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On-line Appendix

This appendix contains a fuller statement of assumptions on the contest success functions, proofs
of (non-trivial) propositions, and analysis of some extensions or variants on the model discussed or
mentioned in the text.

Note: Shortly before publication I found a mistake in Proposition 5. The statement of the proposi-
tion was corrected (it applies as stated only for the Powell model with sequential moves), and this
version of the appendix contains an different proof from previous versions (anything dated before
May 16, 2018), and remarks that address the issues that arise in, and comparative statics for, the
simultaneous move model.

1 Assumptions about ¢(aj,as) and p'(a;,a;)

Al. g(a1,a2) € [0,1] satisfies the following conditions.!

1. ¢ is symmetric, so that g(aj,a2) = 1 — g(ag, a1), and continuous and differentiable whenever
both arguments are positive.

2. An unarmed or nearly unarmed state gets no part of « if the other state is armed: ¢(a,0) =1
for a > 0 and limy_, ¢(a,b) = 1 for a > 0.

3. More arms increase a state’s share of v: g1(a1,az) > 0 for ag > 0.

4. The return from an additional increment of arms is decreasing in the level of arms: ¢1(a,a) <
q1(b,b) if a > b, and lim, 0 ¢1(a,a) = co.

5. The return from additional spending at equal arms levels is decreasing: ¢11(a,a) < 0.
A2. pi(ay,az;m) € [0, 1] satisfies the following conditions.

1. p* is continuous and differentiable whenever both arguments are positive, and is symmetric
in the sense that p'(a,b;m) = p?(a,b;m), (a,b) € [0,1]?. That is, chances of winning as the
attacker depend only on the force levels and a common military technology. Note that it is
not necessarily the case that p!(a,b) = 1 —p?(b, a); the probability of winning as attacker can
differ from the probability winning as defender, for the same force levels.

!Throughout, subscript notation is used for derivatives: for example, q1(a1, a2) is the derivative of ¢ with respect
to a1, and qi2 is the cross-partial with respect to a; and as.



2. A unarmed or nearly unarmed state can be taken over by an attacker with any positive
amount of arms: lim,_,qp'(a,b) =1 for a > 0.

3. More arms increase a state’s chance of winning: p'(a;,a;) > 0 for a; > 0.

4. The return from an additional increment of arms is decreasing in the level of arms: pi(a, a) <
pi(b,b) if a > b.

5. The attacker’s chance of winning is increasing in offensive advantage (m) for given force
levels, and decreasing in defensive advantage, with limits at 1 and 0: pi,(a;, aj;m) > 0 and
limy, 00 p*(a;, aj;m) = 1 and limy, 0 p*(a;, aj;m) =0

2 Proofs of Propositions

Observation 1. Consider utility functions u;(a;,aj) = 1 — a; + vq(a;,a;) and the one-shot game
in which the states simultaneously choose arms levels, with no option for war. Al implies that
there exists a symmetric Nash equilibrium of the game in which both states choose an arms level
NE

a™*® > 0.

Proof. A1(2) implies that (0,0) cannot be a Nash equilibrium, since a state can get certain victory
by deviating to an arbitrarily small positive amount of arms. Next, in a Nash equilibrium the
first-order conditions either hold exactly for (aj,as) such that vqi(ai,as) = 1 for state 1 and
vqi(az,a1) = 1 for state 2, or with a corner solution for one or both if v¢i(1,a;) > 1. By A1(3)
and Al(4), ¢i(a,a) is positive but decreasing in a for a > 0, and since for small enough a g;(a,a)
is very large, there exists a unique a’¥¥ > 0 such that both states FOC’s are satisfied. A1(5) also
implies that the second-order condition is satisfied at such a point.

Observation 2. Given A1, a™F is strictly increasing in v for interior solutions.

Proof. Implicitly differentiate the FOC ~vq;(a,a) =1 in 7 to get ¢1 + v(q11 + ¢12)a’ () = 0. Al(4)
implies that the derivative of ¢ (a,a) with respect to a is ¢11 + qi12 < 0, so the term in parentheses
is negative. a/(y) > 0 then follows because ¢; > 0 (A1(3)).

Proposition 2. If there is a smallest a* that solves the war constraint (5) with equality, and
a* < aNE, then for large enough § the game has peaceful equilibria in which, on the path of play,
the states choose & € [a*,a) in every period, where a < a™¥ is determined by specific parameters.
Thus in the most cooperative equilibrium the states choose a* in all periods on the path. Further,
if defensive advantage is sufficiently large (that is, m is small enough), such an a* definitely exists
and a* < aNF.



Proof of Proposition 2 . The war constraint is satisfied with equality by any a such that
1—a+7/2=max(l —a)(1-08)+p'(a,a)(y — c+8(1+ p)).
a

By the argument in footnote 26,there exists a d such that for all 6 € [§,1), ' = 1 solves the
maximum problem here, so that we have for § > &

L—a+7/2=p(La)(y — c+6(1+ ). (1)

Since 1 +v/2 <y —c+ 1+ u by assumption (else the war constraint does not bind at (0,0) and
so there is no problem due to anarchy), there exists a ¢’ such that for all 6 € (§',1], 1++v/2 <w =
v —c+0(1+ u). Redefine ¢ as the larger of ¢’ and ¢ defined above. In what follows results are for
d’s at least as large as this J.

1 +v/2 < w implies that the LHS of (1) is less than the RHS when a = 0 since p’(1,0) = 1. Both
the LHS and RHS are decreasing in a so that if the two lines intersect, there is a smallest a* > 0
that satisfies (1), at which point the RHS cuts or touches the LHS value from above. Thus there
must also exist an @’ > a* such that LHS > RHS for all a € (a*, a’), with strict inequality if a’ > a*.

Suppose (as assumed in the Proposition) that this a* < a™¥, and let @ = min{a™¥ a’}. We now
propose a strategy that will support a peaceful subgame-perfect equilibrium in which the states
choose a € [a*,a] in each period and neither state attacks on the path of play, for large enough 4.
We begin with the simplest case where @ = ¥ and then comment on modifications necessary if
a<alVP.

o: There are two phases. In the normal phase, both states choose a, but attack iff there are
deviations in a period to (a;, a;) such that

d(1—a+~/2) <pi(ai,aj)w. (2)

If either or both states deviate to a smaller a; < a such that (2) is not satisfied, this deviation is
ignored and the normal phase continues. If both states deviate to higher a; > a, these deviations
are ignored and the normal phase continues. If one state deviates to a; > a, then play enters the
punishment phase.

In the punishment phase, both states choose a’V¥ in each period regardless of prior history, but

attack iff there are deviations in a period to (a;, a;) such that
5(1 —a™F +~/2) < p'(ai, aj)w. (3)
To see that this strategy can constitute a SGP equilibrium, begin with the punishment phase.

Because a¥F < @, the war constraint is satisfied at this arms level and so neither has an incentive
to deviate to a; = 1 and then attack. Nor does either have an incentive to deviate to a; # a™V¥ and



then not attack, since by the definition of a’¥¥ there is no other a; that yields a higher payoff in
the stage game with no war (i.e., 1 —a; +7v¢(a;, a™¥)) than a™VF. Off the path, (3) governs whether
attacks are optimal given (a;,a;).

In the normal phase, the war constraint is satisfied by construction so neither wishes to deviate
to a; = 1 and then attack. Condition (2) governs optimal choices for attack given (a;, a;) and the
expectation of the normal phase continuing if no attack occurs. Deviations down to a; < & only
lower i’s payoff in a period given that @ < V. An upward deviation to a; > @ yields

(1= 8)(1 = a; +yq(ai, ) + (1 — a™F + 7/2),

which for large enough 0 is certainly less than 1 — a + /2. This proves that ¢ forms a peaceful
SGP equilibrium of the game for large enough § for the case of a = oV F.

If a < a™VF, then it is no longer feasible to use the “grim trigger” strategy of resorting to (aV¥, a™VF)
as the punishment threat, since these levels do not satisfy the war constraint in this case.? Alter-
native off-path punishment strategies can then be used, such as a finite number of periods T at
(aN E oNE ), where T is chosen to be large enough to deter upward deviation from @ in the normal
phase but small enough that the states want to get back to the peaceful path at a rather than go
to war in the punishment phase. For large enough J, getting back to & rather than going to war
at (aVF,aNF) is worth waiting for regardless of how large T is (if finite), and there will also be a
large enough T such that the deviation from a for a one-period gain is not worthwhile.

The final part of the Proposition asserts that for large enough defensive advantage, meaning small
enough m, there exists an a* that satisfies the war constraint and a* < a™¥¥. First, existence:
Rewrite (1) as 1 +v/2 = f(a,m) = a + p'(1l,a;m)w. 1+ /2 < f(0) = w by assumption. By
A2(5), for any a’ € (0,1] there exists an m(a’) such that 1 +~/2 > f(a’,m(a’)). Since f(a,m) is
continuous, there must exist an a € (0,a’) such that (1) holds, and that is the smallest such a.

NE

Second, a* < a™F for small enough m: Simply take a™¥ = ¢’ in the argument above. QED.

Proposition 3 Maximum feasible international cooperation (smaller a*) is (1) decreasing in the
value the states derive from controlling the other’s territory (u); (2) increasing in defensive advan-
tage (smaller m) and war costs (larger ¢); and (3) may increase or decrease with the value of the
international issues in dispute (or the gains from trade) between the two states, .

Proof of Proposition 3. We will prove the claims for a slightly more general version of the model,
in which states can have risk-neutral or risk averse preferences over outcomes, and the functional
form of the benefits of successful war is left open. Let u(y), with «(0) = 0, be a weakly concave,
increasing utility function that represents state preferences over outcomes. Let w(z) be a state’s

2 Alternatively, for this case we could use the threat of war with both choosing a; = 1 and attack off the path to
support a peaceful equilibrium.



payoff for winning a war, where z is a vector of factors such as u, ¢, and . In the case in the text
w = —c+ (1 + p). For this more general case, a* solves

u(l —a+7/2) = p'(1, a)u(w(z)). (4)

Differentiate both sides in any factor z that is positively related to w (the value of winning a war)
but not v and we have, at a = a*,

—u/(1 = a+7/2)d(z) = py(1, a)d (z)u(w()) + p'(1, @) (w(2))w'(2)
0=d(2)[u' (1 —a+7/2) +p5(1, a)u(w(2))] + p'(L, a)u' (w(z))w' ().
The term in brackets is negative because at a*, the RHS of (4) cuts the LHS from above, and

the term is the difference between the LHS and RHS slopes at this point.®> Therefore, since
p'(1,a)u’ (w)w'(z) > 0, a’(z) > 0 and thus increasing ¢ or decreasing p implies decreasing a*.

Similarly, differentiating both sides in m at a = a* yields
—u'(1 = a+7/2)a' (m) = u(w)[ph(1, a;m)a’ (m) + pj, (1, a;m)]
0= d'(m)[u'(1 - a+7/2) + pb(1, a)u(w)] + u(w)p,, (1, a;m),
which implies that a’(m) > 0 since the term in brackets is negative and the other term is positive
by A2(5).

Differenting in ~ yields

W' (1—a+7/2)[—d (7) + 1/2] = u(w)ps(1, a)a’ (v) + p' (1, a)u/ (w)w'(y)
u'(1—a+7/2)/2 = p'(La)u/ (w)w'(g) = ' ()W (1 — a+ 7/2) + u(w)ph(1, a)]

Again the term in brackets is negative so that here a’(y) has the opposite sign of the LHS. However,
the LHS can be positive or negative. Even in the risk neutral case of u(y) = y with w = y—c+d§(1+
i), it can be that LHS = 1/2 —p’(1,a) > 0, because with m < 1 it can happen that p’(1,a*) < 1/2.
QED.

Proposition 4. Consider the model with any contest success function p(a;, aj;m), where m indexes
offensive advantage in the sense that p' is increasing in m for positive arms levels. In a peaceful
equilibrium with arms levels a*, the probability that a break-out attack would succeed is decreasing
in offensive advantage.

Proof of Proposition 4. See footnote 47 in text.

3For comparative statics we are restricting attention to situations where varying a parameter locally does not
eliminate a peaceful equilibrium, and so we can ignore the case of a tangency.



2.1 Asymmetric capabilities and preferences

This section provides a fuller definition and analysis of the baseline model allowing states to differ
in key parameters, and in particular total resources (or state size).

Let total resources available to state ¢ be r; > 0, and let u; € [0,1] and ¢; > 0 reflect the value 4
puts on control of j’s territory and i’s costs for war, respectively. In the risk-neutral case of the
baseline model, w; = v — ¢; + 0(r; + p7;) is now i’s value for winning a war against j.

We are interested in comparative statics about ¢’s military burden, which is now b; = a;/r;.

Force levels (a1, as) satisfy the war constraints when, for i = 1,2,

ri — a; +vq(a;, aj) > p'(ri, aj)w;. (5)

For comparative statics on relative resources, R = r1/re, we encounter a new issue. Varying 71 or
ro by itself with the model as posed will change not only R but also the ratio of resources to costs
of war, thus varying the costs of war relative to the potential benefits (which include p;r;). We
need to keep costs proportional to resources to identify the distinct impact of relative (potential)
power, R. In other words, we would like a formulation such that equilibrium military burdens
(b1, b2) depend only on R and not on 71 and ry separately from R: states with resources (20, 15)
should have the same military burdens (in the most efficient peaceful equilibrium), as states with
resources (4,3).4

The same concerns apply for . If we increase r; and nothing else, we are making state j care less
about the issues relative to successful conquest, by implicitly assuming that v does not vary with
relative resources of the states. It is not clear (to me anyway) what should be assumed about how
the stakes on issues should vary with r; and 7;. In addition, general or closed-form results can
be impossible to derive in the non-symmetric case due to differences in a; and ao affecting states’
values for a peaceful status quo through ¢(ai,a2). So in what follows I will revert to “the Powell
model” in which v = 0. To avoid the “downward deviations” problem, we can assume a sequential
extensive form as in Powell (1993).5

It seems most natural to suppose a big state pays a smaller cost for a war against a small state
than against another big state, and likewise that a small state pays a larger cost in a war against
a big state than against another small state. So let i’s costs for war against j be ¢;r;. The war
constraints then become

ri —a; > p'(ri, a;)(r; + piry — eirj).

4To be clear, this is not an empirical claim but a statement about what is needed to isolate the impact of relative
resources on military burdens in the model, holding all other parameters equal.

5T have computed numerical solutions for the model with v > 0 and find, not surprisingly, that the qualitative
results (such as in Figure 4) are not affected.



Using the simple ratio form p’(a;, aj;m) = a;/(a; + aj/m) and rearranging, we have

az/m gl
7’1+a2/m 7“1+a2/m

ai(az) = ro(p1 — c1).

Dividing through by 7; to get the military burden b; = a1 /71, and simplifying yields

b1 — m(pu2 — c2)
bl +m/R

by —m(p1 — c1)
bilbe) = == =R

, and likewise ba(by) =

Let g; = p; —¢;. This system can be solved explicitly for the smallest intersection of the two curves
(if it exists), as

_ B—/B>—4(mR+1)C
N 2(mR+1) ’

bi

where B = 1 —m? —m(g1 — g2) and C = m%g;/R + mgs. b} is the same with the subscripts on
g; reversed and R switched to 1/R. These expressions can then be used to produce the results
illustrated in Figure 5.

For g1 = g9, it is easy to show the derivative of b5 with respect to R is positive for R > 1, which
means that greater resource inequality associates with an increasing military burden for the smaller
state. It is also straightforward to show that for R within a neighborhood of 1, dbj/dR < 0 and
dbs/dR > 0.

Proposition 5.Consider a version of the model in which there is no issue competition and states
arms sequentially, as in Powell’s formulation. Let w;(r;, 7}, pi, ¢;) be state i’s value for winning a
war, and suppose that w; is increasing in w; and decreasing in ¢;. Then for any military technology,
increasing the value © puts on control of j’s territory, or reducing i’s costs for fighting j, implies
greater equilibrium military burdens for both states.

Proof. Conditions for the minimal arms peaceful equilibrium (a1, a2) in the general case are

r1 — a1+ yq(ar, az) = p'(r1, a2)wi (r1,72,7, p1, ¢1)
ry — ag +yq(ag, a1) = p*(ra, a1)wa(r1, 72,7, p2, c2).
The case considered in the Proposition is for the Powell (1993, 1999) model, with sequential arming,

which here is the special case of v = 0. In what follows I do the analysis for factors that affect w;
but not w; (such as y; and ¢;) for the general case and then consider v = 0.

The first step is to get expressions for da;/da; when the equations above hold. Differentiating in
aj,



day day dasg das

J— — d _ _— =
das +7q1 s + vq2 = pa(re, az)w; an da; +7q1 da; +vq2 = p2(r1, a1)wa, so
da1 1 da2 1
= p2(r1,a2)wy —yg2) and — = p2(r2, a1)ws — yq2) -
s qu_l( (r1,a2) Vq2) dar ,qu_l( (r2,a1) Yq2)

Some observations:

1. For v =0, da;/da; > 0 since pa < 0.

2. In the Powell model (with v = 0), day/das = —p2(r1,a2)w; and das/day = —pa(ra, a1)ws.
Since we are considering the intersection of these two curves at the lower tip of the “lens”
(the minimal arms peaceful equilibrium),

daq 1

das - dag /day

so defined, which implies that
p2(r1, a2)pa(r2, ar)wiwz > 1.

3. Notice also that by the condition for a pure-strategy equilibrium in Proposition 3, in the
simultaneous move game, vq; — 1 > 0 at equilibrium arms levels. This implies that the sign
of da;/da; depends whether po(r;, aj)w; —vqo is greater or less than zero, which can go either
way (since both ps and ¢y are negative).

Next we differentiate the equilibrium conditions in x;, any factor with dw, /dzx; > 0 and dwsy/dx =
0.

—a) +yq1a) + yqaahy = pa(r1, a2)abwy + p(ry, az)w)

/ ! / !
—ahy — Yqray — Yq2ay = pa(ra, a1)ajws.

Solving for a} and daf,

T1,Qa9 )W
anda’Q:a’lp2( 1,02) 2+’YQ1'
vq1 — 1

o (1 _ p2(7‘17 a2)w1 — 7492 p2(7‘27 al)wz - ’VQQ) _ p(ﬁ, a2)wﬂ
! a1 — 1 ya1 — 1 g1 — 1

In the Powell model v = 0, so the left expression becomes
ay (1 = pa(r1, az)pa(re, ar)wiwz) = —p(r1, ag)wy.

Observation 2 above and w] > 0 thus imply that a} > 0, which implies af, > 0 as well, proving the
proposition for the Powell model. For the simultaneous move game with v¢; — 1 > 0, da;/day and



day/day can take either positive or negative signs at efficient arms levels that satisfy the conditions
for a peaceful equilibrium, so that comparative statics on w; are indeterminate.

Remarks. For the simultaneous-move game with issue competition and a pure-strategy equilibrium
that satisfies the conditions for Proposition 2, we can gain insight by considering the functions that
define the “lens” as in Powell (1993, 1999). The lens is the set of arms allocations (a1, az) such
that (5) holds. Let aj(ag) be the arms level for state 1 such that

1 — a1 +vq(ar, a2) = p' (1, az)wy.

That is, aj(az) defines a lens boundary. In the Powell model where v = 0, a small increase in as
reduces the war payoff on the RHS, so equality can only be maintained by increasing a; on the
LHS. Thus in the Powell model, a/(az) > 0, and likewise for as(ay).

Now consider what happens to aj(ag) if we increase ag slightly in our game with v > 0 and the pure-
strategy equilibrium constraint that yq; > 1. The RHS decreases as before. Fixing a1, increasing
ay also decreases the LHS at a rate of —yga2 = yq1 (recall that ¢ is symmetric). So, whether we need
to increase or decrease a; to regain the equality depends on how semnsitive vq is relative to plwy.
If vq is very sensitive by comparison to plwi, then a small increase in as causes a large drop in
1’s peace payoff due to greater losses on international issues, by comparison to not much reduction
in the RHS payoff for all-out war. To restore equality, a; has to increase so as to gain back value
in disputes or contests on the issues (the LHS is increasing in a; since yq; > 1). By contrast, if
vq is not very sensitive relative to plw;, then a; may have to decrease to restore equality, since
the constraint that vq; > 1 means that the LHS is increasing in a; for given as at a pure-strategy
equilibrium.

To illustrate, consider the case of maximally sensitive ¢(a1, az), where ¢(a,a) = 1/2 and q(a;, a;) =1
if a; > aj. The only candidates for pure-strategy equilibria in the simultaneous-move game then
have a1 = a9, since otherwise reducing one’s arms level has no effect on one’s issue payoff. Potential
equilibria are thus defined by (a,a) such that

1—a+v/2>p'(1,a)w; and
1—a+7/22p*(1,a)uws,

only one of which can hold with equality unless w; = wy. The binding constraint is thus for the
state ¢ with the larger w;, and the peaceful equilibrium with the lowest costs of anarchy is given
by the a* that solves

1—a+7v/2=p(1,a)w;.

Comparative statics: a* is increasing in w;, and weakly increasing in w;.
When ~q is less sensitive, it is possible to find examples in which day/dw, is greater than or less

than zero, while daj /dwy is less than or greater than zero. (The only impossibility is both negative.)
The claim in the text of the published article that das/dw; is necessarily positive is wrong — it can



be negative.

Figure 1 illustrates several of these cases. The correspondences a;(ag) and az(a1) (as defined above)
are shown for the model with

n
aj

n n
ay + aq

ai

q(a1,a2) = and p(ai,az) =

ay + az/ m’

The parameter n > 0 in the ¢ function controls how sensitive issue resolutions are to changes in
relative military power, with larger n making for greater sensitivity. Other parameters used in all
four figures are m = .1, u; = .5, and ¢; = .1.

The upper-left plot shows the bottom of the lens for the Powell model, where v = 0. To the right,
we set v = .5 and n = 1, so this is a case with relatively low sensitivity. The green line is aq(as2)
when p; has been increased to .55, while s remains at .5. In this example, making state 1 more
greedy increases state 2’s equilibrium military effort while very slightly reducing state 2’s.

The lower-left plot increases sensitivity of the issues function further; here n = 3. Now greater
greed for state 1 implies increased armament for state 1, but slightly less arms for state 2.

Finally, with high sensitivity (the lower-right figure), we return to the comparative statics of the
Powell model, in that greater greed for state 1 increases both state’s equilibrium military effort.
There is a slight difference in that in v = 0 case, the more status-quo state’s arms respond more to
increased greed by the rival, the reverse holds in the model with v > 0 and high sensitivity of issue
resolutions to relative military capabilities.

3 Explicit protocols for bargaining over the issues

Major powers can use their militaries to invade and try to take over some or all of another major
power, and they can also use them in more limited aims disputes where something less than the
disposition of home-state territory is at issue. For example, in the vast majority of militarized inter-
state disputes in the Correlates of War MIDs data set, uses of force are attempted faits accomplis
or attempts at coercing or preventing some relatively small change by threatening military engage-
ment of some sort.” For simplicity, the baseline model assumed that relative military strength
represented by arms levels a1 and ao translates into how the issues 7 are divided up via a function
q(ai, a;) that is increasing in the first argument and decreasing in the second. Here are two explicit
and often-used bargaining models that imply this reduced form.

5In the cases shown where there are multiple intersections, only the “center” one supports a pure-strategy equi-
librium.

TAltman 2016 finds that almost all disputes that resulted in territorial changes since 1918 involved faits accomplis
rather than concessions to explicit threats.
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First, suppose that in each period, after arms levels are chosen (and if neither attacked), each state
has an equal chance of finding itself in a position to attempt a fait accompli on division of the issue
v, meaning that the randomly selected state chooses how to divide «y. Call the share it gives itself
xf € [0, 1] where i is the lucky state in period ¢. State j then decides whether to accept this division
or use force to try to get control of the issue. If j accepts, then issue payoffs in this period are
(yat, v(1—at)). If j uses force, the winner of the military contest gets v and the loser gets 0 (on the
issue) in this period. Finally, let g(a;,a;) be the probability that ¢ wins the military contest and
let the cost of a military contest be k > 0 for both states. (Notice that the model now explicitly
distinguishes between a big war that puts sovereignty at risk, and a limited skirmish over the issue
or territory ~.)

Given (a;,aj) the most i can demand before j prefers to use force is z%(a;,a;) such that v(1 —
z'(a;,a;)) = max{0,v(1 — q(a;,a;)) — k}, or z%(a;,a;) = min{q(a;,a;) + k/v,1}. Assume small
enough £ that the solution is interior. Then a state’s expected payoffs (in a peaceful period) when
choosing arms levels are

1 1
1—a; + §(VQ(ai,aj) + k) + 5(761(% aj) — k) =1—a; +vq(ai, aj;) (6)

which is exactly as in the reduced-form baseline model.®

Suppose next that we imagine 7 as (1) something that was divided in previous periods and so has a
preexisting status quo, and (2) cannot be changed unless both parties agree. These assumptions rule
out faits accomplis. If both parties strictly preferred this division to fighting in the previous period,
then this will still be the case today (other things equal). Thus a small reduction in one state’s
arms level will not be enough to give the other state a credible threat to use force in bargaining
over 7, which implies in turn that we may lose pure-strategy equilibrium (since small deviations
down come with no cost on v or risk of attack).

If all issues had these characteristics, and if states have no way to raise military risk from an initial
position of preferring the status quo, then the interstate bargaining solution proposed for arms
stability here would not work. But neither premise seems plausible.

A simple way to relax the second one — that is, to allow states to threaten military conflict from any
status quo — is to suppose that in each period after arms levels are chosen, bargaining over « yields
a result given by the Nash bargaining solution, using as the disagreement point the same costly
military lottery above. Now the division of v is the = (for state i) that maximizes (z — (¢(a;, a;) —

8Boundary cases are not very enlightening so I will just summarize how they work. If k > - then a demand of
z' = 1 is accepted for any arms levels, which means that the expected issue resolution is ~v/2 regardless of arms
choices and we are effectively in the Jackson and Morelli situation. If k& € (v/2,7), then at equal arms levels 4’s
optimal demand is 1, but unilateral deviations can still affect one’s expected issue payoff if they are large enough:
a large enough increase gets state j an offer greater than zero, and a large enough decrease means that i won’t be
able to demand 1. Here payoffs are non-monotonic in a; and there will be a threshold k£ such that below this, the
equilibrium is in pure strategies.
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kE/v))(1 —x — (1 —q(ai,a;) — k/v)), which is © = g(a;, a;), which leads to the same ex ante payoff
expression (6).

In the analysis so far I have neglected the fact that this is a repeated game. In other words,
the preceding shows how the equilibrium given in Proposition 2 can be supported in models with
explicit protocols (or mechanisms) for bargaining over 7, and strategies in these that are not history
dependent. We can also ask about what can be supported using more complicated punishment
strategies.

With history-dependent strategies, the specifics of the bargaining protocol can matter much less.
For patient enough players, we will be able to support the pure-strategy equilibrium outcomes in
Proposition 3 by having the states expect to choose whatever strategies are needed in the bargaining
game such that a division ¢(a;, a;) results, where ¢(a;, a;) can now be any symmetric function with
properties that imply deviations down are sufficiently unattractive at a*. (The states just need
to expect that failure to implement the expected agreement according to g(a;, a;) would lead to a
switch to the one-period Nash profile.) In other words, ¢ doesn’t in principle need to be tied to
specific military technologies or assumptions about who gets to move when on the ground or at
the table. It could instead reflect a diplomatic cultural understanding, perhaps a taken-for-granted
commonsense, that relative military strength should determine who gets what in negotiations, at
least in some types of situations.

In the approach taken above, we distinguish between two kinds of militarized conflicts — an all-out
war between the two states, and bargaining over particular issues that might in principle be decided
by the use of force short of all-out war. An alternative would be to suppose that there is only one
kind of conflict, the all-out war, so that the disagreement point in bargaining over the issues is
likewise a costly and final lottery that will eliminate one of the two states. I think this is much less
realistic, but it is worth commenting on what changes.

Suppose that after arms choices in each period, if neither attacks then one state ¢ is randomly given
a fait accompli opportunity concerning division of . State j then chooses whether to accept or go
to all-out war, with odds of winning p’(a;, a;; m).

For this case it can be shown that for large enough 4§, (a) there is no peaceful Markov Perfect
equilibrium, and (b) history-dependent strategies (like those discussed above) can be used to sup-
port a peaceful equilibrium with outcomes as in Proposition 3. The problem for Markov Perfect
equilibrium is that now a small deviation upwards from (say) @ by state ¢ can have a very large
effect on the present value of war payoffs in the bargaining game when § is close to 1. So a state
j faced with a one-time demand of 2! = 1 after i deviated slightly upwards to a; = a + € will
certainly want to accept. (The demand is ‘one-time’ given that we are trying to construct an MPE,
so by assumption future choices will not change as a result of i’s deviation.) So each state will
always want to deviate upwards from any symmetric choice of a’s, and a = 1 cannot be peaceful if
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condition (2) in the text holds.’

Allowing for history-dependent strategies, we can induce restraint in the bargaining game so that
states don’t grab as much as they could get (in the fait accompli) because they expect this will
lead to higher equilibrium arms levels starting in the next period.

9For § bounded below 1 and a military technology that is sufficiently defensive dominant, we will still be able to
get peaceful pure-strategy equilibrium in this situation.

14



References

Altman, Dan. 2016. By Fait Accompli, Not Coercion: How States Wrest Territory from Their
Adversaries. MIT.

Powell, Robert. 1999. In the Shadow of Power. Princeton, NJ: Princeton University Press.

Powell, Robert M. 1993. Guns, Butter, and Anarchy. American Political Science Review 87 (1):115—
32.

15



