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5.1 Proofs for Section 2

5.1.1 Proof of Theorem 1

If f (t) is locally of bounded variation at t, then the inversion formula in (4) holds for argument

t; see Widder (1946, p. 241, Theorem 5a). To ensure that the second to last integral in (5) is

negligible, we require that

max
b−≤x≤ b+

|M(x+ iN)| → 0 N →∞. (48)

That portion of the uniform convergence in (48) with x < b automatically holds because it is

within the range of the convergence domain forM. The range x ∈ [b, b+], however, is outside

of this convergence domain so assumption X in Theorem 1 is needed to ensure that (48) holds.

Showing that the last integral in (5) is negligible uses an analytic continuation argument.

Define D(s) = M(s) − M(s̄) where s̄ denotes complex conjugate. Function D(s) ≡ 0 on

{Re(s) < b} so its analytic continuation is also zero on C. Thus |M(x − iN)| = |M(x + iN)|
for x ∈ (b, b+) and assumption X in Theorem 1 also ensures that the last integral is negligible.

Denote the integral in assumption UI of Theorem 1 as J(t). By the UI assumption, for any
sufficiently small η > 0, there is a τ = τ(η) such that

∣∣∣∣J(t)−
∫ +τ

−τ
M(b+ + iy)e−iytdy

∣∣∣∣ < η/2 (49)

for all t ≥ T. Now, sinceM is analytic from the boundary out to Re(s) = b+ ε0, the Riemann-

Lebesgue lemma (Feller, 1971, p. 513) ensures the existence of a T1 = T1(τ, η) such that

∣∣∣∣

∫ +τ

−τ
M(b+ + iy)e−iytdy

∣∣∣∣ < η/2

for all t ≥ T1. Thus |J(t)| < η for t ≥ max{T, T1}, the integral in (7) is o(1) as t → ∞, and

R1(t) in (7) is o(e
−b+t) as t→∞.

5.1.2 Example 1

To show that X holds, note that

max
α≤x≤α+

|M(x+ iN)| ∼ cN−β → 0 N →∞.

For β ∈ (0, 1], assumption UI follows from an integration-by-parts argument. Break the integral
into (−∞,−Y ) ∪ [−Y, Y ] ∪ (Y,∞) for Y > 0. Then,

∣∣∣∣

∫ ∞

Y
M(α+ + iy)e−iytdy

∣∣∣∣ =
∣∣∣∣

{
M(α+ + iy)

e−iyt

−it

}∞

Y

+ i

∫ ∞

Y
M′(α+ + iy)e−iytdy

∣∣∣∣

≤ 1

t
|M(α+ + iY )|+

∫ ∞

Y
|M′(α+ + iy)|dy. (50)
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The first term in (50) can be made uniformly small for t > T by making Y sufficiently large.

The second term is, upon differentiatingM,

∫ ∞

Y
|M(α+ + iy)| |ψ(β + zy)− ψ(zy)|dy, (51)

where zy = −(α+ − α) − iy and ψ is the digamma function. Using 5.11.2 of NIST DLMF in

which ψ(z) = ln z − 1/(2z) +R(z) where R(z) = O(z−2) as |z| → ∞, then

|ψ(β + zy)− ψ(zy)| < |ln (1 + β/zy)|+
β

2|zy|2
+ |R(β + zy)−R(zy)|.

Since β/|zy| ∼ β/y as y →∞, we may use 4.5.6 and 4.5.2 of NIST DLMF so that

|ln (1 + β/zy)| ≤ − ln(1− β/|zy|) <
β/|zy|

1− β/|zy|

for sufficiently large y. Thus,

|ψ(β + zy)− ψ(zy)| < c2β/y + c3/y
2

for some c2 and c3 with y > Y1. Since |M(α+ + iy)| < c1|y|−β for y > Y2, an upper bound on

(51) for Y > max(Y1, Y2) is

c1

∫ ∞

Y

1

yβ

(
c2β

y
+

c3
y2

)
dy = c1

(
c2
Y β

+
c3

(β + 1)Y 1+β

)
→ 0 Y →∞. (52)

The same argument applies to the integral over (−∞,−Y ). For sufficiently large Y, the Riemann-

Lebesgue theorem applies to the integral over [−Y, Y ]. This proves the UI assumption.

5.1.3 Multiple poles on the convergence boundary {Re(s) = b}
Corollary 6. Suppose all conditions of Theorem 1 except replace AC with the following:
(AC6) There exists ε0 > 0 such that M can be analytically continued across the boundary to

{b ≤ Re(s) < b + ε0}, save from a finite set of poles at b, b ± iy1, . . . , b ± iyp with orders

m0, . . . ,mp respectively.

If
∑
m0

k=1 β−k;b(s− b)−k denotes the principal part of the Laurent expansion of M at b, then

f(t) = e−bt
m0∑

k=1

tk−1
(−1)kβ−k;b
(k − 1)!

+ e−bt
p∑

j=1

mj∑

k=1

tk−1
(−1)k
(k − 1)!

{
e−iyjtβ−k;b+iyj + eiyjtβ−k;b−iyj

}
+ o(e−b

+t)

= e−bt
m0∑

k=1

tk−1
(−1)kβ−k;b
(k − 1)!

+ 2e−bt
p∑

j=1

mj∑

k=1

tk−1
(−1)k
(k − 1)!

Re
{
e−iyjtβ−k;b+iyj

}
+ o(e−b

+t)

(53)

The proof uses Cauchy’s theorem in the same manner as used in Theorem 1.
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5.1.4 Proof of Theorem 2

The inversion formula for S(t) is

S(t) =
1

2πi
lim
N→∞

∫ b−+iN

b−−iN

M(s)

s
e−stds. (54)

Let the inversion integral in (54) be part of the integral round the rectangular curve with

the four corners b− ± iN and b+ ± iN as in (5) but with M(s)/s replacing M(s). Cauchy’s

residue theorem allows the integral in (54) to be written in terms of −Res
{
s−1M(s)e−st; b

}

and integrals along the other 3 line segments of the rectangle as in (5). The two integrals along

the top and bottom are negligible as N →∞ since

max
b≤x≤b+

|M(x+ iN)|
|x+ iN | ≤ 1

b
max
b≤x≤b+

|M(x+ iN)| → 0.

Condition UIS allows the argument from Theorem 1, based on the Riemann-Lebesgue lemma,

to be applied to the integral along Re(s) = b+ to show it is o(1) as t → ∞. The value for

−Res
{
s−1M(s)e−st; b

}
is the leading term in (11).

To evaluate this residue, we take the Laurent expansion ofM about b and sum the residues

of the resulting addends so that

−Res

{
1

s
M(s)e−st; b

}
= −

m∑

k=1

β−k Res

{
1

s
(s− b)−ke−st; b

}
. (55)

In (55), now expand functions 1/s and e−st as Taylor series about b, take the product, and then

extract the coefficient for the term (s− b)k−1 to get the residue as

−
m∑

k=1

β−k
(−1)k−1e−bt

bk

k−1∑

j=0

(bt)j

j!
=

m∑

k=1

β−k
(−1)k
bk

SG(k,b)(t),

from the expression for SG(k,b)(t) in (12).

5.1.5 Multiple poles on the convergence boundary {Re(s) = b}
Corollary 7. Suppose the conditions of Theorem 2 except replace AC with the condition AC6
in Corollary 6. Then

S(t) =
m0∑

k=1

SG(k,b)(t)
(−1)kβ−k;b

bk
+ 2

p∑

j=1

mj∑

k=1

Re

{

SG(k,b+iyj)(t)
(−1)kβ−k;b+iyj

(b+ iyj)k

}

+ o(e−b
+t) (56)

as t→∞, where SG(k,b+iyj)(t) is computed using (12).

The proof is the same as for Corollary 6 withM(s)/s replacingM(s) in the argument.

The expansion in (56) is easily shown to be the tail area for the expansion given in (53).
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5.1.6 Example 6, Noncentral χ2(2m,λ)

In the expression forM(s), expand exp{λ/2(1−2s)−1} about 0.Also expand e−st about s = 1/2.

This gives

−Res{M(s)e−st; 1/2} = −e−λ/2Res





1

(1− 2s)m

∞∑

k=0

(λ/2)k

k!(1− 2s)k

∞∑

j=0

tje−t/2(1/2− s)j

j!
; 1/2





.

Collecting the terms with power −1 in s−1/2 gives the noncentral density in (20). The survival

result in (21) has the same derivation.

To show UI holds for any m ≥ 1, use the integration-by-parts argument of Example 1 in

§5.1.2 to get the upper bound given in (50). The first upper bound term converges to 0 as

Y →∞ since the exponential factor inM is bounded. For the second term, compute

M′(s) =M(s)

{
2m

1− 2s
+

λ

(1− 2s)2

}
. (57)

Substituting s = 1/2 + ε+ iy into (57), then

|M′(b+ + iy)| ≤ c1
(ε2 + y2)(m+1)/2

+
c2

(ε2 + y2)(m+2)/2
(58)

for some constants c1 > 0 < c2. The integrability of the upper bound in (58) ensures that UI
holds.

5.1.7 Exact infinite residue expansions

Example 9 (Minus log-beta). The residue at α+ j is

β−1;α+j = Res

{
Γ(α+ β)

Γ(α)

Γ(α− s)

Γ(α+ β − s)
;α+ j

}
=

Γ(α+ β)

Γ(α)

(−1)j+1
j!Γ(β − j)

so that from (15),

f∞(t) =
∞∑

j=0

e−(α+j)t
{
(−1)Γ(α+ β)

Γ(α)

(−1)j+1
j!Γ(β − j)

}
=

Γ(α+ β)

Γ(α)Γ(β)
e−αt

∞∑

j=0

(−e−t)j
(
β − 1

j

)
(59)

=
1

B(α, β)
e−αt(1− e−t)β−1 = f(t).

From (17) and (59), the survival expansion is

S∞(t) =
e−αt

B(α, β)

∞∑

j=0

(−e−t)j
α+ j

(
β − 1

j

)
=

e−αt

αB(α, β)

∞∑

j=0

(α)j(1− β)j
j!(α+ 1)j

(e−t)j

=
e−αt

αB(α, β)
2F1(α, 1− β;α+ 1, e−t),

by the definition of the Gauss series in 15.2.1 of the NIST DLMF. This is the incomplete beta

function P{Beta(α, β) ≤ e−t} expressed in terms of the Gauss hypergeometric function 2F1 as

in 8.17.7 of the NIST DLMF.
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Example 10. (Extreme value (ExV), logistic (Log), and hyperbolic secant(θ)). The
first two distributions have MGFs Γ(1− s) and Γ(1 + s)Γ(1− s) respectively and both satisfy
all parts of Corollary 2. The expressions for f∞(t) and S∞(t) are given in Table 6. Each
distribution has simple poles at j = 1, 2, . . . .

Dist. Res(M; j) f(t) = f∞(t)

ExV (−1)j/(j − 1)! exp(−t− e−t) =
∑∞
j=1 e

−jt(−1)j+1/(j − 1)!

Log (−1)jj e−t/(1 + e−t)2 =
∑∞
j=1 e

−jt(−1)j+1j

S(t) = S∞(t)

ExV 1− exp(−e−t) =∑∞
j=1 e

−jt(−1)j+1/{j(j − 1)!}

Log 1− (1 + e−t)−1 =
∑∞
j=1 e

−jt(−1)j+1

Table 6. Residues and their expansions f∞(t) and S∞(t) for the extreme value (ExV) and
logistic (Log) distributions.

The hyperbolic secant (θ) distribution (Butler, 2007, §7.1.1) also satisfies all parts of Corol-

lary 2. Here, M(s) = cos(θ)/ cos(θ + s) for θ ∈ (−π/2, π/2) and has simple poles at {(2j −
1)π/2−θ : j = 1, 2, . . .} with residues {(−1)j cos θ}. Conditions ACm, Xm, UIm, and UISm hold
for all m as simple computations show that |M(x + iy)| ≤ cos θ/| sinh y|. The infinite residue
expansion f∞(t) for density f(t) is

cos(θ)eθt/{2 cosh(πt/2)} =
∞∑

j=1

exp [−t{(2j − 1)π/2− θ}] (−1)j+1 cos θ. (60)

The infinite expansion S∞(t) for S(t) leads to

S(t) =
∞∑

j=1

exp [−t{(2j − 1)π/2− θ}] (−1)j+1 cos θ
(2j − 1)π/2− θ

, (61)

which also follows directly from integrating (60) and using Fubini’s theorem to get (61).

Example 11. (Wilks’ likelihood ratio statistic, M not rational). The factor Γ(11/2−
s)/Γ(6 − s) has an infinite sequence of simple poles at {11/2, 13/2, . . .} which contributes an
infinite sum of residues. It is straightforward to show that Rm(t) → 0 as m → ∞ by taking

εm ≡ 1/4 and using the fact that |M(b+m+ iy)| is uniformly integrable for large m. This follows

by long and tedious computations showing that |M(b+m+ iy)| ≤ c|y|−15/2 for |y| > Y0 and some

constant c > 0, and also

sup
|y|≤Y0

|M(b+m + iy)| ≤ c2
(
b+m
)−15/2 ≤ c2

for some c2 = c2(Y0) > 0. Thus,

f(t) = f∞(t) = f5(t) +
∞∑

j=0

e−(11/2+j)tM5(11/2 + j)
(−1)(−1)j+1
j!Γ(1/2− j)
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f(t) = f5(t) +
1√
π
e−(11/2)t

∞∑

j=0

(e−t/4)jM5(11/2 + j)

(
2j

j

)

= f5(t)−
672

π
e−(11/2)t 4F3(

1
2 , 1, 1,

3
2 ; 3,

7
2 , 4; e

−t)

The exact survival function has expansion

S(t) = S∞(t) = S5(t) +
1√
π
e−(11/2)t

∞∑

j=0

(e−t/4)jM5(11/2 + j)

(
2j

j

)
1

11/2 + j
,

which can also be expressed in terms of 4F3 hypergeometric functions.

5.1.8 Convolution examples

Example 12. To show that |M(b+m + iy)| is integrable, write
∫ ∞

−∞
|M(b+m + iy)|dy =

∫ ∞

−∞

∣∣exp{(b+m + iy)2/2}Γ(1− b+m − iy)
∣∣ dy

= exp{(b+m)2/2}
∫ ∞

−∞
e−y

2/2|Γ(1− b+m − iy)|dy

≤ exp{(b+m)2/2}
√
2π|Γ(1− b+m)|.

by 5.6.6 of NIST DLMF.

Example 13. If fExV and SExV denote the density and survival function of the extreme value

distribution, then the convolution density is

f(t) =

∫ 1

0
fExV(t− u)du = SExV(t)− SExV(t− 1) =

∞∑

j=1

e−jt
(−1)j+1
(j − 1)!

ej − 1

j
= f∞(t) (62)

for all t. Term-by-term integration of (62) provides the convergent expansion for S(t).

Example 14. If b+m = m + 1/4, then |Γ(1− b+m − iy)| and |Γ(1− 2b+m − 2iy)| are uniformly
integrable for large m. This follows from

∣∣Γ(1− b+m)
∣∣→ 0←

∣∣Γ(1− 2b+m)
∣∣ m→∞

and the upper bound for |Γ(1− b+m − iy)| as a function of y as given in NIST DLMF 5.8.3. Hence,
the product is uniformly integrable for large m and the convolution density has a convergent

infinite residue expansion.

The MGF Γ(1 − s)Γ(1 − 2s) has simple poles at s = 1/2, 3/2, . . . and double poles at

s = 1, 2, . . . . Laurent expansions for the two gamma functions at s = j and j+1/2 are derived

below as

Γ(1− s) = βj;−1(s− j)−1 + βj;−1(γ −Hj−1) +O(s− j) (63)

Γ(1− 2s) = δj;−1(s− j)−1 + δj;−12(γ −H2j−1) +O(s− j)

Γ(1− 2s) = ǫj+1/2;−1(s− j − 1/2)−1 +O(1)
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where βj;−1 = (−1)j/(j − 1)!, δj;−1 = 1/{2(2j − 1)!}, and ǫj+1/2;−1 = −1/{2(2j)!} are residues,
γ is Euler’s constant, and Hj−1 =

∑j−1
k=1 1/k is a Harmonic number. The Laurent coefficients

for the MGF of X+Y result from the product of the various expansions in (63). Summing over

all simple and double poles leads to the correctly converging infinite expansion

f∞(t) =
∞∑

j=1

e−jt {tβj;−1δj;−1 − (βj;−1δj;0 + βj;0δj;−1)}+
∞∑

j=0

e−(j+1/2)t(−1)ǫj+1/2;−1Γ(1/2− j)

=
∞∑

j=1

e−jtβj;−1δj;−1 {t− 2(γ −H2j−1)− (γ −Hj−1)} −
∞∑

j=0

e−(j+1/2)tǫj+1/2;−1Γ(1/2− j),

where H0 = 0.

To determine Laurent expansions for Γ(1− 2s),

δj;−1 = Res{Γ(1− 2s); j} = lim
s→j

(s− j)Γ(1− 2s) = lim
u→1−2j

u− (1− 2j)

−2 Γ(u)

=
(−1)2j−1
−2(2j − 1)!

=
1

2(2j − 1)!
.

The computations of βj;−1 and ǫj+1/2;−1 are similar. Thus we write Γ(1− 2s) = δj;−1/(s− j) +

δj;0 +O(s− j) where

δj;0 = lim
s→j
{(s− j)Γ(1− 2s)− δj;−1}/(s− j)

= lim
s→j
{(s− j)Γ(1− 2s)ψ(1− 2s)(−2) + Γ(1− 2s)}

using l’Hôpital’s rule, where ψ(·) is the digamma function. Using the digamma recursion

ψ(1− 2s) = ψ(2− 2s)− 1

1− 2s
= · · · = ψ(2j − 2s)−

2j−1∑

k=1

1

k − 2s
,

this factors to

δj;0 = lim
s→j
{(s− j)Γ(1− 2s)}2 lim

s→j
{−ψ(1− 2s) + 1/(2s− 2j)}

= δj;−12 lim
s→j

{

−ψ(2j − 2s) +

2j−1∑

k=1

1

k − 2s
+

1

2s− 2j

}

= δj;−12 lim
s→j

{
−ψ(2j − 2s) +

1

2s− 2j
−H2j−1

}

= δj;−12(γ −H2j−1), (64)

where H2j−1 =
∑2j−1
k=1 1/k is a Harmonic number. The limit in (64) follows from

lim
u→0

{ψ(u) + 1/u} = lim
u→0

ψ(u+ 1) = ψ(1) = −γ.

The computation βj;0 = βj;−1(γ −Hj−1) has a similar derivation.
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5.2 Proofs for Section 3

5.2.1 Proof of Theorem 3

The conditions for Theorems 1 and 2 are shown to hold for absolutely continuous random

variable R+, defined as R given that R �= 0. Its MGF MR+(s) is given in (29) and, in a

neighbourhood of s = 0, as well as when |MX(s)| < r, it has the expansion

MR+(s) =
1

1− p(0)

∞∑

k=1

p(k)MX(s)
k {s ∈ C : |MX(s)| < r}. (65)

To show that fR+(t) is locally of bounded variation at t > 0, we first invert the right side of

(65) term-by-term so that

fR+(t) =
1

1− p(0)

∞∑

k=1

p(k)f
(∗k)
X (t) a.e. t, (66)

where f
(∗k)
X is the k-fold convolution of fX . A formal proof that the density of R+ has this

infinite mixture form follows from the argument used in Doetsch (1974, Theorem 30.1) for

Laplace transforms but generalised to apply to our bilateral Laplace transforms with support

in (−∞,∞). It suffices to use the version of fR+(t) on the right side of (66) to show that fR+(t)

is locally of bounded variation. To do this, we need the following lemma.

Lemma 3. If density g has total variation V (g) on (−∞,∞), then for arbitrary density h,

V {g ∗ h} ≤ V (g).

Proof. For any partition P = {t0 < t1 < · · · < tn}, its variation is

VP {g ∗ h} :=
n∑

i=1

|(g ∗ h)(ti)− (g ∗ h)(ti−1)| ≤
∫ ∞

−∞
h(u)

n∑

i=1

|g(ti − u)− g(ti−1 − u)|du

=

∫ ∞

−∞
h(u)VP−u{g}du ≤ sup

u
VP−u(g),

where P −u is the partition {t0−u < t1−u < · · · < tn−u}. Thus, the total variation of g ∗h is

V {g ∗ h} = sup
P

VP {g ∗ h} ≤ sup
P

sup
u
VP−u(g) = V (g).

�

To show that fR+(t) is locally of bounded variation, let Vt(f
(∗k)
X ) denote the total variation of

f
(∗k)
X in [t− δ, t+ δ] where, according to condition BVCD, δ can be chosen small enough so that
Vt(f

(∗k)
X ) ≤ V0 for k = 1, . . . q − 1 and some V0. Using the expansion in (66) along with Lemma

3 with g = f
(∗q)
X , then

Vt(fR+) ≤
1

1− p(0)




q−1∑

k=1

p(k)Vt{f (∗k)X }+
∞∑

k=q

p(k)Vt{f (∗k)X }





≤ 1

1− p(0)
{V0 + V (f

(∗q)
X )} <∞
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by BVCD. Therefore fR+(t) is locally of bounded variation for all t ∈ S ∩ (0,∞).

We now show that condition AC holds. In Butler (2017, Theorem 5), P{MX(s)} (with
support (0,∞)) was shown to be analytic on {Re(s) ≤ b} apart from an m-pole at b, however,

this is not sufficient to ensure that condition AC holds in this context. An ε0 > 0 must exist

such that P{MX(s)} is analytic on {0 ≤ Re(s) < b + ε0} apart from the pole at b. To show

this, choose η1 ∈ (ε1, c − b) so that MX(s) is analytic on {0 ≤ Re(s) ≤ b + η1}. Then, there
exists Y > 0 such that

max
0≤x≤b+η1

|MX(x+ iy)| < 1 y > Y.

This ensures that |MX(s)| < 1 < r for s ∈ {0 ≤ Re(s) ≤ b + η1 ∩ Im(s) > Y } =: A so that

MX(A) lies inside {|z| < r} and P{MX(s)} is analytic on A with expansion (65) holding for

s ∈ A. Since b is an isolated pole for P{MX(s)}, there exists η2 ∈ (0, η1) such that P{MX(s)}
is analytic in D(b, η2)\{b}, an open disc of radius η2 centered at b but without point b. Now,
consider points on the line {b+ iy : η2/2 ≤ y ≤ Y + 1}. For every y ∈ [η2/2, Y + 1] there exits

D(b+ iy, ηy) with ηy > 0 such that P{MX(s)} is analytic on D(b+ iy, ηy). The argument for

this is simply that

|MX(b+ iy)| <MX(b) = r y �= 0

so a sufficiently small ηy > 0 exists such that sups∈D(b+iy,ηy) |MX(s)| < r. Thus, P{MX(s)} is
analytic on the open cover ∪y∈[η2/2,Y+1]D(b+iy, ηy) for compact set {b+iy : η2/2 ≤ y ≤ Y +1}.
Compactness guarantees a finite subcover ∪nj=1D(b + iyj, ηyj) with y1 < y2 < · · · < yn. The

two circular neighbourhoods associated with contiguous points (b, iyj) and (b, iyj+1) create a

rectangle [b, b + λj ] × [iyj, iyj+1] with λj > 0 on which P{MX(s)} is analytic. Thus, if ε0 is
taken to be ε0 = min{η2, λ1, . . . λn−1}, then P{MX(s)} is analytic on {0 ≤ Re(s) ≤ b+ε0}\{b}
and condition AC holds.

For condition X , take ε < min{ε0, ε1} and b+ = b + ε so the line [iN, b+ + iN ] ⊂ A, for

N > Y, is in the convergence domain ofMX(s) andMX(A) is in the convergence circle of P.
The Taylor expansion (65) is therefore valid on [iN, b+ + iN ] ⊂ [iN, b + η1 + iN ] so that for

sufficiently small η > 0,

max
0≤x≤b+η1

|MR+(x+ iN)| ≤ max
0≤x≤b+η1

|MX(x+ iN)| < η N > N0 (67)

and condition X holds.

We now show that condition UI holds for the MGF of R+, i.e. for arbitrarily small η0 > 0,

there exists T > 0 such that
∫ ∞

−∞
MR+(b

+ + iy)e−iytdy < η0 (68)

for t > T. First note thatMR+ is analytic on A ∪ Ā ∪B where Ā is the complex conjugate set

of points for A and B := {s ∈ C : b < Re(s) < b+ ε0}. Thus, by using Cauchy’s theorem, the
contour integral ofMR+ in (68) can be deformed into 5 line segments within A ∪ Ā ∪B. The
deformed lines run from b + ε1 − i∞ to b + ε1 − iN to b+ − iN to b+ + iN to b + ε1 + iN to

b+ ε1 + i∞. We denote their respective integrals as I1 − I5. For any N > Y,

0 < I3 =

∫ N

−N
MR+(b

+ + iy)e−iytdy < η0/6
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uniformly for t > T1(N) by the Riemann-Lebesgue lemma. Also, note that the integral for

MR+ in (68) takes the contour integral form

∫ ∞

−∞
MR+(b

+ + iy)e−iytdy =
1

i
eb
+t

∫ b++i∞

b+−i∞
MR+(s)e

−stds. (69)

Therefore, deforming the contour integral in (69) to path I4 leads to

|I4| =
∣∣∣∣
1

i
eb
+t

∫ b+ε1+iN

b++iN
MR+(s)e

−stds

∣∣∣∣ = eb
+t

∣∣∣∣

∫ b+ε1

b+
MR+(x+ iN)e−(x+iN)tdx

∣∣∣∣ .

Using (67) with η = η0/6, then

|I4| ≤
η0
6
eb
+t

∫ b+ε1

b+
|e−(x+iN)t|dx =

η0
6t
{1− e−(ε1−ε)t} < η0

6t

for N > N1. Likewise, |I2| = |I4| < η0/(6t). Finally,

I1 + I5 =
1

i
eb
+t

(∫ b+ε1−iN

b+ε1−i∞
+

∫ b+ε1+i∞

b+ε1+iN

)
MR+(s)e

−stds

= e−(ε1−ε)t
(∫ −N

−∞
+

∫ ∞

N

)
MR+(b+ ε1 + iy)e−itydy. (70)

The contours are in A ∪ Ā so expansion (65) holds. We separate the first p − 1 terms of this

expansion from the remainder so

MR+(s) =Mp(s) +R(s) :=
1

1− p(0)

p−1∑

k=1

p(k)MX(s)
k +

1

1− p(0)

∞∑

k=p

p(k)MX(s)
k. (71)

Since |R(s)| ≤ |MX(s)|p in A∪ Ā , the magnitude of the contribution of R(s) to I1+ I5 in (70)

is at most

e−(ε1−ε)t2

∫ ∞

N
|MX(b+ ε1 + iy)|pdy < η0/6

for N > N2 by assumption AICDp . Integration ofMp(s), the first term in (71), contributes the

following terms:

e−(ε1−ε)t
1

1− p(0)

(∫ ∞

−∞
−
∫ N

−N

) p−1∑

k=1

p(k)MX(b+ ε1 + iy)ke−itydy

= e−(ε1−ε)t
1

1− p(0)

{

2π

p−1∑

k=1

p(k)e(b+ε1)tf
(∗k)
X (t)−

∫ N

−N
Mp(b+ ε1 + iy)e−itydy

}

. (72)

The last equality, which for each k inverts the characteristic function MX(b + ε1 + iy)k for

e(b+ε1)tf
(∗k)
X (t), requires that each member of {f (∗k)X (t) : k = 1, . . . , p− 1} be locally of bounded

variation. By assumption BVCD, this holds directly if q ≥ p − 1; if q < p− 1, then this holds

as a consequence of assumption BVCD combined with Lemma 3. The integral term (times its

leading factor) in (72) can be made < η0/6 for t > T2(N) by the Riemann-Lebesgue lemma.

For terms in the summation of (72), the uniform integrability assumption in UICD ensures that
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2π exp{(b + ε1)t}f (∗k)X (t) < η0/{6(p − 1)} for t > T3(k) by the same argument used to prove

Theorem 1 in §5.1.1. In this argument, uniform integrability forMk
X ensures the inequality

2πe(b+ε1)tf
(∗k)
X (t) =

∫ ∞

−∞
MX(b+ ε1 + iy)ke−itydy < η0/{6(p− 1)} t > T3(k), (73)

while the equality in (73) holds since b + ε1 is in the convergence domain of Mk
X . Now take

N > max{Y,N1,N2} and T > max{T1(N), T2(N),maxk T3(k)} so all inequalities hold and∫∞
−∞MR+(b+ε1+iy)e−itydy < η0 for t > T as required for condition UI to hold. All conditions
of Theorem 1 are now satisfied.

To show that condition UIS of Theorem 2 holds for the survival function expansion of R+,

we use the same argument and deform the inversion integral to the same five lines. The only

term in these five that requires comment is I1 + I5. This integral is as given in (70) but with

the additional integrand factor (b+ ε1 + iy)−1 so

I1 + I5 = e−(ε1−ε)t
(∫ −N

−∞
+

∫ ∞

N

)MR+(b+ ε1 + iy)

b+ ε1 + iy
e−itydy.

Using Hölder’s inequality,

I1 + I5 ≤ e−(ε1−ε)t2

∫ ∞

N

|MR+(b+ ε1 + iy)|
|b+ ε1 + iy| dy (74)

≤ 2

{∫ ∞

N
|MX(b+ ε1 + iy)|p dy

}1/p
×
{∫ ∞

N

1

|b+ ε1 + iy|q dy
}1/q

,

where 1/p+1/q = 1. By condition AICDp , this can be made small for sufficiently large N. Thus,

condition UIS of Theorem 2 holds.

The computation of Laurent coefficients for P{MX(s)} begins by taking the Laurent ex-
pansion of P(z) at r and setting z =MX(s) so that

P{MX(s)} =
m∑

i=1

ρ−i
{MX(s)− r}i +O(1) =

m∑

i=1

ρ−i
N (s)i

(s− b)−i +O(1), (75)

where N (s) = {MX(s) − r}/(s − b) for s �= b and N (b) = M′
X(b). Now substitute Taylor

expansion

1

N (s)i
=

i−1∑

j=0

1

j!

dj

dsj
1

N (s)i

∣∣∣∣
s=b

(s− b)j +O(s− b)i

into (75), rearrange terms and substitute k = i− j so that

P{MX(s)} =
m∑

k=1

m−k∑

j=0

ρ−k−j
j!

dj

dsj
1

N (s)k+j

∣∣∣∣
s=b

(s− b)−k. (76)

The kth coefficient of (76) is as given in (27). The derivatives in (76) are evaluated by expanding

N (s) =
MX(s)−MX(b)

s− b
=

∞∑

k=1

M(k)
X (b)

k!
(s− b)k−1
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so that

N (j)(b) =
M(j+1)

X (b)

j + 1
.

The expansions actually use the Laurent coefficients for the MGF of R+ denoted as {β+−k}
rather than those for MGF of R denoted as {β−k}. They are related by β+−k = β−k/{1− p(0)}.
The densities are also related in the opposite way since for t �= 0,

fR(t) = {1− p(0)}fR+(t) = {1− p(0)}e−bt
m∑

k=1

tk−1
(−1)kβ+−k
(k − 1)!

+ o(e−(b+ε)t)

= e−bt
m∑

k=1

tk−1
(−1)kβ−k
(k − 1)!

+ o(e−(b+ε)t),

as given in (26) of Theorem 3.

5.2.2 Precise asymptotic orders for expansions errors in Theorem 3

With additional assumptions on the compound distribution MGF P{MX(s)}, the expansions
errors in Theorem 3 will hold for larger values of ε that those stated in the theorem. The

proof of Theorem 3 requires that ε < min{ε0, ε1}, where ε0 > 0 is a value constructed so that

P{MX(s)} is analytically extendible from {Re(s) < b} to {Re(s) ≤ b + ε0}\{b}. By making
additional assumptions about the extent to which P{MX(s)} can be analytically extended into
{Re(s) ≥ b} and correspondingly increasing the value of ε1 in conditions AICDp and UICD,
then expansions (26) and (28) will hold for larger values of ε and perhaps for b + ε > c in the

analytic continuation ofMX . We summarise this in the next corollary based on the following

revised conditions.

(AC8) Suppose MR+(s) can be analytically continued to {Re(s) < b + ε0}\{b} where perhaps
b+ ε0 > c.

(AIp8) There exists an ε1 ≥ ε0 and integer p ≥ 1 such that |MX(b+ ε1 + iy)|p is integrable in
y. If b+ ε0 > c, then also assume maxc≤x≤b+ε1 |MX(x+ iN)| → 0 as N →∞.

Corollary 8. Let P(z) andMX(s) be as described before Theorem 3 for compound distribution

P{MX(s)}.
(a) Under conditions AC8, AI18 with p = 1, and BVCD (from Theorem 3), the density expansion

(26) holds for any ε ∈ (0, ε0).

(b) Under conditions AC8 and AIp8, survival expansion (28) holds for any ε ∈ (0, ε0).

Proof. The results follow from the same arguments used in Theorem 3. We use the same

deformed contour path and only comment on those aspects of the proof that differ from the

last subsection. The latter parts of conditions AI18 and AIp8 are needed to ensure that set
A = {0 ≤ Re(s) ≤ b + ε1 ∩ Im(s) > Y } is such that MX(A) ⊂ {Re(z) < r}. When condition
AC8 is paired with either AI18 or AIp8, then Y may be chosen so that |MX(s)| < 1 < r for

s ∈ A and this ensures that P{MX(s)} is analytic on s ∈ A and also that |MR+(b+ε1+ iy)| ≤
|MX(b+ ε1 + iy)| for y > Y.

The arguments differ only for showing that I1 + I5 in (70) is arbitrarily small. For N > Y

the contour for I1+ I5 is in A∪ Ā so, by condition AI18 and the inequality |MR+(b+ε1+ iy)| ≤
|MX(b+ ε1 + iy)|,
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I1 + I5 < e−(ε1−ε)t
(∫ −N

−∞
+

∫ ∞

N

)
|MX(b+ ε1 + iy)|dy < η0/6 N > max(Y,N1).

Condition AIp8 ensures that Hölder’s inequality can be used for the same argument in (74)
concerning inversion for the survival function.

5.2.3 Proof of Corollary 3

We show that the conditions of Corollary 1 hold for R+ by broadly following the proof used in

Theorem 3. Assumption ACCDm ensures that condition ACm holds for R+. Using the latter part
of assumption AICDmp , we take Y to be such that

max
0≤x≤b+m

|MX(x+ iN)| < 1 N > Y.

Then A = {s ∈ C : 0 ≤ Re(s) ≤ b+m ∩ Im(s) > Y } is in the convergence domain of P so that

expansion (65) holds forMR+ in A ∪ Ā. Therefore, if N > Y, then by expansion (65),

max
0≤x≤b+m

|MR+(x+ iN)| < max
0≤x≤b+m

|MX(x+ iN)| → 0 N →∞ (77)

so condition Xm holds.

To show UIm, partition
∫∞
−∞MR+(b

+
m+iy)e

−itydy into three disjoint parts over
∫−N
−∞ +

∫ N
−N +∫∞

N =: I1 + I2 + I3 for sufficiently large N > Y. For small η > 0, I2 < η/3 for t > T1(N) by the

Riemann-Lebesgue lemma. If p = 1 and N > Y, then by assumption AICDmp with p = 1, there

exists N1 such that

I1 + I3 ≤ 2

∫ ∞

N
|MX(b

+
m + iy)|dy < 2η/3

for N > max{Y,N1}. For p ≥ 2, we use the expansion (71) with N > Y so that

I1 + I3 =

(∫ −N

−∞
+

∫ ∞

N

){
Mp(b

+
m + iy) +R(b+m + iy)

}
e−itydy =: J1 + J2,

where J1 integratesMp(b+m + iy) and J2 integrates R(b+m + iy). SinceMp(b+m + iy) is a linear

combination ofMX(b
+
m + iy)k for k = 1, . . . p− 1, then by assumption UICDm ,

J1 <

∫ ∞

−∞
Mp(b

+
m + iy)e−itydy < η/3

for t > T2(N). Using the expansion for R(b+m + iy) and since N > Y, then

J2 ≤ 2

∫ ∞

N
|R(b+m + iy)|dy ≤ 2

∫ ∞

N
|MX(b

+
m + iy)|pdy < η/3

forN > max{Y,N2} by assumptionAICDm .TakeN > max{Y,N1, N2} and T > max{T1(N), T2(N)}
so
∫∞
−∞MR+(b

+
m + iy)e−itydy < η.

To show UISm, break the integral into the following three pieces
∫ ∞

−∞

MR+(b
+
m + iy)

b+m + iy
e−itydy =

(∫ −N

−∞
+

∫ N

−N
+

∫ ∞

N

)MR+(b
+
m + iy)

b+m + iy
e−itydy =: I1 + I2 + I3.
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Then I2 < η/2 for t > T1(N) by the Riemann-Lebesgue lemma. For p = 1 and with N > Y,

then

I1 + I3 ≤ 2

∫ ∞

N

|MR+(b
+
m + iy)|

|b+m + iy| dy ≤ 2

∫ ∞

N

|MX(b
+
m + iy)|

|b+m + iy| dy < η/2

for N > max{Y,N3}. For p ≥ 2 and using the expansion (65) with N > Y, then

I1 + I3 ≤ 2

∫ ∞

N

|MR+(b
+
m + iy)|

|b+m + iy| dy ≤ 2

∫ ∞

N

|MX(b
+
m + iy)|

|b+m + iy| dy

≤ 2

{∫ ∞

N

∣∣MX(b
+
m + iy)

∣∣p dy
}1/p{∫ ∞

−∞
|b+m + iy|−qdy

}1/q
,

for 1/p+1/q = 1 by Hölder’s inequality. By assumption AICDmp , I1+ I3 < η/2 for N > N4. For

N > max{Y,N3,N4} and t > T1(N), then I1 + I2 + I3 < η.

5.3 Expansions in the left tail

The expansions of Theorems 1 and 2 apply only to the right tail of the density or survival

function for random variable X with support on (−∞,∞). In the left tail, the asymptotics for

these theorems are not justified. However, many of the infinite residue expansions, including

those in Examples 9, 10, and 11 converge in both tails.

Expansions in the left tail are easily addressed in the abstract, since the left tail of X is

the right tail of −X, and so all previous results apply. However, taking such an approach

creates substantial notational problems when the final results are to be stated in terms of left-

tail asymptotics for f(t) and F (t) as t → −∞. It is easier to deal directly with the left tail

as considered in Theorems 7 and 8 below. These theorems provide single residue density and

distribution function expansions fL1(t) and F1(t) which by Cauchy’s theorem relate to their

true counterparts as f(t) = fL1(t) + L1(t) and F (t) = F1(t) − LF1 (t), where L1 and −LF1 are
integral expressions for the errors.

Expansions in the left tail depend on poles at the boundary a < 0 and in the analytic

continuation {Re(s) < a}. Thus, ifM admits a sequence of decreasing real or complex conjugate

pairs of poles at a = a1 > a2 > · · · or −a = |a1| < |a2±| > · · · , then higher-order and infinite
expansions as in Corollaries 1 and 2 can be formulated to generalise Theorems 7 and 8 in an

obvious manner.

Theorem 7. (Left tail density expansions). Suppose absolutely continuous X has density

f(t) on S ⊆ (−∞,∞), which is locally of bounded variation for all t < 0. Let M have conver-

gence boundary {s ∈ C : Re(s) = a} on the left with −∞ < a < 0. Subject to conditions ACL,
XL, and UIL below, then

f(t) = fL1(t) + L1(t) := −e−at
m∑

k=1

tk−1
(−1)kα−k
(k − 1)!

+ L1(t),

where
∑
m

k=1 α−k(s− a)−k is the principal part of the Laurent expansion for M at a, and

L1(t) = e−a
−t 1

2π

∫ +∞

−∞
M(a− + iy)e−iytdy = o(e−a

−t) t→−∞, (78)

with a− = a− ε.
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(ACL) There exists ε0 > 0 such that M can be analytically extended across the boundary

{Re(s) = a} to {a− ε0 < Re(s) ≤ a}, save from an m-pole at a.

(XL) For some a− = a− ε with ε ∈ (0, ε0), maxa−≤x≤a |M(x+ iN)| → 0 as N →∞.

(UIL) The principal-value integral
∫ +∞
−∞ M(a− + iy)e−iytdy converges uniformly in t for t ≤

−T < 0.

Proof. The proof uses Cauchy’s theorem as in Theorem 1 but rather integrates anti-clockwise

round the rectangle with corners a− ±Ni and a+ ±Ni, with a+ = a + ε. This results in the

identity f(t) = Res{M(s)e−st; b}+L1(t) without the negative sign in front of the residue. This

accounts for the extra minus sign in the expression for fL1(t). �

Theorem 8. (Left tail CDF expansions). Suppose absolutely continuous X with support in

(−∞,∞) has distribution function F (t) and M has convergence boundary {s ∈ C : Re(s) = a}
with −∞ < a < 0. Subject to conditions ACL and XL of Theorem 7 as well as UILF below,

F (t) = F1(t)− LF1 (t) :=
m∑

k=1

SG(k,a)(t)
(−1)kα−k

ak
− LF1 (t), (79)

LF1 (t) = e−a
−t 1

2π

∫ +∞

−∞

M(a− + iy)

a− + iy
e−iytdy = o(e−a

−t) t→−∞, (80)

where SG(k,a)(t) = SG(k,−a)(−t) is evaluated using the survival function expression in (12).
(UILF ) For some T > 0, the principal-value integral

∫ +∞
−∞ M(a−+iy)/(a−+iy)e−iytdy converges

uniformly in t for t ≤ −T < 0.

Proof. The proof is the same as used in Theorem 2 but applied using the anti-clockwise

integration of Theorem 7 in the negative half plane {Re(s) < 0}. Such integration round the
rectangle with corners a− ±Ni and a+ ±Ni gives

1

2πi

∫ a++i∞

a+−i∞

1

s
M(s)e−stds = Res

{
1

s
M(s)e−st;a

}
+

1

2πi

∫ a−+i∞

a−−i∞

1

s
M(s)e−stds. (81)

Since {Re(s) = a+} is in the convergence domain ofM but a+ < 0, the integral on the left is

−F (t); see Widder (1946, Theorem 5b, p. 242). The integral on the right is LF1 (t) as in (80).

Thus, (81) reduces to F (t) = −Res
{
s−1M(s)e−st;a

}
− LF1 (t). The expression for the residue

follows the same derivation as used in Theorem 2. �

5.3.1 Numerical example

Example 22. (Extreme value claims, as in Example 17, left tail). Consider the case

m = 1. The left tail ofMR+(s) has a simple pole at a1 = −2, and a pair of complex conjugate
simple poles at a2± = −3.539±4.100i. Using this pole structure, we approximate the density and
distribution function at t = −0.65 and −1 as shown in Table 7. In all instances, the expansions
using all three poles are most accurate. At t = −0.65, the SP\ saddlepoint methods which
remove the point mass at 0 are more accurate than the first-order expansions. This accuracy

gets reversed at t = −1 and further into the left tail.
To approximate the expansion errors in each computation of f1 and F1, saddlepoints are

located in between a1 and the complex conjugate poles at a2±. For example, consider the

computation of f1(−0.65). Saddlepoints for the computation of L̂1(−0.65) are ŝ2± = −3.235±
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2.693i. This computation requires adding the contributions from each of these saddlepoints

which themselves compute as complex conjugates and add to−0.03583 as seen in the table. With
a complex saddlepoint, the steepest descent direction for the upper saddlepoint ŝ2+ is computed

as π/2−Arg{K′′R+(ŝ2+)}/2 = 0.3689 = 21.1◦; see Murray (1984, p. 47). Perpendicular to this

direction, or at 111.1◦ is the direction of steepest ascent which points roughly in the direction

of the pole a2+ with a bearing of 102.2
◦ from ŝ2+. The geometry of the lower saddlepoint ŝ2−

and its relationship to pole a2− are the mirror image of this.

t = −0.65 t = −1 t = −0.65 t = −1

f 0.1050172 0.0719123 F 0.0693469 0.0382398
fL1 0.1477 0.07333 F1 0.07383 0.03666

fL1 + L̂1 0.1119 0.07123 F1 − L̂F1 0.07028 0.03813
fL2 0.09557 0.07051 F2 0.067170 0.03840
fSP 0.1679 0.08275 FSP 0.08888 0.03752
fSP\ 0.0830 0.05439 FSP\ 0.06770 0.04069

L̂1
a −0.03583 −0.021034 −L̂F1 a −0.023557 0.021465

L1 −0.04265 −0.021417 −LF1 −0.024487 0.021575

Table 7. Various density approximations (fL1 and fL2) and distribution approximations (F1
and F2) using residue expansion terms about the poles a1 and {a1, a2±} respectively. See Table
3 in §3.2 for a description of other entries. aSaddlepoint approximations for the true errors L1
and −LF1 given in (78) and (80).

When L̂1 is used to improve the approximation, then fL1 + L̂1 = 0.1119 is better than all

other approximations. Likewise, F1 − L̂F1 = 0.07028 is most accurate. For t = −1, fL1 + L̂1 =

0.07123 is best as is also F1 − L̂F1 = 0.03813. Saddlepoint error corrections for second-order

expansions fL2 and F2 were not computed since saddlepoints could not be found to the left of

a2±.

5.4 Proofs for Section 4

5.4.1 Proof of Theorem 4

The conditions of Theorems 1 and 2 need to be satisfied. Conditions AC and X hold because

MR+ is analytic on {Re(s) < b+ ε0} for some ε0 > 0 as was shown in the proof of Theorem 3.

To show density fR+ is locally of bounded variation, it suffices to show that density fL+

satisfies the bounded variation assumptions of condition BVCD. This leads to local bounded
variation for density fR+ as described in the proof of Theorem 3. The total variation of fL+ is

∫ ∞

0−
|dfL+(t)| ≤

∫ ∞

0−
e(b+ε1)t|dfL+(t)| <∞

since the integral on the right is absolutely integrable by condition ACSA. Thus, density fL+
satisfies the bounded variation condition BVCD with q = 1.

To show condition UI, we let ε < min{ε0, ε1} and b+ = b+ ε and proceed to show that

(∫ −N

−∞
+

∫ N

−N
+

∫ ∞

N

)
MR+(b

+ + iy)e−iytdy =: I1 + I2 + I3 (82)
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is uniformly small for sufficiently large t > T. For arbitrarily small η0 > 0, I2 < η0/4 for

t > T1(N) by the Riemann-Lebesgue lemma. For I1+I3, we take N > Y where Y is sufficiently

large so that

max
0≤x≤b+ε1

|ML+(x+ iy)| < 1 y > Y.

Now use the expansion forMR+(b
+ + iy) given in (71) with p = 2 so that

I1 + I3 =

(∫ −N

−∞
+

∫ ∞

N

)
{M2(b

+ + iy) +R(b+ + iy)}e−iytdy, (83)

where M2(s) = p(1)ML+(s)/{1 − p(0)}. For the first component, b+ is in the convergence

domain forML+ so that the integral from −∞ to ∞ ofM2(b
+ + iy) is the inversion integral

for eb
+t fL+(t); thus its contribution to I1 + I3 is

p(1)

1− p(0)

{
2πeb

+t fL+(t)−
∫ N

−N
ML+(b

+ + iy)}e−iytdy
}
. (84)

For any N > 0, the last integral in (84) times its leading factor has magnitude < η0/4 for

t > T2(N) by the Riemann-Lebesgue lemma.

To show that the tilted density in (84) must converge to 0 as t→∞, we use condition ACSA
which ensures that the Laplace-Stieltjes integral

MD(s) =

∫ ∞

0−
estdfL+(t)

is absolutely convergent at s = b+ε1 > b+. Using Widder (1946, Theorem 2.2b, p. 40), fL+(∞)

exists and fL+(t) − fL+(∞) = o(e−(b+ε1)t). Since fL+ is integrable, then fL+(∞) = 0 and

fL+(t) = o(e−(b+ε1)t) so that eb
+t fL+(t) → 0. Thus the tilted density factor in (84) is < η0/4

for t > T3.

For the second integral in (83) involving R, define

ME(s) =

∫ ∞

0−
estd{eb+tfL+(t)} = b+ML+(b

+ + s) +MD(b
+ + s), (85)

which, by condition ACSA, is absolutely convergent for Re(s) ≤ ε1 − ε > 0. Then, using

integration by parts,

ME(s) = lim
N→∞

{
e(b

++s)tfL+(t)
∣∣∣
N

0
− s

∫ N

0
e(b

++s)tfL+(t)dt

}

= −fL+(0)− sML+(b
+ + s) Re(s) ≤ ε1 − ε, (86)

since fL+(N) = o(e−(b+ε1)N). From (86),

ML+(b
+ + s) =

−1
s
{ME(s) + fL+(0)} Re(s) ≤ ε1 − ε. (87)

Using (85),

|ME(iy)| ≤ b+|ML+(b
+ + iy)|+ |MD(b

+ + iy)|

≤ b+|ML+(b
+)|+

∫ ∞

0−
eb
+t|dfL+(t)|.
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Therefore, from (87), |ML+(b
+ + iy)| < d/|y| with

d = b+ML+(b
+) +

∫ ∞

0−
eb
+t|dfL+(t)|+ fL+(0) <∞.

This leads to the upper bound

|R(b+ + iy)| ≤ 1

1− p(0)

∞∑

k=2

p(k)
dk

|y|k <
d2

y2
|y| > max(Y, d),

so that
(∫ −N

−∞
+

∫ ∞

N

)
R(b+ + iy)e−iytdy ≤ 2

∫ ∞

N

d2

y2
dy = 2d2/N < η0/4 N > N1,

whereN1 = max(Y, d, 8d2/η0). TakeN > N1 and T > max{T1(N), T2(N), T3} so I1+I2+I3 < η0
for t > T. This proves uniform integrability forMR+(b

++iy)e−ity in y for t > T so that condition

UI holds.
We now show condition UIS of Theorem 2 holds so that

∫∞
−∞MR+(b

++iy)(b++iy)−1e−itydy

is uniformly integrable for t > T when b+ = b + ε and ε < min(ε0, ε1). The proof is the same

as that used in Theorem 3 to show the same condition. The contour {Re(s) = b+} is deformed
into the same five lines used in Theorem 3 which are b+ ε1 − i∞ to b+ ε1 − iN to b+ − iN to

b++ iN to b+ ε1+ iN to b+ ε1+ i∞. The moduli for the integrals along the middle three legs

are small by the same arguments used in Theorem 3. The moduli of the integrals for the first

and last legs are the same so only the last leg requires comment. On the last leg, set b+1 = b+ε1
so that s = b+1 + iy for y ≥ N on this leg. Taking N > Y as used in expansion (65), then

|ML+(s)| < 1 so that

|MR+(s)|p =
∣∣∣∣

e−B

1− (1− e−B)ML+(s)
ML+(s)

∣∣∣∣

p

≤ |ML+(s)|p. (88)

Thus, by (88) and Hölder’s inequality,

∣∣∣∣

∫ ∞

N

MR+(b
+
1 + iy)

b+1 + iy
e−iytdy

∣∣∣∣ ≤
{∫ ∞

N
|ML+(b

+
1 + iy)|pdy

}1/p(∫ ∞

N

1

|b+1 + iy|q dy
)1/q

(89)

where 1/p+1/q = 1. Assumption AISAp ensures that (89) can be make uniformly small in t for

large N.

Assumption ACSA also suffices for showing condition UIS of Theorem 2. Again, only the

last of the five legs in the deformation of the contour integral needs comment. Using expansion

(71) with p = 2 so that M2(s) = p(1)ML+(s)/{1 − p(0)}, and also |ML+(b
+ + iy)| < d/|y|,

then for N > min{Y, d}
∣∣∣∣

∫ ∞

N

MR+(b
+ + iy)

b+ + iy
e−iytdy

∣∣∣∣ ≤
∫ ∞

N

∣∣∣∣
M2(b

+ + iy)

b+ + iy

∣∣∣∣ dy +
∫ ∞

N

∣∣∣∣
R(b+ + iy)

b+ + iy

∣∣∣∣ dy

<
1

1− p(0)

(
p(1)

∫ ∞

N

d

y2
dy +

∫ ∞

N

d2

y3
dy

)
→ 0 N →∞.
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5.4.2 Proof of Corollary 4

Here, fL+(t) = SX(t)/µ and so e
(b+ε1)tf ′L+(t) = −e(b+ε1)tfX(t)/µ is absolutely integrable for all

0 < ε1 < c− b. Thus, condition ACSA of Theorem 4 holds.

The excess life MGF is ML+(s) = {1 − MX(s)}/(−µs). Taking 0 < ε1 < c − b, then

|MX(b+ ε1 + iy)| < 1 for y > Y so that |ML+(b+ ε1 + iy)|p ≤ 2p/|µy|p. For any p > 1, this is

integrable so condition AIpSA holds. We can also easily show that condition UIS of Theorem
2 holds. With 0 < ε1 < c− b and for N > Y,

∣∣∣∣

∫ ∞

N

1−MX(b+ ε1 + iy)

−µ(b+ ε1 + iy)2
e−iytdy

∣∣∣∣ ≤
∫ ∞

N

2

µy2
dy =

2

µN
< η0

for N > 2/(µη0) for all t > 0. Thus uniform integrability holds.

5.4.3 Orders for expansions errors in Theorem 4 and Corollary 4

The following conditions are used to extend the asymptotic orders for errors in these expansions.

(AC9) For some ε0 ∈ (0, c − b), suppose MR+(s) can be analytically continued to {Re(s) <
b + ε0}\{b}. Also, for some ε1 ∈ [ε0, c − b), suppose

∫∞
0− exp{(b + ε1)t)dfL+(t) is absolutely

convergent.

(AIp9) For some ε0 > 0 (not necessarily bounded by c−b), suppose MR+(s) can be analytically

continued to {Re(s) < b+ ε0}\{b}. For some ε1 ≥ ε0, suppose |ML+(b+ ε1+ iy)|p is integrable
in y for some integer p > 1 and, if ε1 ≥ c − b, then maxc≤x≤b+ε1 |ML+(x+ iN)| → 0 as

N →∞.

Corollary 9. (Sparre Andersen model). Reconsider Theorem 4 with AC9 and AIp9 used
in place of ACSA and AISAp respectively.

Assuming AC9, the density expansion (35) holds to order o(e−(b+ε)t) for any ε < ε0.

Assuming AIp9, the survival expansion (36) holds to order o(e−(b+ε)t) for any ε < ε0.

Proof. The proof is the same as used in Theorem 4. For the density expansions, these proofs

restrict ε1 < c− b but no such restrictions apply to the survival expansions. �

In the Cramér-Lundberg model, if MR+(s) can be analytically extended to {Re(s) < b +

ε0}\{b} for ε0 < c−b, then the expansions for both the density in (37) and the survival function
in (38) hold to order o(e−(b+ε)t) for any ε < ε0. If the analytic extension extends to ε0 ≥ c− b,

then the density expansion (37) still holds to lower order o(e−(b+ε)t) for any ε < c − b while

the survival function expansion is valid to the higher order o(e−(b+ε)t) for ε < ε0 under the

condition that AIp9 holds.

5.4.4 Proof of Corollary 5

The proof follows by showing that the conditions of Corollary 3 hold. Condition ACCDm holds

by assumption. Condition XCLm ensures thatML+(s) = {1−MX(s)}/(−µs) satisfies condition
AICDmp in Corollary 3. Since fL+(t) = SX(t)/µ has bounded variation, so does f

(∗k)
L+

(t) for k ≥ 2

by Lemma 3 §5.2.1; hence BVCD holds.
In the Cramér-Lundberg context, condition AICDmp implies UICDm as we now show. To show

uniform integrability for k = 1 in UICDm , use ML+(s) = {1 −MX(s)}/(−µs) and break the

51



integral into

∫ ∞

−∞
ML+(b

+
m + iy)e−iytdy =

∫ ∞

−∞

{
1

−µ(b+m + iy)
+
MX(b

+
m + iy)

µ(b+m + iy)

}
e−iytdy =: I1 + I2. (90)

Integral I1 is uniformly integrable for large t and I2 is absolutely integrable after Hölder’s

inequality is used in conjunction with assumption AICDmp . Thus the integral in (90) is uniformly
integrable. To show uniform integrability for k ≥ 2, note that all terms in

∫∞
−∞ML+(b

+
m +

iy)ke−iytdy are absolutely integrable. For example, when k = 2, thenML+(b
+
m+ iy)2 = O(y−2)

so the integral is absolutely integrable.

The expressions in (40) are derived in the same manner as the first-order approximations in

(37) and (38). From Corollary 3, the density approximation is

fR(t) =
m∑

j=1

e−bjt
−ρ−1

M′
L+

(bj)
, (91)

where −ρ−1 = (1 − ρ)/ρ is the negative residue from the geometric PGF. Straightforward

differentiation ofML+(s) at bj gives

M′
L+(bj) =

1

µb2j

{
bjM′

X(bj) + 1−MX(bj)
}
. (92)

However, since bj is a zero of the denominator of MR(s), then ML+(bj) = 1/ρ so that 1 −
MX(bj) can be replaced by −µbj/ρ and

M′
L+(bj) =

1

µbj

{
M′

X(bj)− σ/λ
}
.

Substitution into (91) and additional simplification leads to (40).

5.4.5 Proof of Theorem 5

Numerical inversions of the ruin density and survival functions using the vertical contour

{Re(s) = x} in (34) are plagued by heavy tails as a result of the form for the excess life

distribution, with MGFML+(s) = {1 −MX(s)}/(−µs). Taking s = x+ iy, then as y → ∞,

the term MX(x + iy) = o(1) but also 1/(−µs) = −µ−1(x + iy)−1 so that when inverting to

compute fR(t),

Re{MR+(x+ iy)e−t(x+iy)} = Re

{
(1− ρ)ML+(x+ iy)

1− ρML+(x+ iy)
e−t(x+iy)

}
(93)

∼ (1− ρ)e−xtRe

{ −µ−1(x+ iy)−1

1 + ρµ−1(x+ iy)−1
e−ity

}

∼ −1− ρ

µ
e−xtRe

(
e−ity

x+ iy

)

∼ 1− ρ

µ
e−xt

{
y sin(ty)− x cos(ty)

x2 + y2

}

∼ (1− ρ)

µ
e−xt

sin(ty)

y
y →∞.
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Using the comparison theorem for integrals, then the left-hand side of (93) is not absolutely

integrable. The argument is that if the left-hand side is absolutely integrable, then so is the

right-hand side, which is a contradiction.

The corresponding integrand for determining SR(t) has the additional factor (x+ iy)−1 so

it has order

−(1− ρ)e−xt

µ
Re

{
e−ity

(x+ iy)2

}
∼ (1− ρ)e−xt

µ

cos(ty)

y2
y →∞. (94)

By the comparison test, the left-hand side of (94) is absolutely integrable.

Under the conditions of Corollary 5, the same asymptotic orders apply when x is replaced

by x ∈ [bm, bm + ε) to compute mth order error terms Rm(t) and RSm(t) for the higher-order

expansions fm(t) and Sm(t).

The order of the integrand for density inversion differs slightly from the inversion integral

used by Abate and Whitt (1992). Instead of (34), they used the inversion integral

fR+(t) ≈ 2e−xt
1

π

∫ N

0
Re{MR+(x+ iy)} cos(ty)dy (95)

with x = 0, which applies only to densities on (0,∞) so it is less general than (34). Using

Re{MR+(x + iy)} ∼ −(1 − ρ)Re{µ−1(x + iy)−1} = O(y−2), then the integrand in (95) has

order O{y−2 cos(ty)} as y →∞ so the integral converges absolutely but still slowly.

5.4.6 Proof of Theorem 6

To alleviate the inversion difficulties for both density and survival, we determine the direction

for ultimate steepest descent as the value θ ∈ [0, π/2] that minimises |MR+(re
iθ)e−it(re

iθ)| using
various distance values such as r = 30 and 60. Now, instead of integrating from ŝ0 − i∞ to

ŝ0 + i∞ in (34), we integrate along the 3 lines from ŝ0 − iπ + e−iθ∞ to ŝ0 − iπ to ŝ0 + iπ to

ŝ0 + iπ + eiθ∞ so

fR+(t) =
1

2πi

(∫ ŝ0−iπ

ŝ0−iπ+e−iθ∞
+

∫ ŝ0+iπ

ŝ0−iπ
+

∫ ŝ0+iπ+eiθ∞

ŝ0+iπ

)

MR+(s)e
−tsds = I1 + I2 + I3.

UsingMR+(s̄) =MR+(s), the middle integral reduces to integration from ŝ0 to ŝ0 + iπ of the

form

I2 =
1

π

∫ π

0
Re{MR+(ŝ0 + iy)e−t(ŝ0+iy)}dy,

which is (46). Likewise the first and third integrals are along complex conjugate curves and can

be combined to integrate from sπ = ŝ0 + iπ to sπ + eiθ∞. Denote N (s) = MR+(s) exp(−ts)
and write their sum as

I1 + I3 =
1

2πi

{∫ ∞

0
N (sπ + reiθ)eiθdr +

∫ 0

∞
N (s̄π + re−iθ)e−iθdr

}

=
1

2πi

∫ ∞

0

{
N (sπ + reiθ)eiθ −N (sπ + reiθ)eiθ

}
dr

=
1

π

∫ ∞

0
Im
{
N (sπ + reiθ)eiθ

}
dr.
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This gives expression (47).

It remains to show that integration from sπ to sπ + i∞ can be deformed to the ray from

sπ to sπ + eiθ∞. This follows from Cauchy’s deformation theorem by showing that the integral

over the following arc is arbitrarily small for large N :

A =

∫ sπ+Neiπ/2

sπ+Neiθ
N (s)ds =

∫ π/2

θ
MR+(sπ +Neiφ) exp(−sπt− tNeiφ)Nieiφdφ.

Using the assumptions of Theorem 6, for arbitrarily small η0 > 0,

max
θ≤φ≤π/2

|MR+(sπ +Neiφ)| ≤ η0t/π N ≥ N(η0). (96)

Then,

|A| ≤ η0t

π
Ne−ŝ0t

∫ π/2

θ
exp(−Nt cosφ)dφ.

Over φ ∈ [0, π/2], cosφ ≥ 1− 2φ/π so that

|A| ≤ η0t

π
Ne−ŝ0t

∫ π/2

0
exp {−Nt (1− 2φ/π)}dφ

=
η0t

π
Ne−ŝ0t

π

2Nt
(1− e−Nt) =

η0
2
e−ŝ0t(1− e−Nt) < η0.

Sufficient conditions for (96) to hold are:

max0≤φ≤π/2 |MR+(sπ +Neiφ)| → 0 if θ = 0

maxθ≤φ≤π/2 |MR+(Neiφ)| → 0 if θ ∈ (0,Arg(sπ)]

maxθ−≤φ≤π/2 |MR+(Neiφ)| → 0 if θ ∈ (Arg(sπ), π/2)

N →∞, (97)

for some θ− ∈ (0, θ).

5.4.7 Raleigh distribution

A Raleigh distribution with mean 1 has MGF

MX(s) = 1 + ses
2/π{erf(s/√π) + 1} = 1 + ses

2/π{2− erfc(s/
√
π)},

where erfc(t) = 1− erf(t). Using expansion 7.12.1 of NIST DLMF for erfc(t), we determine that

MX(s) = 2ses
2/π + π/(2s2) +O(s−4) |Arg(s)| < 3π/4

so that

ML+(s) =
1−MX(s)

−s = 2es
2/π − 1/s+ π/(2s3) +O(s−5). (98)

Taking s = ŝ0 + iy, then

MR+(ŝ0 + iy) =
(1− ρ)ML+(s)

1− ρML+(s)
= − 1− ρ

ŝ0 + iy
+O(y−2) y →∞. (99)

Therefore, the integrand for density inversion is

e−ŝ0t

π
Re{MR+(ŝ0 + iy)e−ity} ∼ e−ŝ0t

π
Re

{
− 1− ρ

ŝ0 + iy

}
∼ (1− ρ)e−ŝ0t

π

sin(ty)

y
y →∞,
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as given in (44).

To determine the direction for the path of ultimate steepest descent, we first note from (99)

thatMR+(ŝ0 + reiθ) ≈ (1− ρ)ML+(ŝ0 + reiθ) for large r. From (98),

ML+(ŝ0 + reiθ) ≈ 2 exp{(ŝ0 + reiθ)2/π} − 1/(ŝ0 + reiθ), (100)

so determining this direction involves trading off the sum of the two components in (100). The

steepest descent direction for the modulus of the first term is θ = π/2 so that exp{(reiθ)2} =

exp(−r2) while the second term has the same steepest descent direction as the MGF of an

exponential density which is θ = 0. The first term is slightly more dominating as reflected in the

overall steepest descent direction θ = 9π/32 ≈ 50.6◦ as determined directly fromMR+(ŝ0+re
iθ).

In this setting θ < Arg(sπ) = 81.4◦. For θ > 45◦, (97) and (96) hold so the conditions for

Theorem 6 hold.

5.4.8 Truncated extreme value distribution

The MGF is

MX(s) =
1

1− e−1

∫ ∞

0
exp(st− t− e−t)dt

=
1

1− e−1

∫ 1

0
e−uu−sdu (101)

upon substituting u = e−t. From 13.4.1 of NIST DLMF, this is

MX(s) =
1

1− e−1
Γ(1− s)

Γ(2− s)
1F1(1− s; 2− s;−1)

which reduces to (43).

To show that max0≤φ≤π/2 |MR+(πi+Neiφ)| → 0 as N →∞ as required in Theorem 6, first

use the Kummer transformation from 13.2.39 of NIST DLMF in (102) below, followed by the

expansion for 1F1 given in 13.8.2 of NIST DLMF in (103). With s = πi+Neiφ, these give

1F1(1− s; 2− s;−1) = e−1 1F1(1; 2− s; 1) (102)

=
Γ(2− s)

Γ(1− s)

{
(2− s)−1 +O(2− s)−2

}
→ 1 (103)

as N →∞ for 0 ≤ φ ≤ π/2. Therefore max0≤φ≤π/2 |MX(πi+Neiφ)| ≤ c1/N and

max0≤φ≤π/2 |ML+(πi+Neiφ)| ≤ c2/N so that

|MR+(πi+Neiφ)| = (1− ρ)|ML+(πi+Neiφ)|
|1− ρML+(πi+Neiφ)| ≤

(1− ρ)|ML+(πi+Neiφ)|
|1− ρ|ML+(πi+Neiφ)|| .

Thus,

max
0≤φ≤π/2

|MR+(πi+Neiφ)| ≤ (1− ρ)c2/N

1− ρc2/N
→ 0 N →∞.
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