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JOSE BLANCHET, YANG KANG, AND KARTHYEK MURTHY

This supplementary material to the paper “Robust Wasserstein Profile Inference and Appli-
cations to Machine Learning” is organized as follows: Proofs of all the main results in the paper
are furnished in Section A. As some of the main results in our paper utilize strong duality for
problems of moments, a quick introduction to problem of moments along with a well-known
strong duality result that is useful in our context is provided in Section B. A technical result
on exchange of sup and inf in the DRO formulation (8) is presented in Section C. Relevant bib-
liography utilized in this supplementary material is available at the end of this supplementary
material.

Appendix A. Proofs of main results

This section, comprising the proofs of the main results, is organized as follows: Subsection A.1
is devoted to derive the results on distributionally robust representations presented in Section
2.4. The proofs of results on coverage properties are presented in Section A.2. Subsection A.3
contains the proofs of stochastic upper and lower bounds (and hence weak limits) presented
in Section 3.3. Subsection A.4 contains the proofs of Theorems 5 and 6 as applications of the
stochastic upper and lower bounds presented in Section 3.3. Some of the useful technical results
that are not central to the argument are presented in Sections B and C.

A.1. Proofs of the distributionally robust representations in Section 2.4. Here we
provide proofs for results in Sections 2.3, 2.4 that recover various norm regularized regressions
as a special cases of distributionally robust regression (Proposition 2, Theorems 1 and 2).

Proof of Proposition 2. We utilize the duality result in Proposition 1 to prove Proposition
2. For brevity, let X̄i = (Xi, Yi) and β̄ = (−β, 1). Then the loss function becomes l(Xi, Yi;β) =
(β̄T X̄i)

2. We first decipher the function φγ(Xi, Yi;β) defined in Proposition 1:

φγ(Xi, Yi;β) = sup
ū∈Rd+1

{
(β̄T ū)2 − γ‖X̄i − ū‖2q .

}
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To proceed further, we change the variable to ∆ = ū− X̄i, and apply Hölder’s inequality to see
that |β̄T∆| ≤ ‖β̄‖p‖∆‖q, where the equality holds for some ∆ ∈ Rd+1. Therefore,

φγ(X̄i;β) = sup
∆∈Rd+1

{ (
β̄T X̄i + β̄T∆

)2 − γ ‖∆‖2q }
= sup

∆∈Rd+1

{(
β̄T X̄i + sign

(
β̄T X̄i

) ∣∣β̄T∆
∣∣)2 − γ ‖∆‖2q}

= sup
∆∈Rd+1

{(
β̄T X̄i + sign

(
β̄T X̄i

)
‖∆‖q

∥∥β̄∥∥
p

)2
− γ ‖∆‖2q

}
.

On expanding the squares, the above expression simplifies as below:

φγ(X̄i;β) =
(
β̄T X̄i

)2
+ sup

∆∈Rd+1

{
−
(
γ −

∥∥β̄∥∥2

p

)
‖∆‖2q + 2

∣∣β̄T X̄i

∣∣ ∥∥β̄∥∥
p
‖∆‖q

}
=

{ (
β̄T X̄i

)2
γ/(γ −

∥∥β̄∥∥2

p
) if γ >

∥∥β̄∥∥2

p
,

+∞ if γ ≤
∥∥β̄∥∥2

p
.

(1)

With this expression for φγ(Xi, Yi;β), we next investigate the right hand side of the duality rela-
tion in Proposition 1. As φγ(x, y;β) =∞ when γ ≤ ‖β‖2p, we obtain from the dual formulation
in Proposition 1 that

sup
P:Dc(P,Pn)≤δ

EP [l(X,Y ;β)] = inf
γ≥0

{
γδ +

1

n

n∑
i=1

φγ(Xi, Yi;β)

}

= inf
γ>‖β‖2p

{
γδ +

γ

γ − ‖β̄‖2p
1

n

n∑
i=1

(β̄T X̄i)
2

}
. (2)

Now, see that
∑n

i=1(β̄T X̄i)
2/n is nothing but the mean square error MSEn(β). Next, as the

right hand side of (2) is a convex function growing to ∞ (when γ → ∞ or γ → ‖β̄‖2p ), its
global minimizer can be characterized uniquely via first order optimality condition. This, in
turn, renders the right hand side of (2) as

sup
P:Dc(P,Pn)≤δ

EP [l(X,Y ;β)] =
(√

MSEn(β) +
√
δ‖β̄‖p

)2
.

This completes the proof of Proposition 2. �

Outline of a proof of Theorem 1. The proof of Theorem 1 is essentially the same as the proof
of Proposition 2, except for adjusting for ∞ in the definition of cost function Nq((x, y), (u, v))
when y 6= v (as in the derivation leading to φγ(Xi, Yi;β) defined in (11)). First, see that

φγ(Xi, Yi;β) = sup
x′∈Rd,y′∈R

{
(y′Tx′2 − γNq

(
(x′, y′), (Xi, Yi)

)}
.

As Nq((x
′, y′), (Xi, Yi)) =∞ when y′ 6= Yi, the supremum in the above expression is effectively

over only (x′, y′) such that y′ = Yi. As a result, we obtain,

φγ(Xi, Yi;β) = sup
x′∈Rd

{
(Yi − βTx′2 − γNq

(
(x′, Yi), (Xi, Yi)

)}
.

= sup
x′∈Rd

{
(Yi − βTx′2 − γ‖x′ −Xi‖2q

)}
.
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Now, following same lines of reasoning as in the proof of Theorem 2 and the derivation leading
to (1), we obtain

φγ(x, y;β) =

{
γ

γ−‖β‖2p
(Yi − βTXi)

2 when λ > ‖β‖2p,
+∞ otherwise.

The rest of the proof is same as in the proof of Proposition 2.

Proof of Theorem 2. As in the proof of Proposition 2, we apply the duality formulation in
Proposition 1 to write the worst case expected log-exponential loss function as:

sup
P: Dc(P,Pn)≤δ

EP
[
l(X,Y ;β)

]
= inf

λ≥0

{
δλ+

1

n

n∑
i=1

sup
x

{
log
(
1 + exp(−YiβTx)

)
− λ ‖x−Xi‖p

}}
.

For each (Xi, Yi), following Lemma 1 in [5], we obtain

sup
x

{
log
(
1 + exp(−YiβTx)

)
− λ ‖x−Xi‖p

}
=


log
(
1 + exp(−YiβTXi)

)
if ‖β‖q ≤ λ,

+∞ if ‖β‖q > λ.

Then we can write the worst case expected loss function as,

inf
λ≥0

{
δλ+

1

n

n∑
i=1

sup
x

{
log
(
1 + exp(−YiβTx)

)
− λ ‖x−Xi‖p

}}

= inf
λ≥0

{
δλ+

1

n

n∑
i=1

(
log
(
1 + exp(−YiβTXi)

)
1{λ>‖β‖q} +∞1{λ≤‖β‖q}

)}

= inf
λ>‖β‖q

{
δλ+

1

n

n∑
i=1

log
(
1 + exp(−YiβTXi)

)}

=
1

n

n∑
i=1

log
(
1 + exp(−YiβTXi)

)
+ δ ‖β‖q ,

which is equivalent to regularized logistic regression in the theorem statement.

For SVM with hinge loss function, let us apply the duality formulation in Proposition 1 to
write the worst case expected Hinge loss function as:

sup
P: Dc(P,Pn)≤δ

EP
[ (

1− Y βTX
)+ ]

= inf
λ≥0

{
δλ+

1

n

n∑
i=1

sup
x

{(
1− YiβTx

)+ − λ ‖x−Xi‖p
}}

.
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For each i, let us consider the maximization problem and for simplicity we denote ∆i = x−Xi

sup
∆ui

{(
1− YiβT (Xi + ∆i)

)+ − λ ‖∆i‖p
}

= sup
∆i

sup
0≤αi≤1

{
αi
(
1− YiβT (Xi + ∆i)

)
− λ ‖∆i‖p

}
= sup

0≤αi≤1
sup
∆i

{
αiYiβ

T∆i − λ ‖∆i‖p + αi
(
1− YiβTXi

)}
= sup

0≤αi≤1
sup
∆i

{
αi ‖β‖q ‖∆i‖p − λ ‖∆i‖p + αi

(
1− YiβTXi

)}

=


(
1− YiβTXi

)+
if ‖β‖q ≤ λ +∞

+∞ if ‖β‖q > λ

The first equality follows from the observation that x+ = sup0≤α≤1 x; second equality is because
the function is concave in ∆i, linear in α; as α is in a compact set, we can apply minimax theorem
to switch the order of maxima; third equality is due to applying Hölder inequality to the first
term, and since the second term only depends on the norm of ∆i, the equality holds for this
maximization problem. For the outer minimization, it is sufficient to restrict to λ ≥ ‖β‖q. As
a result, we obtain

inf
λ≥‖β‖q

{
δλ+

1

n

n∑
i=1

(
1− YiβTXi

)+}
=

1

n

n∑
i=1

(
1− YiβTXi

)+
+ δ ‖β‖q .

This completes the proof. �

A.2. Proofs of results on coverage properties.

Proof of Proposition 6. Let P̂ be a probability measure from the set,

{P : Dc(P,Pn) ≤ δ, EP
[
Dβl(X,Y ;β∗)] = 0},

which is non-empty, because δ > Rn(β∗). Then,

inf
β∈Rd

sup
P:Dc(P,Pn)≤δ

EP [l(X,Y ;β)] ≥ inf
β∈Rd

EP̂ [l(X,Y ;β)] = EP̂ [l(X,Y ;β∗)] .

Moreover, since Dc(·) is symmetric in its arguments, we have Dc(P̂,Pn) ≤ δ. As a result,

EPn [l(X,Y ;β∗)]− inf
β

sup
P∈Uδ(Pn)

EP [l(X,Y ;β)] ≤ sup
P:Dc(P̂,P)≤δ

EP [l(X,Y ;β∗)]− EP̂ [l(X,Y ;β∗)] .

(3)

On the other hand,

inf
β

sup
P∈Uδ(Pn)

EP [l(X,Y ;β)]− EPn [l(X,Y ;β∗)] ≤ sup
P:Dc(Pn,P)≤δ

EP [l(X,Y ;β∗)]− EPn [l(X,Y ;β∗)] ,

which can be bounded from above to result in the desired bound, C1δ + C2(n)1ρ=2

√
δ, by

substituting the regularized regression estimators derived in Theorem 1 (when ρ = 2) and
Theorem 2 (when ρ = 1). Likewise, repeating the proofs of Theorems 1 and 2 for the case

where the baseline distribution is set to be P̂ (instead of Pn), we obtain for any β ∈ Rd that

sup
P:Dc(P̂,P)≤δ

EP [l(X,Y ;β)]− EP̂ [l(X,Y ;β)] = δ‖β‖p,
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for the logistic regression example in Theorem 2; and

sup
P:Dc(P̂,P)≤δ

EP [l(X,Y ;β)]− EP̂ [l(X,Y ;β)] = 2
√
δ‖β‖p

√
EP̂ [(Y − βTX)2] + δ‖β‖2p

≤ 2
√
δ‖β‖p

√
sup

P∈Uδ(Pn)
EP [(Y − βTX)2] + δ‖β‖2p,

= 2
√
δ‖β‖p

√
EPn [(Y − βTX)2] + 3δ‖β‖2p,

for the linear regression example in Theorem 1. This verifies the upper bound for (3). �

Proof of Theorem 4. Since δ = n−ρ/2η for some η ≥ ηα, we have from the definition of ηα that,

lim
n→∞

P(Rn(β∗) > δ) = lim
n→∞

P(nρ/2Rn(β∗) > η) ≤ α,

as n→∞. Then it follows from Proposition 6 that,∣∣∣∣∣EPn [l(X,Y ;β∗)]− inf
β∈Rd

sup
P∈Uδ(Pn)

EP [l(X,Y ;β)]

∣∣∣∣∣ ≤ C1ηn
−ρ/2 + C2(n)

√
η1{ρ=2}n

−ρ/4,

with probability greater than or equal to 1 − α, as n → ∞. Moreover, due to Chebyshev’s
inequality, we obtain,

|EPn [l(X,Y ;β∗)]− EP∗ [l(X,Y ;β∗)]| ≤
√

VarP∗ [l(X,Y ;β∗)]

αn
,

and subsequently, C2(n)/(2‖β∗‖p) ≤
√
EP∗ [l(X,Y ;β∗)] + (α−1n−1VarP∗ [l(X,Y ;β∗)])

1/4, with
probability exceeding 1−α. Since EP∗ [l(X,Y ;β∗)] = infβ EP∗ [l(X,Y ;β)], the desired convergence
in the statement of Theorem 4 follows from triangle inequality and an application of union bound
to the above two inequalities. �

A.3. Proofs of asymptotic stochastic upper and lower bounds of RWP function in
Section 3.3. We first use Proposition 3 to derive a dual formulation for nρ/2Rn(θ∗) which will
be the starting point of our analysis. Due to Assumption A2), E[h(W, θ∗)] = 0. Combining this
observation with the positive definiteness in Assumption A4), we have that 0 lies in the interior
of convex hull of {h(u, θ∗) : u ∈ Rm} by using a supporting hyperplane argument as in the proof
of [1, Proposition 8]. Then, due to Proposition 3,

Rn(θ∗) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{
λTh(u, θ∗)− ‖u−Wi‖ρq

}}
.

In order to simplify the notation, throughout the rest of the proof we will write h (Wi) instead
of h (Wi, θ∗) and Dh (Wi) for Dwh (Wi, θ∗).

Letting Hn = n−1/2
∑n

i=1 h(Wi) and changing variables to ∆ = u−Wi, we obtain

Rn(θ∗) = sup
λ

{
−λT Hn

n1/2
− 1

n

n∑
i=1

sup
∆

{
λT
(
h(Wi + ∆)− h(Wi)

)
− ‖∆‖ρq

}}
.

Due to the fundamental theorem of calculus (using Assumption A3)), we have that

h (Wi + ∆)− h (Wi) =

∫ 1

0
Dh (Wi + u∆) ∆du.
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Now, redefining ζ = λn(ρ−1)/2 and ∆ = ∆/n1/2 we arrive at following representation

nρ/2Rn(θ∗) = sup
ζ

{
−ζTHn −Mn (ζ)

}
, (4)

where

Mn (ζ) =
1

n

n∑
i=1

sup
∆

{
ζT
∫ 1

0
Dh

(
Wi + n−1/2∆u

)
∆du− ‖∆‖ρq

}
. (5)

The reformulation in (4) is our starting point of the analysis.

To proceed further, we first state a result which will allow us to apply a localization argument
in the representation of nρ/2Rn (θ∗) in (4). Recall the definition of Mn above in (5) and that

Hn = n−1/2
∑n

i=1 h(Wi).

Lemma 1. Suppose that the Assumptions A2) to A4) are in force. Then, for every ε > 0, there
exists n0 > 0 and b ∈ (0,∞) such that

P

(
sup
‖ζ‖p≥b

{
−ζTHn −Mn (ζ)

}
> 0

)
≤ ε,

for all n ≥ n0.

Proof of Lemma 1. Recall that q > 1 and p = q/(q − 1). For ζ 6= 0, we write ζ̄ = ζ/ ‖ζ‖p. Let

us define the vector Vi
(
ζ̄
)

= Dh (Wi)
T ζ̄, and put

∆′i = ∆′i
(
ζ̄
)

=
∣∣Vi (ζ̄)∣∣p/q sgn (Vi (ζ̄)) . (6)

Define the set C0 = {w ∈ Rm : ‖w‖p ≤ c0}, where c0 will be chosen large enough momentarily.

Then, for any c > 0, plugging in ∆ = c∆′i, we have ζTDh(Wi)∆ = c‖ζTDh(Wi)‖p‖∆′i‖q, and
therefore,

sup
∆

{
ζT
∫ 1

0
Dh(Wi + n−1/2∆u)∆du− ‖∆‖ρq

}
= sup

∆

{
ζTDh(Wi)∆− ‖∆‖ρq + ζT

∫ 1

0

[
Dh(Wi + n−1/2∆u)−Dh(Wi)

]
∆du

}
≥ max

{
c
∥∥ζTDh(Wi)

∥∥
p

∥∥∆′i
∥∥
q
− cρ

∥∥∆′i
∥∥ρ
q

+ cζT
∫ 1

0

[
Dh(Wi + cn−1/2∆′iu)−Dh (Wi)

]
∆′idu, 0

}
I (Wi ∈ C0) . (7)

Due to Hölder’s inequality,

I (Wi ∈ C0)

∣∣∣∣ζT ∫ 1

0

[
Dh(Wi + cn−1/2∆′iu)−Dh(Wi)

]
∆′idu

∣∣∣∣
≤ I (Wi ∈ C0) ‖ζ‖p

∫ 1

0

∥∥∥[Dh(Wi + cn−1/2∆′iu)−Dh(Wi)
]
∆′i

∥∥∥
q
du.

Because of continuity Dh (·) and the fact that Wi ∈ C0 (so the integrand is bounded), we have
that the previous expression converges to zero as n→∞. Therefore, for given positive constants
ε′, c (note than convergence is uniform on Wi ∈ C0), there exists n0 such that for all n ≥ n0

cI (Wi ∈ C0)

∣∣∣∣ζT ∫ 1

0

[
Dh(Wi + cn−1/2∆′iu)−Dh(Wi)

]
∆′idu

∣∣∣∣ ≤ cε′ ‖ζ‖p . (8)
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Next, as ‖ζ̄TDh(Wi)‖p/qp = ‖∆′i‖q and 1 + p/q = p,

c
∥∥ζTDh (Wi)

∥∥
p

∥∥∆′i
∥∥
q
− cρ

∥∥∆′i
∥∥ρ
q

= c ‖ζ‖p ‖ζ̄
TDh(Wi)‖pp − cρ‖ζ̄TDh(Wi)‖

ρ p
q

p .

Consequently, it follows from (7) and (8) that

Mn(ζ) ≥ 1

n

n∑
i=1

{
c ‖ζ‖p ‖ζ̄

TDh(Wi)‖pp − cρ‖ζ̄TDh(Wi)‖
ρ p
q

p − cε′‖ζ‖p
}
I (Wi ∈ C0) . (9)

Now, since the map ζ̄ ↪→
∥∥ζ̄TDh(Wi)

∥∥p
p

is Lipschitz continuous on
∥∥ζ̄∥∥

p
= 1, we conclude that,

1

n

n∑
i=1

∥∥ζ̄TDh(Wi)
∥∥p
p
I (Wi ∈ C0)→E

[∥∥ζ̄TDh (W )
∥∥p
p
I (W ∈ C0)

]
, (10)

with probability one as n → ∞. Moreover, due to Fatou’s lemma we have that the map

ζ̄ ↪→ P
(∥∥ζ̄TDh (W )

∥∥
p
> 0
)

is lower semi-continuous. Therefore, by A4), we have that there

exists δ > 0 such that
inf
ζ̄
E
∥∥ζ̄TDh (W )

∥∥p
p
> δ. (11)

Consecutively, by selecting c0 > 0 large enough, we conclude from (10) that for n ≥ N ′ (δ),

1

n

n∑
i=1

∥∥ζ̄TDh(Wi)
∥∥p
p
I (Wi ∈ C0) >

δ

2
. (12)

Further, if we let c1 := supw∈C0
‖ζ̄TDh(w)‖p/qp <∞, then

1

n

n∑
i=1

∥∥ζ̄TDh(Wi)
∥∥ρ pq
p
I (Wi ∈ C0) < cρ1,

for all n > N ′(δ). As a consequence, if n ≥ N ′ (δ), it follows from (9) and (12) that

sup
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
≤ sup
‖ζ‖p>b

{
−ζTHn −

(
cδ‖ζ‖p

2
− (cc1)ρ − cε′‖ζ‖p

)}
≤ sup
‖ζ‖p>b

{
−ζTHn − ‖ζ‖p

{
c

(
δ

2
− ε′

)
− (cc1)ρ

b

}}
.

Consequently, on the set ‖Hn‖q ≤ b′, we obtain

sup
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
≤ sup
‖ζ‖p>b

‖ζ‖p
[
b′ −

{
c

(
δ

2
− ε′

)
− (cc1)ρ

b

}]
.

Now, if we take c > 4(b′ + 1)/δ, ε′ = δ/4 and b to be large enough such that b > (cc1)ρ then

b′ −
{
c

(
δ

2
− ε′

)
− (cc1)ρ

b

}
< 0.

Therefore, if n ≥ n0 (see (8)), then

P

(
max
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
> 0

)
≤ P

(
‖Hn‖q > b′

)
+ P

(
N ′ (δ) > n

)
.

The result now follows immediately from the previous inequality by choosing b′ large enough
so that P(‖Hn‖q > b′) ≤ ε/2 and later n0 so that P(N ′(δ) > n0) ≤ ε/2. The selection of b′ is
feasible due to A2). This proves the statement of Lemma 1. �
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Lemma 2. For any b > 0 and c0 ∈ (0,∞) ,

1

n

n∑
i=1

∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

p
I
(
‖Wi‖p ≤ c0

)
→ E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p
I(‖W‖p ≤ c0)

]
,

uniformly over ‖ζ‖p ≤ b in probability as n→∞.

Proof of Lemma 2. We first argue a suitable Lipschitz property for the map ζ ↪→
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p
.

It is elementary that for any 0 ≤ a0 < a1 and γ > 1

aγ1 − a
γ
0 = γ

∫ a1

a0

tγ−1dt ≤ γaγ−1
1 (a1 − a0) .

Applying this observation with

a1 = max
(∥∥ζT1 Dh (Wi)

∥∥
p
,
∥∥ζT0 Dh (Wi)

∥∥
p

)
,

a0 = min
(∥∥ζT1 Dh (Wi)

∥∥
p
,
∥∥ζT0 Dh (Wi)

∥∥
p

)
,

γ = ρ/(ρ− 1),

and using that
∥∥ζTDh (Wi)

∥∥
p
≤ b ‖Dh (Wi)‖p for ‖ζ‖p ≤ b, we obtain∣∣∣∥∥ζT0 Dh (Wi)

∥∥ρ/(ρ−1)

p
−
∥∥ζT1 Dh (Wi)

∥∥ρ/(ρ−1)

p

∣∣∣ ≤ ρ

ρ− 1
b1/(ρ−1) ‖Dh (Wi)‖ρ/(ρ−1)

p ‖ζ0 − ζ1‖p .

Consequently, we have that∣∣∣∣∣ 1n
n∑
i=1

∥∥ζT0 Dh (Wi)
∥∥ ρ
ρ−1

p
− 1

n

n∑
i=1

∥∥ζT1 Dh (Wi)
∥∥ ρ
ρ−1

p

∣∣∣∣∣ ≤ ρ

ρ− 1
‖ζ0 − ζ1‖p

b
1
ρ−1

n

n∑
i=1

‖Dh (Wi)‖
ρ
ρ−1
p .

Since Dh(·) is continuous, E
[
‖Dh (W )‖ρ/(ρ−1)

p I(‖W‖p ≤ c0)
]
<∞, thus yielding the tightness

of

1

n

n∑
i=1

‖ζTDh(Wi)‖ρ/(ρ−1)
p I (‖Wi‖p ≤ c0),

under the uniform topology on compact sets. The Strong Law of Large Numbers guarantees
that finite dimensional distributions converge (for any choice of ζ1, . . . , ζk, k ≥ 1), and, since
the limit is deterministic, we obtain the desired convergence in probability. �

Proof of Theorem 3. Let us first observe that Rn(θ∗) ≥ 0 (choosing ζ = 0). Then, as a
consequence of Lemma 1, there exists b > 0 such that the event

An =

{
nρ/2Rn(θ∗) = max

‖ζ‖p≤b

{
−ζTHn −Mn (ζ)

}}
, (13)

where the outer supremum is attained at some ‖ζ∗‖p ≤ b, occurs with probability at least 1− ε,
as long as n ≥ n0. In other words, P(An) ≥ 1− ε when n ≥ n0.

We first consider the case ρ > 1. For ζ 6= 0, write ζ̄ = ζ/ ‖ζ‖p . Next, define the vector

Vi(ζ̄) via Vi
(
ζ̄
)

= Dh (Wi)
T ζ̄ (that is, the j-th entry of Vi

(
ζ̄
)

is the j-th entry of the vector

Dh (Wi)
T ζ̄), and put

∆′i = ∆′i
(
ζ̄
)

=
∣∣Vi (ζ̄)∣∣p/q sgn (Vi (ζ̄)) . (14)
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Next, let ∆̄i = ci∆
′
i with ci chosen so that

∥∥∆̄i

∥∥
q

=

(
1

ρ

∥∥ζTDh (Wi)
∥∥
p

)1/(ρ−1)

.

In such case we have that

max
∆

{
ζTDh (Wi) ∆− ‖∆‖ρq

}
= max
‖∆‖q≥0

{∥∥ζTDh (Wi)
∥∥
p
‖∆‖q − ‖∆‖

ρ
q

}
= ζTDh (Wi) ∆̄i −

∥∥∆̄i

∥∥ρ
q

=
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
. (15)

Pick c0 ∈ (0,∞) and define C0 = {‖Wi‖p ≤ c0}. Note that

Mn (ζ) ≥M ′n (ζ, c0) ,

where

M ′n (ζ, c0) =
1

n

n∑
i=1

I (Wi ∈ C0)

{
ζT
∫ 1

0
Dh

(
Wi + n

−1/2
i ∆̄iu

)
∆̄idu−

∥∥∆̄i

∥∥ρ
q

}+

.

Therefore

max
‖ζ‖p≤b

{
−ζTHn −Mn (ζ)

}
≤ max
‖ζ‖p≤b

{
−ζTHn −M ′n (ζ, c0)

}
. (16)

Define

M̂n (ζ, c0) =
1

n

n∑
i=1

I (Wi ∈ C0)
{
ζTDh (Wi) ∆̄idu−

∥∥∆̄i

∥∥ρ
q

}+

=
1

n

n∑
i=1

I (Wi ∈ C0)
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
,

where the equality follows from (15). We then claim that

sup
‖ζ‖q≤b

∣∣∣M̂n (ζ, c0)−M ′n (ζ, c0)
∣∣∣→ 0. (17)

In order to verify (17), note, using the continuity of Dh (·) , that for any ε′ > 0 there exists n0

such that if n ≥ n0 then (uniformly over ‖ζ‖p ≤ b),∣∣∣∣∫ 1

0
I (Wi ∈ C0)

∥∥∥ζT [Dh(Wi + n−1/2∆̄iu)−Dh(Wi)
]∥∥∥

p

∥∥∆̄i

∥∥
q
du

∣∣∣∣ ≤ ε′.
Therefore, if n ≥ n0,

1

n

n∑
i=1

I (Wi ∈ C0)

∣∣∣∣ζT ∫ 1

0

[
Dh(Wi + n−1/2∆̄iu)−Dh(Wi)

]
∆̄idu

∣∣∣∣ ≤ ε′.
Since ε′ > 0 is arbitrary, (17) stands verified. Then, applying Lemma 2 we obtain

M̂n (ζ, c0)→ E
(
ζTDh (Wi) ∆̄idu−

∥∥∆̄i

∥∥ρ
q

)+
I (Wi ∈ C0) ,
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uniformly over ‖ζ‖p ≤ b as n→∞, in probability. Therefore, applying the continuous mapping
principle, we have that

max
‖ζ‖p≤b

{
−ζTHn −M ′n (ζ, c0)

}
⇒ max
‖ζ‖p≤b

{
−ζTH − κ (ρ)E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p
I
(
‖W‖p ≤ c0

)]}
, (18)

as n→∞, where

κ (ρ) =

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
,

and H ∼ N (0, Cov[h (W, θ∗)]). From (16) and the construction of (13), we can easily obtain

that nρ/2Rn (θ∗) is stochastically bounded (asymptotically) by

max
ζ

{
−ζTH − κ (ρ)E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p

]}
,

which verifies the first part of the theorem when ρ > 1.

Now, for ρ = 1, we will follow very similar steps. Again, due to Lemma 1 we concentrate
on the region ‖ζ‖p ≤ b for some b > 0. For the upper bound, define ∆′i as in (14). Using a
localization technique similar to that described in the proof of Lemma 1 in which the set C0

as introduced we might assume that ‖Wi‖p ≤ c0 for some c0 > 0. Then, for a given constant

c > 0, setting ∆i = c∆′i, we obtain that

max
‖ζ‖p≤b

{
−ζTHn −

1

n

n∑
i=1

sup
∆i

{
ζT
∫ 1

0
Dh(Wi + ∆iu/n

1/2)∆idu− ‖∆i‖q
}}

≤ max
‖ζ‖p≤b

{
−ζTHn −

1

n

n∑
i=1

(
cζT

∫ 1

0
Dh(Wi + c∆′iu/n

1/2)∆′idu− c
∥∥∆′i

∥∥
q

)
I (Wi ∈ C0)

}
.

As in the case ρ > 1 we have that

1

n

n∑
i=1

I(Wi ∈ C0)

∫ 1

0
ζT
[
Dh(Wi + c∆′iu/n

1/2)−Dh(Wi)
]

∆′idu→ 0

in probability uniformly on ζ-compact sets. Similarly, in addition, for any c > 0 and any b > 0

max
‖ζ‖p≤b

{
−ζTHn −

1

n

n∑
i=1

(
cζTDh(Wi)∆

′
idu− c

∥∥∆′i
∥∥
q

)
I (Wi ∈ C0)

}

= max
‖ζ‖≤b

{
−ζTHn −

1

n

n∑
i=1

c
(∥∥ζTDh (W )

∥∥
p
− 1
)+
‖∆′i‖qI(‖Wi‖p ≤ c0)

}

⇒ max
‖ζ‖≤b

{
−ζTH − cE

[(∥∥ζTDh (W )
∥∥
p
− 1
)+
‖ζ̄TDh(W )‖p/qp I(‖W‖p ≤ c0)

]}
,

because ‖∆′‖qq = ‖ζ̄TDh(Wi)‖pp. Next, as the constant c can be arbitrarily large, we obtain a
stochastic upper bound of the form

max
‖ζ‖≤b:P(‖ζTDh(W )‖p≤1)=1

{
−ζTH

}
≤ max

ζ:P(‖ζTDh(W )‖p≤1)=1

{
−ζTH

}
.

This completes the proof of Theorem 3. �
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Proof of Proposition 4. We follow the notation introduced in the proof of Theorem 3. Recall
from (4) and (5) that

n1/2Rn (θ∗) = sup
ζ

{
ζTHn −

1

n

n∑
k=1

sup
∆

{∫ 1

0
ζTDh

(
Wi + ∆u/n1/2

)
∆du− ‖∆‖q

}}
.

Let A := {ζ : esssup
∥∥ζTDh (w)

∥∥
p
≤ 1}, where the essential supremum is taken with respect

to the Lebesgue measure. Then, due to Hölder’s inequality, if ζ ∈ A,

sup
∆

{∫ 1

0
ζTDh

(
Wi + ∆u/n1/2

)
∆du− ‖∆‖q

}
≤ sup

∆

{∫ 1

0

∥∥∥ζTDh(Wi + ∆u/n1/2
)∥∥∥

p
‖∆‖q du− ‖∆‖q

}
≤ sup

∆
‖∆‖q

{∫ 1

0

(∥∥∥ζTDh(Wi + ∆u/n1/2
)∥∥∥

p
− 1

)
du

}
≤ 0.

Consequently,

n1/2Rn (θ∗) ≥ sup
ζ∈A

ζTHn.

Letting n→∞ we conclude that

sup
ζ∈A

ζTHn ⇒ sup
ζ∈A

ζTH.

Because Wi is assumed to have a density with respect to the Lebesgue measure it follows that

P
(∥∥ζTDh (Wi)

∥∥
p
≤ 1
)

= 1 if and only if ζ ∈ A and the result follows. �

Finally, we provide the proof of Proposition 5.

Proof of Proposition 5. Recall from (4) and (5) that

n1/2Rn (θ∗) = sup
ζ

{
ζTHn −

1

n

n∑
k=1

sup
∆

{∫ 1

0
ζTDh

(
Wi + ∆u/n1/2

)
∆du− ‖∆‖ρq

}}
. (19)

As in the proof of Theorem 3, due to Lemma 1, we might assume that ‖ζ‖p ≤ b for some b > 0.

The strategy will be to split the inner supremum in values of ‖∆‖q ≤ δn1/2 and values

‖∆‖q > δn1/2 for a suitably small positive constant δ. In Step 1, we shall show that the
supremum is achieved with high probability in the former region. Then, in Step 2, we analyze
the region in which ‖∆‖q ≤ δn1/2 and argue that the integrals inside the summation in (19)

can be replaced by ζTDh (Wi) ∆. Once this substitution is performed we can solve the inner
maximization problem explicitly in Step 3 and, finally, we will apply a weak convergence result
on ζ-compact sets to conclude the result. We now proceed to execute this strategy.

Execution of Step 1: Pick δ > 0 small, to be chosen in the sequel, then note that A5) implies
(by redefining κ if needed, due to the continuity of Dh (·)) that

‖Dh (w)‖p ≤ κ
(

1 + ‖w‖ρ−1
q

)
.
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Therefore, for ζ such that ‖ζ‖p ≤ b,

sup
‖∆‖q≥δn1/2

{∫ 1

0

∣∣∣ζTDh(Wi + ∆u/n1/2
)

∆
∣∣∣ du− ‖∆‖ρq}

≤ sup
‖∆‖q≥δn1/2

{
bκ

(
1 +

∫ 1

0

∥∥∥Wi + ∆u/n1/2
∥∥∥ρ−1

q
du

)
‖∆‖q − ‖∆‖

ρ
q

}
.

Note that if ρ ∈ (1, 2), then 0 < ρ−1 < 1, and therefore by the triangle inequality and concavity∥∥∥Wi + ∆u/n1/2
∥∥∥ρ−1

q
≤
(
‖Wi‖q +

∥∥∥∆/n1/2
∥∥∥
q

)ρ−1

≤ ‖Wi‖ρ−1
q +

∥∥∥∆/n1/2
∥∥∥ρ−1

q
.

On the other hand, if ρ ≥ 2, then ρ− 1 ≥ 1 and the triangle inequality combined with Jensen’s
inequality applied as follows:

‖a+ c‖ρ−1 ≤ 2ρ−1

(
1

2
‖a‖ρ−1 +

1

2
‖c‖ρ−1

)
= 2ρ−2

(
‖a‖ρ−1 + ‖c‖ρ−1

)
,

yields ∥∥∥Wi + ∆u/n1/2
∥∥∥ρ−1

q
≤ 2ρ−2

(
‖Wi‖ρ−1

q +
∥∥∥∆/n1/2

∥∥∥ρ−1

q

)
.

So, in both cases we can write

sup
‖∆‖q≥δn1/2

{∫ 1

0

∣∣∣ζTDh(Wi + ∆u/n1/2)∆
∣∣∣ du− ‖∆‖ρq}

≤ sup
‖∆‖q≥δn1/2

{
bκ

(
1 + 2ρ−1

(
‖Wi‖ρ−1

q +
∥∥∥∆/n1/2

∥∥∥ρ−1

q

))
‖∆‖q − ‖∆‖

ρ
q

}
≤ sup
‖∆‖q≥δn1/2

{
bκ
(
‖∆‖q + 2ρ−1 ‖Wi‖ρ−1

q ‖∆‖q + 2ρ−1 ‖∆‖ρq /n
(ρ−1)/2

)
− ‖∆‖ρq

}
.

Next, as E‖Wn‖ρ <∞, we have that for any ε′ > 0,

P
(
‖Wn‖ρq ≥ ε

′n i.o.
)

= 0,

therefore we might assume that there exists n0 such that for all i ≤ n and n ≥ n0, ‖Wi‖ρ−1
q ≤

(ε′n)(ρ−1)/ρ. Therefore, if (ε′)(ρ−1)/ρ ≤ δρ−1/ (bκ2ρ), we conclude that if ‖∆‖q ≥ δn1/2 and
n > n0,

bκ2ρ−1 ‖Wi‖ρ−1
q ‖∆‖q ≤ bκ2ρ−1

(
ε′n
)(ρ−1)/ρ ‖∆‖q

≤ 1

2
δρ−1n(ρ−1)/ρ ‖∆‖q ≤

1

2
‖∆‖ρq .

Similarly, choosing n sufficiently large we can guarantee that

bκ
(
‖∆‖q + 2ρ−1 ‖∆‖ρq /n

(ρ−1)/ρ
)
≤ 1

2
‖∆‖ρq .

Therefore, we conclude that for any fixed δ > 0,

sup
‖∆‖q≥δ

√
n

{∫ 1

0

∣∣∣ζTDh(Wi + ∆u/n1/2)∆
∣∣∣ du− ‖∆‖ρq} ≤ 0 (20)

provided n is large enough, thus achieving the desired result over the region ‖∆‖q ≥ δ
√
n.
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Execution of Step 2: Next, we let ε′′ > 0, and note that

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζTDh(Wi + ∆u/n1/2)∆du− ‖∆‖ρq

}
(21)

≤ sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh(Wi + ∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
+ sup
‖∆‖q≤δ

√
n

{
ζTDh (Wi) ∆− (1− ε′′) ‖∆‖ρq

}
.

We now argue locally, using A6), a bound for the first term in the right hand side of (21):

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh(Wi + ∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
(22)

≤ sup
‖∆‖q≤δ

√
n

{
‖ζ‖pκ̄ (Wi) ‖∆‖2q /n

1/2 − ε′′ ‖∆‖ρq
}

≤ sup
‖∆̄‖

q
≤1

{
bκ̄ (Wi)

∥∥∆̄
∥∥2

q
δ2n1/2 − ε′′

∥∥∆̄
∥∥ρ
q

(
δn1/2

)ρ}
.

As supx∈[0,1]

{
anx

2 − bnxρ
}
≤ (ρ − 2)+(aρn/b2n)1/(ρ−2)/ρ when bn > an, we have, for all n suffi-

ciently large, that

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh(Wi + ∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
≤ (ρ− 2)+

ρ

(
bκ̄(Wi)

ε′′
√
n

)ρ/(ρ−2)

.

Since E[κ̄(W )2] < ∞ (from Assumption A6)), we have that P(κ̄(Wi) > ε′′′
√
i i.o.) = 0 for any

ε′′′ > 0. Consecutively, κ̄(Wi) < ε′′′
√
i for all i large enough, and therefore,

limn→∞
1

n

n∑
i=1

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh

(
Wi + ∆u/n1/2

)
−Dh (Wi)

]
∆du− ε′′ ‖∆‖ρq

}

≤ (ρ− 2)+

ρ
limn→∞

(
b

ε′′

)ρ/(ρ−2) 1

n

n∑
i=1

(
κ̄(Wi)√

n

)ρ/(ρ−2)

≤ (ρ− 2)+

ρ

(
b
ε′′′

ε′′

)ρ/(ρ−2)

,

which can be made arbitrarily small by choosing ε′′′ arbitrarily small. Therefore, for any fixed
ε′′, δ > 0,

limn→∞
1

n

n∑
i=1

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh

(
Wi + ∆u/n1/2

)
−Dh (Wi)

]
∆du− ε′′ ‖∆‖ρq

}
= 0. (23)



14 BLANCHET, KANG, AND MURTHY

Execution of Step 3: Next, it follows from (20), (21) and (23) that for any fixed ε′′, δ > 0, there
exists N0 such that if n ≥ N0,

1

n

n∑
i=1

sup
∆

{∫ 1

0
ζTDh

(
Wi + ∆u/n1/2

)
∆du− ‖∆‖ρq

}

≤ 1

n

n∑
i=1

sup
∆≤δ

√
n

{
ζTDh (Wi) ∆du− (1− ε′′) ‖∆‖ρq

}
+ δ

≤ 1

n

n∑
i=1

min
{
κ
(
ρ, ε′′

) ∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

p
, cn

}
+ δ,

where

κ
(
ρ, ε′′

)
=

(
1

ρ(1− ε′′)

)1/(ρ−1)(
1− 1

ρ

)
,

and cn →∞ as n→∞ (the exact value of cn is not important).

Next, note that A5) implies that

‖Dh (Wi)‖ρ/(ρ−1)
p I (‖Wi‖ ≥ 1) ≤ κI (‖Wi‖ ≥ 1) ‖Wi‖ρq ≤ κ ‖Wi‖ρq

and, therefore, since Dh (·) is continuous (therefore locally bounded) and E ‖Wi‖ρq <∞ also by

A5), we have that

E ‖Dh (W )‖ρ/(ρ−1)
p <∞.

Then, an argument similar to Lemma 2 shows that

sup
‖ζ‖p≤b

{
ζTHn −

1

n

n∑
i=1

{
κ
(
ρ, ε′′

) ∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

q
, cn

}}
⇒ sup
‖ζ‖p≤b

{
ζTH − κ

(
ρ, ε′′

)
E
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

q

}
,

as n→∞ (where ⇒ denotes weak convergence). Finally, we can send ε′′, δ → 0 and b→∞ to
obtain the desired asymptotic stochastic lower bound. �

A.4. Proofs of RWP function limit theorems for linear and logistic regression ex-
amples. We first obtain the dual formulation of the respective RWP functions for linear and
logistic regressions using Proposition 3. Let E[h(x, y;β)] = 0 be the estimating equation under
consideration (h(x, y;β) = (y − βTx)x for linear regression and h(x, y;β) as in (27) for logistic
regression). Recall that the cost function is c(·) = Nq(·). Due to the duality result in Proposition
3, we obtain

Rn(β∗) = inf
{
Dc(P,Pn) : EP[h(X,Y ;β∗)] = 0

}
= sup

λ

{
− 1

n

n∑
i=1

sup
(x′,y′)

{
λTh(x′, y′;β∗)−Nq

(
(x′, y′), (Xi, Yi)

)}}
.

As Nq((x
′, y′), (Xi, Yi)) =∞ when y′ 6= Yi, the above expression simplifies to,

Rn(β∗) = sup
λ

{
− 1

n

n∑
i=1

sup
x′

{
λTh(x′, Yi;β∗)− ‖x′ −Xi‖ρq

}}
, (24)

where ρ = 2 for the case of linear regression (Theorem 5) and ρ = 1 for the case of logistic
regression (Theorem 6). As RWP function here is similar to the RWP function for general
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estimating equation in Section 3.3, a similar limit theorem holds. We state here the assumptions
for proving RWP limit theorems for the dual formulation in (24).

Assumptions:
A2’) Suppose that β∗ ∈ Rd satisfies E[h(X,Y ;β∗)] = 0 and E‖h(X,Y ;β∗)‖22 <∞ (While we do
not assume that β∗ is unique, the results are stated for a fixed β∗ satisfying E[h(X,Y ;β∗)] = 0.)

A4’) Suppose that for each ξ 6= 0, the partial derivative Dxh(x, y;β∗) satisfies,

P
(∥∥ξTDxh(X,Y ;β∗)

∥∥
p
> 0
)
> 0.

A6’) Assume that there exists κ̄ : Rm →∞ such that

‖Dxh(x+ ∆, y;β∗)−Dxh(x, y;β∗)‖p ≤ κ̄(x, y)‖∆‖q,

for all ∆ ∈ Rd, and E[κ̄(X,Y )2] <∞.

Lemma 3. If ρ ≥ 2, under Assumptions A2’), A4’) and A6’), we have,

nRn(β∗; ρ)⇒ R̄(ρ),

where

R̄(ρ) = sup
ξ∈Rd

{
ρξTH − (ρ− 1)E

∥∥ξTDxh(X,Y ;β∗)
∥∥ρ/(ρ−1)

p

}
,

with H ∼ N (0,Cov[h(X,Y ;β∗)] and 1/p+ 1/q = 1.

Lemma 4. If ρ = 1, in addition to assuming A2’), A4’), suppose that Dxh(·, y;β∗) is continuous
for every y in the support of probability distribution of Y. Also suppose that X has a positive
probability density (almost everywhere) with respect to the Lebesgue measure. Then,

nRn(β∗; 1)⇒ R̄(1),

where

R̄(1) = sup
ξ:P(‖ξTDxh(X,Y ;β∗)‖p>1)=0

{
ξTH

}
,

with H ∼ N (0,Cov[h(X,Y ;β∗]).

The proof of Lemma 3 and 4 follows closely the proof of our results in Section 3 and therefore
it is omitted. We prove Theorem 5 and 6 as a quick application of these lemmas.

Proof of Theorem 5. To show that the RWP function dual formulation in (24) converges in
distribution, we verify the assumptions of Lemma 3 with h(x, y;β) = (y − βTx)x. Under the
null hypothesis H0, Y − βT∗ X = e is independent of X, has zero mean and finite variance σ2.
Therefore,

E [h(X,Y ;β)] = E [eX] = 0, and

E‖h(X,Y ;β)‖22 = E
[
e2XTX

]
= σ2E‖X‖22,

which is finite, because trace of the covariance matrix Σ is finite. This verifies Assumption A2’).
Further,

Dxh(X,Y ;β∗) =
(
y − βT∗ X

)
Id −XβT∗ = eId −XβT∗ ,

where Id is the d× d identity matrix. For any ξ 6= 0,

P
(
‖ξTDxh(X,Y ;β∗)‖p = 0

)
= P

(
eξ = (ξTX)β

)
= 0,
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thus satisfying Assumption A4’) trivially. In addition,

‖Dxh(x+ ∆, y;β∗)−Dxh(x, y;β∗)‖p =
∥∥βT∗ ∆Id −∆βT∗

∥∥
p
≤ c‖∆‖q,

for some positive constant c. This verifies Assumption A6’). As all the assumptions imposed in
Lemma 3 are easily satisfied, using ρ = 2, we obtain the following convergence in distribution
as a consequence of Lemma 3.

Rn(β∗)⇒ sup
ξ∈Rd

{
2ξTH − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
,

as n → ∞. Here, H ∼ N (0,Cov[h(X,Y ;β∗)]. As Cov[h(X,Y ;β∗)] = E
[
e2XXT

]
= σ2Σ, if we

let Z = H/σ, we obtain the limit law,

L1 = sup
ξ∈Rd

{
2σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
,

where Z = N (0,Σ), as in the statement of the theorem.

Proof of the stochastic upper bound in Theorem 5: For the stochastic upper bound, let us
consider the asymptotic distribution L1 and rewrite the maximization problem as,

L1 = sup
‖ξ‖p=1

sup
α≥0

{
2σαξTZ − α2E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
≤ sup
‖ξ‖p=1

sup
α≥0

{
2σα ‖Z‖q − α

2E
∥∥eξ − (ξTX)β∗

∥∥2

p

}
,

because of Hölder’s inequality. By solving the inner optimization problem in α, we obtain

L1 ≤ sup
‖ξ‖p=1

σ2 ‖Z‖2q
E ‖eξ − (ξTX)β∗‖2p

=
σ2 ‖Z‖2q

inf‖ξ‖p=1 E ‖eξ − (ξTX)β∗‖2p
. (25)

Next, consider the minimization problem in the denominator: Due to triangle inequality,

inf
‖ξ‖p=1

E
∥∥eξ − (ξTX)β∗

∥∥2

p
≥ inf
‖ξ‖p=1

E
(
|e| ‖ξ‖p −

∣∣ξTX∣∣ ‖β∗‖p)2

= E |e|2 + inf
‖ξ‖p=1

{
‖β∗‖2p E

∣∣ξTX∣∣2 − 2 ‖β∗‖p E |e|E
∣∣ξTX∣∣}

≥ E |e|2 + inf
‖ξ‖p=1

{
‖β∗‖2p

(
E
∣∣ξTX∣∣)2 − 2 ‖β∗‖p E |e|E

∣∣ξTX∣∣}
= E |e|2 − (E |e|)2 + inf

‖ξ‖p=1

(
‖β∗‖p E

∣∣ξTX∣∣− E |e|
)2

≥ E |e|2 − (E |e|)2 = Var [|e|] .

Combining the above inequality with (25), we obtain,

sup
ξ∈Rd

{
σ2ξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
≤
σ2 ‖Z‖2q
Var |e|

.

Consequently,

nRn(β∗)
D−→ L1 := max

ξ∈Rd

{
σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

} D
≤ E[e2]

E[e2]− (E |e|)2
‖Z‖2q .
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If random error e is normally distributed, then

nRn(β∗) .D
π

π − 2
‖Z‖2q ,

thus establishing the desired upper bound. �

Proof of Theorem 6. Under null hypothesis H0, the training samples (X1, Y1), . . . , (Xn, Yn) are
produced from the logistic regression model with parameter β∗. As β∗ minimizes the expected
log-exponential loss l(x, y;β), the corresponding optimality condition is E[h(X,Y ;β∗)] = 0,
where

h(x, y;β∗) =
−yx

1 + exp(yβ∗x)
.

As E‖h(X,Y ;β∗)‖22 ≤ E‖X‖22 is finite, Assumption A2’) is satisfied. Let Id denote d×d identity
matrix. While

Dxh(x, y;β∗) =
−yId

1 + exp(yβT∗ x)
+

xβT∗
(1 + exp(yβT∗ x))(1 + exp(−yβT∗ x))

is continuous (as a function of x) for every y, it is also true that

P
(∥∥ξTDxh(X,Y ;β∗)

∥∥
p

= 0
)

= P
(
Y
(
1 + exp(−Y βT∗ X)

)
ξ = (ξTX)β

)
= 0,

for any ξ 6= 0, thus satisfying Assumption A4’). As all the conditions required for the conver-
gence in distribution in Lemma 4 are satisfied, we obtain,

√
nRn(β∗)⇒ sup

ξ∈A
ξTZ,

where Z ∼ N (0,E[XXT /(1 + exp(Y βT∗ X))2]) as a consequence of Lemma 4. Here, the set
A = {ξ ∈ Rd : ess sup‖ξTDxh(X,Y ;β∗)‖ ≤ 1}.
Proof of the stochastic upper bound in Theorem 6: First, we claim that A is a subset of the
norm ball {ξ ∈ Rd : ‖ξ‖p ≤ 1}. To establish this, we observe that,

∥∥ξTDxh(X,Y ;β∗)
∥∥
p
≥
∥∥∥∥ −Y ξ

1 + exp(Y βT∗ X)

∥∥∥∥
p

−

∥∥∥∥∥ (ξTX)β∗(
1 + exp(Y βT∗ X)

)(
1 + exp(Y βT∗ X)

)∥∥∥∥∥
p

≥

(
1

1 + exp(Y βT∗ X)
− ‖X‖q‖β∗‖p(

1 + exp(Y βT∗ X)
)(

1 + exp(−Y βT∗ X)
)) ‖ξ‖p,

(26)

because Y ∈ {+1,−1}, and due to Hölder’s inequality |ξTX| ≤ ‖ξ‖p‖X‖q. If ξ ∈ Rd is such that
‖ξ‖p = (1− ε)−2 > 1 for a given ε > 0, then following (26), ‖ξTDxh(X,Y )‖p > 1, whenever

(X,Y ) ∈ Ωε :=

{
(x, y) :

‖x‖q‖β∗‖p
1 + exp(−yβT∗ x)

≤ ε

2
,

1

1 + exp(yβT∗ x)
≥ 1− ε

2

}
.

Since X has positive density almost everywhere, the set Ωε has positive probability for every
ε > 0. Thus, if ‖ξ‖p > 1, ‖ξTDxh(X,Y ;β∗)‖p > 1 with positive probability. Therefore, A is a
subset of {ξ : ‖ξ‖p ≤ 1}. Consequently,

L3 := sup
ξ∈A

ξTZ
D
≤ sup

ξ:‖ξ‖p≤1
ξTZ = ‖Z‖q.
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If we let Z̃ ∼ N (0,E[XXT ]), then Cov[Z̃] − Cov[Z] is positive definite. As a result, L3 is

stochastically dominated by L4 := ‖Z̃‖q, thus verifying the desired stochastic upper bound in
the statement of Theorem 6. �

Proof of Theorem 7. Instead of characterizing the exact weak limit, we will find a stochastic
upper bound for Rn(β∗). The RWP function, as in the proof of Theorem 5, admits the following
dual representation (see (24)):

Rn(β∗) = sup
λ

{
− 1

n

n∑
i=1

sup
x′

{
λT (Yi − βT∗ x′)x′ − ‖x′ −Xi‖2∞

}}

= sup
λ

{
−λT Zn√

n
− 1

n

n∑
i=1

sup
∆

{
eiλ

T∆− (βT∗ ∆)(λTXi)−
(
‖∆‖2∞ + (βT∗ ∆)(λT∆)

)}}
,

where Zn = n−1/2
∑n

i=1 eiXi, ei = Yi − βT∗ Xi. In addition, we have changed the variable from
x′ −Xi = ∆. If we let ζ =

√
nλ, then

nRn(β∗) = sup
ζ

{
−ζTZn −

1√
n

n∑
i=1

sup
∆

{
eiζ

T∆− (βT∗ ∆)(ζTXi)−
(√
n‖∆‖2∞ + (βT∗ ∆)(ζT∆)

)}}

≤ sup
ζ

{
−ζTZn −

1√
n

n∑
i=1

sup
‖∆‖∞

{∥∥eiζT − (ζTXi)β
T
∗
∥∥

1
‖∆‖∞ −

√
n

(
1 +
‖β∗‖1‖ζ‖1√

n

)
‖∆‖2∞

}}
,

where we have used Hölder’s inequality thrice to obtain the upper bound. If we solve the inner
supremum over the variable ‖∆‖, we obtain,

nRn(β∗) ≤ sup
ζ

{
−ζTZn −

1√
n

n∑
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1

4
√
n
(
1 + ‖β∗‖1‖ζ‖1n−1/2

)}

≤ sup
a≥0

sup
ζ:‖ζ‖1=1

{
−aζTZn −

a2

4
(
1 + a‖β∗‖1n−1/2

) 1

n

n∑
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1

}
,

where we have split the optimization into two parts: one over the magnitude (denoted by a), and
another over all unit vectors ζ. Further, due to Hölder’s inequality, we have |ζTZn| ≤ ‖Zn‖∞ as

‖ζ‖1 = 1. Therefore, letting c1(n) = ‖Zn‖∞, c2(n) = infζ:‖ζ‖1=1
1
n

∑n
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1
and

c3(n) = 1 + a‖β‖21n−1/2, observe that

nRn(β∗) ≤ sup
a≥0

{
c1(n)a− c2(n)

4c3(n)
a2

}
=
c2

1(n)

c2(n)
(1 + o(1)) =

‖Zn‖2∞(1 + o(1))

inf{ζ:‖ζ‖1=1}
1
n

∑n
i=1 ‖eiζ − (ζTXi)β∗‖21

.

Since
∥∥eiζ − (ζTXi)β∗

∥∥2

1
≥
(
|ei| ‖ζ‖1 −

∣∣ζTXi

∣∣ ‖β∗‖1)2 , the denominator, c2(n), can be lower
bounded as follows:

c2(n) := inf
ζ:‖ζ‖1=1

EPn
∥∥eζ − (ζTX)β∗

∥∥2

1
≥ inf

ζ:‖ζ‖1=1
EPn

[(
|e| − |ζTX|‖β∗‖1

)2]
≥ EPn

[
inf

ζ:‖ζ‖1=1
EPn

[(
|e| − |ζTX|‖β∗‖1

)2 |X]] ≥ EPn

[
inf
c∈R

EPn

[
(|e| − c)2 |X

]]
.

Since ei and Xi are independent and minc E[(Z − c)2] = Var[Z] for any random variable Z, we

obtain that c2(n) ≥ Varn|e|. Therefore nRn(β∗) ≤ ‖Zn‖2∞ (1 + o(1))/Varn |e|. �
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Appendix B. Strong duality for the linear semi-infinite program resulting
from the RWP function

In the main body of the paper, we have utilized strong duality of linear semi-infinite programs
to derive a dual representation of the RWP function in order to perform asymptotic analysis (see
Proposition 3). Establishing strong duality in this context relies on the following well-known
result on problem of moments ([2, 3]).

The problem of moments. Let Ω be a nonempty Borel measurable subset of Rm, which, in
turn, is endowed with the Borel sigma algebra BΩ. Let X be a random vector taking values in
the set Ω, and f = (f1, . . . , fk) : Ω → Rk be a vector of moment functionals. Let PΩ and M+

Ω
denote, respectively, the set of probability and non-negative measures, respectively on (Ω,BΩ)
such that the Borel measurable functionals φ, f1, f2, . . . , fk, defined on Ω, are all integrable.
Given a real vector q = (q1, . . . , qk), the objective of the problem of moments is to find the
worst-case bound,

v(q) := sup
{
Eµ[φ(X)] : Eµ[f(X)] = q, µ ∈ PΩ

}
. (27)

If we let f0 = 1Ω, it is convenient to add the constraint, Eµ[f0(X)] = 1, by appending

f̃ = (f0, f1, . . . , fk), q̃ = (1, q1, . . . , qk), and consider the following reformulation of the above
problem:

v(q) := sup

{∫
φ(x)dµ(x) :

∫
f̃(x)dµ(x) = q̃, µ ∈M+

Ω

}
. (28)

Then, under the assumption that a certain Slater’s type of condition is satisfied, one has the
following equivalent dual representation for the moment problem (28). See Theorem 1 (and the
discussion of Case [I] following Theorem 1) in [2] for a proof of the following result:

Proposition 1. Let Qf̃ =
{ ∫

f̃(x)dµ(x) : µ ∈ M+
Ω

}
. If q̃ = (1, q1, . . . , qk) is an interior point

of Qf̃ , then

v(q) = inf

{
k∑
i=0

aiqi : ai ∈ R,
k∑
i=0

aif̃i(x) ≥ φ(x) for all x ∈ Ω

}
.

In the rest of this section, we recast the dual reformulation of RWP function (in (3)) and the
dual reformulation of the distributional representation in Proposition 1 as particular cases of
the dual representation of the problem of moments in Proposition 1.

Dual representation of RWP function. Recall from Section 3.2 that W is a random vector
taking values in Rm and h(·, θ) is Borel measurable.

Proof of Proposition 3. For simplicity, we do not write the dependence on parameter θ in h(u, θ)
and Rn(θ) in this proof; nevertheless, we should keep in mind that the RWP function is a
function of parameter θ. Given estimating equation E[h(W )] = 0, recall the definition of the
corresponding RWP function,

Rn := inf
{
Dc(P,Pn) : EP

[
h(W )

]
= 0

}
= inf

{
Eπ
[
c(U,W )

]
: Eπ

[
h(U)

]
= 0, πW = Pn, π ∈ P(Rm × Rm)

}
,

where πW denotes the marginal distribution of W and Pn is the empirical distribution formed
from distinct samples {W1, . . . ,Wn}. To recast this as a problem of moments as in (27), let
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Ω = {(u,w) ∈ Rm × {W1, . . . ,Wn} : c(u,w) <∞},

f(u,w) =


1{w=W1}

(u,w)

1{w=W2}
(u,w)

...
1{w=Wn}

(u,w)

h(u)

 and q =


1/n
1/n

...
1/n
0

 .
Further, let φ(u,w) = −c(u,w), for all (u,w) ∈ Ω. Then,

Rn = − sup
{
Eπ
[
φ(U,W )

]
: Eπ

[
f(U,W )

]
= q, π ∈ PΩ

}
,

is of the same form as (27). Since the constraints Eπ[1{w=Wi}(U,W )] = 1/n, for i = 1, . . . , n,
together specify that Pπ(Ω) = 1, the constraint that Eπ[1Ω(U,W )] = 1 is redundant. Moreover,
as {0} lies in the interior of convex hull of the range {h(u) : (u,w) ∈ Ω}, observe that the set
Qf := {

∫
fdµ : µ ∈ M+

Ω} is simply Rn+ × R. Then it is immediate that the Slater’s condition
q ∈ int(Qf ) is satisfied for the moment problem,

Rn = − sup

{∫
φ(u,w)dµ(u,w) :

∫
f(u,w)dµ(u,w) = q, µ ∈M+

Ω

}
.

Consequently, we obtain the following dual representation of Rn due to Proposition 1:

Rn = − inf
ai∈R

{
1

n

n∑
i=1

ai :
n∑
i=1

ai1{w=Wi}
(u,w) +

k∑
i=n+1

aihi(u) ≥ −c(u,w), for all (u,w) ∈ Ω

}

= − inf
ai∈R

{
1

n

n∑
i=1

ai : ai ≥ sup
u:c(u,Wi)<∞

{
−c(u,Wi)−

k∑
i=n+1

aihi(u)

}}
.

As the inner supremum is not affected even if we take supremum over {u : c(u,Wi) =∞}, after
letting λ = (an+1, . . . , ak) for notational convenience, we obtain

Rn = sup
λ

{
1

n

n∑
i=1

inf
u∈Rm

{
c(u,Wi) + λTh(u)

}}
. (29)

As λ is a free variable, we flip the sign of λ to arrive at the statement of Proposition 3. This
completes the proof. �

Appendix C. Exchange of sup and inf in the DRO formulation (8)

The inf-sup exchange in Proposition 2 below is obtained by suitably modifying the inf-sup
exchange in [1, Theorem 2] and its proof to accommodate more relaxed assumptions than in
[1]. The sequence of steps in the proof of Proposition 2 is similar to that of [1, Theorem 2] and
is given here for completeness.

Proposition 2. For a given probability distribution Q, define

g(β) := sup
P:Dc(P,Q)≤ δ

EP
[
l
(
X,Y ;β

)]
,

for β ∈ Rd. Suppose that g(·) is real-valued and the level set {β ∈ Rd : g (β) ≤ b} is bounded for
every b ∈ R. In addition, suppose that EP

[
l
(
X,Y ;β

)]
is convex and lower semicontinuous in

the variable β, for every P ∈ Uδ(Q) := {P : Dc(P,Q) ≤ δ}. Then,

inf
β∈Rd

sup
P:Dc(P,Q)≤δ

EP
[
l
(
X,Y ;β

)]
= sup

P:Dc(P,Q)≤δ
inf
β∈Rd

EP
[
l
(
X,Y ;β

)]
.
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Proof. We begin by defining the sequence of approximation problems,

gN (β) := sup
P∈UNδ (Q)

EP
[
l
(
X,Y ;β

)]
,

where N = 1, 2, . . . , and

UNδ (Q) = {P ∈ P(KN ) : Dc(P,Q) ≤ δ} ,

with P(KN ) denoting the set of probability distributions over the set KN := {x : ‖x‖2 ≤ N} .
Then, due to the compactness of the set UNδ (Q), we obtain

inf
β∈Rd

gN (β) = inf
β∈Rd

sup
P∈UNδ (Q)

EP
[
l
(
X,Y ;β

)]
= sup

P∈UNδ (Q)

inf
β∈Rd

EP
[
l
(
X,Y ;β

)]
,

as a consequence of Sion’s minimax theorem [6]. Therefore, with gN (·) being an increasing
sequence of functions, we have

lim
N→∞

inf
β∈Rd

gN (β) = sup
N≥1

inf
β∈Rd

gN (β) = sup
N≥1

sup
P∈UNδ (Pn)

inf
β∈Rd

EP
[
l
(
X,Y ;β

)]
≤ sup

P∈Uδ(Q)
inf
β∈Rd

EP
[
l
(
X,Y ;β

)]
≤ inf

β∈Rd
sup

P∈Uδ(Q)
EP
[
l
(
X,Y ;β

)]
(30)

= inf
β∈Rd

g(β).

The rest of the proof is divided into three technical steps:

Step 1: In this step, we show that the sequence of functions {gN (·) : N ≥ 1} converges
pointwise to the function g(·), as N →∞. Since gN (β) is increasing in N, we have that gN (β)
converges as N → ∞, for every β. Let the function g∗(·) denote the pointwise limit, g∗(·) =
limN→∞ gN (·). With gN (·) ≤ g(·) for every N, we have g∗(β) ≤ g(β). Since g(·) is real-valued,
we consequently have g∗(β) ≤ g(β) < +∞, for every β ∈ Rd.

To show that g∗(β) necessarily equals g(β) for every β, we argue via contradiction as follows:
Suppose that ε := g(β) − g∗(β) > 0 for some β ∈ Rd. Consider any P′ ∈ Uδ(Pn) such that
EP′ [l(X,Y ;β)] ∈ (g(β) − ε/2, g(β)]. With g(β) being finite, there exists N0 sufficiently large
such that

EP′ [l(X,Y ;β)I(‖X‖2 > N)] < ε/4 and
[
1− P′(KN )

]
EQ [l(X,Y ;β)I(‖X‖2 ≤ N)] > −ε/4,

for all N > N0. From P′, we construct a measure P′N ∈ UNδ (Q) by letting,

P′N (·) = P′(·) +
[
1− P′(KN )

] Q(·)
Q(KN )

,

for all N large enough such that Q(KN ) > 0. Then,

g∗(β) ≥ gN (β) ≥ EP′N [l(X,Y ;β)] > EP′ [l(X,Y ;β)]− ε/2,

for all N > N0. With EP′ [l(X,Y ;β)] ∈ (g(β)− ε/2, g(β)], we then have g∗(β) > g(β)− ε, which
leads to a contradiction to the assumption that ε := g(β) − g∗(β) > 0. This verifies that the
pointwise limit g∗(·) = g(·).

Step 2: In this next step, we show that the sequence of functions {gN (·) : N ≥ 1} epicon-
verges to the function g(·), as N → ∞. See, for example, [4, Definition 7.1] for a definition of
epiconvergence. To accomplish this step, we first see that for every sequence {βN : N ≥ 1}
satisfying βN → β ∈ Rd,

lim inf
N→∞

gN (βN ) ≥ lim inf
N→∞

gM (βN ) ≥ gM (β),
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for any positive integer M. Indeed, this is because gN (·) is an increasing sequence of functions
and gM (·), being pointwise maxima of lower semicontinuous functions, is lower semicontinuous.
Letting M →∞, we then have

lim inf
N→∞

gN (βN ) ≥ g(β),

due to the pointwise convergence concluded in Step 1. Next, for any β ∈ Rd, if we pick the
sequence βN = β, we have limN→∞ gN (βN ) = limN→∞ gN (β) = g(β). We therefore have from
the epiconvergence characterization in [4, Proposition 7.1] that the sequence {gN : N ≥ 1}
epiconverges to the function g(·).

Step 3: In this final step, we show that the optimal values infβ∈Rd gN (β) converge to
infβ∈Rd g(β), as N →∞. With EP[l(X,Y ;β)] being convex in the variable β, we have that the
pointwise maximum g(·) is convex. Combining this observation with the level-boundedness of
the limiting function g(·), we have from [4, Exercise 7.32(c)] that the sequence {gN (β) : N ≥ 1}
is eventually level-bounded. Further, since the functions gN (·), g(·) are lower semicontinuous
and proper, we obtain the desired optimal value convergence,

inf
β∈Rd

gN (β)→ inf
β∈Rd

g(β),

as a consequence of [4, Theorem 7.33].

The conclusion in Step 3 forces the inequalities in (30) to be equalities, thus rendering the
desired inf-sup interchange in the statement of Proposition 2. �

Proof of Lemma 1. Let us consider linear regression loss function first. Under the null hypothe-
sis, E‖X‖22 <∞ and E[e2] <∞. Therefore, for any β ∈ Rd, E[l(X,Y ;β)] = E[(Y −βTX)2] <∞.
Further, as the loss function l(x, y;β) is a convex and continuous in the variable β, we have that
EP[l(X,Y ;β)] is convex and lower semicontinuous for any P ∈ Uδ(Pn). Next, the distributionally
robust representation in Theorem 1,

g(β) = sup
P∈ Uδ(Pn)

EP[l(X,Y ;β)] =

(√
EPn [(Y − βTX)2] +

√
δ‖β‖p

)2

allows us to conclude that g(β) is finite for every β ∈ Rd. Further, as g(β)→∞ when ‖β‖p →∞
and g(β) is convex and continuous in Rd, the level sets {β : g(β) ≤ b} are compact and nonempty

for every b > (
√

EPn [(Y − βT∗ X)2] +
√
δ‖β∗‖)2. This verifies the level-boundedness requirement

in the statement of Proposition 2. As all the conditions in Proposition 2 are satisfied, the
sup and inf in the DRO formulation (8) can be exchanged in the linear regression example as
a consequence of Proposition 2. Exactly similar reasoning applies for logistic regression loss
function when E‖X‖22 is finite. �
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