3889	0.1693	
RW26	1.0731	1.0408	0.3144	0.2737	0.2968	0.3029	-0.4649	0.0939	
RW27	0.8833	1.0488	0.1624	0.5792	-0.0023	0.9938	-0.3064	0.2867	

Table S4. Percent of total variance and correlation statistics generated from the geometric morphometric analysis of all *Asiatosuchus* specimens (n = 7). Data for this taxon were isolated from the geometric morphometric analysis of all Geiseltal specimens. Statistically significant correlations are bolded in red. Since there was no variation within these specimens with respect to taphonomy, this correlation could not be calculated. **Abbreviations: RW**, Relative Warp; ρ , Pearson's correlation coefficient.

Arria	% of Total	% of Taxon	A	Age		Centroid Size		
AXIS	Variance	Variance	ρ	p-value	ρ	p-value		
RW1	12.7000	4.6718	-0.3930	0.3831	0.2112	0.6494		
RW2	8.8808	10.2200	-0.3628	0.4238	0.3932	0.3829		
RW3	7.7253	8.4068	0.3520	0.4388	-0.2349	0.6121		
RW4	6.7721	5.7994	0.3559	0.4333	-0.4202	0.3479		
RW5	5.9385	5.5885	-0.5699	0.1816	0.2439	0.5982		
RW6	5.8992	5.2779	0.9820	8.23E-05	-0.9153	0.0038		
RW7	4.9501	5.9760	-0.2428	0.5999	0.5077	0.2447		
RW8	4.3973	5.6409	-0.4733	0.2834	0.4424	0.3202		
RW9	4.1082	4.2766	-0.7670	0.04421	0.8750	0.0099		
RW10	4.2705	5.2939	0.1916	0.6807	0.1827	0.6950		
RW11	3.8757	4.1788	-0.0993	0.8323	-0.3370	0.4599		
RW12	3.3946	4.0061	-0.2634	0.5682	0.1618	0.7288		
RW13	3.1647	2.6916	-0.6616	0.1055	0.8149	0.0256		
RW14	2.7056	3.4046	0.2977	0.5168	-0.4006	0.3732		
RW15	2.2675	1.7217	-0.6665	0.102	0.8271	0.0217		
RW16	2.2452	2.7654	-0.4528	0.3076	0.4164	0.3527		
RW17	2.3901	2.9509	0.4983	0.255	-0.3036	0.5080		
RW18	2.0617	2.1704	0.1108	0.813	-0.2965	0.5184		
RW19	1.9265	3.0157	0.0521	0.9117	0.0088	0.9851		
RW20	1.8476	2.5377	0.4919	0.2622	-0.0918	0.8448		
RW21	1.6496	1.7262	0.0314	0.9467	-0.3658	0.4197		
RW22	1.5372	1.7967	-0.0418	0.929	0.0283	0.9520		
RW23	1.2577	1.2065	-0.4816	0.2739	0.4580	0.3014		
RW24	1.1142	1.3233	0.5401	0.2108	-0.6004	0.1540		
RW25	0.9635	1.2748	-0.2867	0.5331	0.1806	0.6983		
RW26	1.0731	1.2960	0.3349	0.4628	0.1428	0.7600		
RW27	0.8833	0.7819	0.1707	0.7144	-0.2329	0.6152		

Table S5. Percent of total variance and correlation statistics generated from the geometric morphometric analysis of all *Boverisuchus* specimens (n = 5). Data for this taxon were isolated from the geometric morphometric analysis of all Geiseltal specimens. Statistically significant correlations are bolded in red. **Abbreviations**: **RW**, Relative Warp; ρ , Pearson's correlation coefficient.

	% of	% of	A	Age	Centr	oid Size	Taph	onomy
Axis	Total	Taxon		-				
	Variance	Variance	ρ	p-value	ρ	p-value	ρ	p-value
RW1	12.7000	20.4896	0.4363	0.4627	0.7941	0.1086	-0.2530	0.6813
RW2	8.8808	8.9833	-0.6077	0.2770	0.4783	0.4151	0.0791	0.8994
RW3	7.7253	6.3952	0.3309	0.5865	0.0264	0.9664	-0.5011	0.3898
RW4	6.7721	7.9115	-0.4681	0.4265	-0.7676	0.1297	-0.6573	0.2280
RW5	5.9385	4.4509	0.0167	0.9787	0.6289	0.2557	-0.2956	0.6292
RW6	5.8992	4.7658	0.4032	0.5009	-0.0143	0.9818	-0.7876	0.1137
RW7	4.9501	5.8914	-0.5701	0.3156	0.0488	0.9379	-0.7982	0.1055
RW8	4.3973	4.5034	0.2424	0.6944	-0.0411	0.9477	0.1347	0.8290
RW9	4.1082	2.1979	0.7071	0.1817	-0.0266	0.9662	-0.3835	0.5239
RW10	4.2705	4.3434	0.6078	0.2769	-0.4699	0.4245	-0.3517	0.5616
RW11	3.8757	2.0240	-0.3861	0.5209	0.1614	0.7954	0.8145	0.0932
RW12	3.3946	1.8034	-0.4060	0.4976	-0.1545	0.8041	0.1045	0.8672
RW13	3.1647	3.9851	0.2131	0.7308	-0.4169	0.4850	-0.0768	0.9023
RW14	2.7056	3.6565	-0.0719	0.9085	-0.6928	0.1947	0.3139	0.6070
RW15	2.2675	2.2819	0.6591	0.2264	-0.1111	0.8589	0.6691	0.2168
RW16	2.2452	1.4028	0.3511	0.5623	0.6557	0.2296	0.8439	0.0723
RW17	2.3901	1.5242	0.1297	0.8354	0.5114	0.3785	0.4760	0.4177
RW18	2.0617	3.2426	0.6762	0.2101	0.2424	0.6945	-0.5106	0.3794
RW19	1.9265	1.0899	-0.6521	0.2331	-0.0990	0.8742	-0.2797	0.6485
RW20	1.8476	0.7099	-0.4733	0.4207	-0.1907	0.7587	0.6236	0.2610
RW21	1.6496	1.5903	0.5601	0.3262	0.7991	0.1047	0.3277	0.5904
RW22	1.5372	1.6828	0.3195	0.6002	-0.6418	0.2430	0.2132	0.7306
RW23	1.2577	1.2429	-0.6434	0.2415	0.5561	0.3304	-0.0836	0.8936
RW24	1.1142	1.0031	-0.0604	0.9231	0.8160	0.0921	0.6481	0.2369
RW25	0.9635	0.9943	0.5582	0.3281	-0.3448	0.5698	0.5331	0.3549
RW26	1.0731	1.0474	0.6033	0.2814	0.6657	0.2200	0.6963	0.1915
RW27	0.8833	0.7868	0.9450	0.0154	-0.1322	0.8321	-0.0148	0.9812

Table S6. Correlation statistics between age, centroid size, and taphonomy within the entire Geiseltal dataset. Statistically significant values are bolded in red. *Allognathosuchus* could not be included due to the low sample size (n = 2). Statistics could not be run for taphonomy of *Asiatosuchus* as there was no variation in preservation. **Abbreviations:** ρ , Pearson's correlation coefficient; **NA**, not applicable.

Crown	Comparison	Pearson's Correlation			
Group	Comparison	ρ	p-value		
All	Age vs. Centroid Size	-0.5865	0.0010		
	Age vs. Taphonomy	0.2446	0.2097		
	Centroid Size vs. Taphonomy	-0.5581	0.0020		
Diplocynodon	Age vs. Centroid Size	0.7900	0.0008		
	Age vs. Taphonomy	-0.3303	0.2488		
	Centroid Size vs. Taphonomy	-0.1503	0.6080		
Asiatosuchus	Age vs. Centroid Size	-0.8631	0.0124		
	Age vs. Taphonomy	NA	NA		
	Centroid Size vs. Taphonomy	NA	NA		
Boverisuchus	Age vs. Centroid Size	0.0907	0.8847		
	Age vs. Taphonomy	0.2182	0.7244		
	Centroid Size vs. Taphonomy	0.1766	0.7764		

Figure S1. A histogram depicting the percent variance of all 27 relative warps axes of the entire Geiseltal geometric morphometric dataset. Each axis is divided into the proportions contributed by each taxon. Sample sizes: *Boverisuchus* (n=5), *Diplocynodon* (n=14), *Asiatosuchus* (n=7), *Allognathosuchus* (n=2).

Figure S2. A histogram depicting the percent variance of the entire combined geometric morphometric dataset from all of the 66 relative warps axes. Each axis is divided into the proportions contributed by each group. Sample sizes: Geiseltal (n=28), Gavialidae (n=4), Crocodylidae (n=98), Alligatoridae (n=116).

