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SM1. Proofs of Section 3

Proof of Lemma 3.1. For sufficiently large x we find that

P(Z¢(U,S) > z) = %A)F({(u,s,z) ERI xR xRy : zé(u,s) > z})

u24>/;XT,L(i)eXP(6f)nﬂduxm>
0 ey M) o0 (g

where the first term equals L(z/c)exp(—pBx/c) times the desired limit. The result

follows when the latter integral is shown to be of order o(L(z/c)exp(—pfx/c)), as
x — oo. Let h(u, s;x) denote the integrand. For all (u, s) € B’ xT’ we have ¢(u, s) < c.
Combined with (2.4), this implies the existence of v > 0 and C > 0 such that
h(u, s;x)
L(x/c) exp(—px/c)
for sufficiently large x. Thus, the integrand h(u,s;z) is o(L(z/c)exp(—pfx/c)) at

< Cexp(—7z)

infinity. By dominated convergence, the integral is of order o(L(z/c)exp(—pBz/c))

if we can find an integrable function g : RY x R — R such that
h(u, s;x)

L{@/e)exp(—faje) =)
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for all (u,s) € RY x R. Returning to (2.5) we see that for all 0 < v < §/c there is
C > 0 and x( such that

L(x/f)(:;;;(i)ﬁx/c) = CeXp(_”“"O(ﬁ - VC)(@ - %)) (SM1.1)

for all z > xo. Independent of (u, s) we can find a finite constant C' such that the right
hand side of (SM1.1) is bounded by C¢(u, s), which is integrable by assumption. This

shows the desired order of convergence.
From [4, Lemma 2.4(i)] the distribution of Z¢(U, S) is convolution equivalent with
index §/c. The integrability result follows from [4, Corollary 2.1(ii)]. O

Corollary SM1.1. If VY, V2, ... arei.i.d. fields with distribution vy, then
E[exp (6 SUp Sup Ay ((Vv{t + 4 qut)(v,t))>:| < 00
u€B s€[0,T]

for allm € N.

Proof. Because each V* can be represented by (Z°f([v — U'|,t — 5%)(y.tyepx17, the
result follows from (3.8) and (3.10). O

Proof of Theorem 3.2. We will show the claim by induction over n: We note that
the case n = 1 follows easily from Theorem 3.1. Now assume that the result holds
true for some n € N and let for convenience V*" = V! + ... + V" Also, let y* =
SUD(, e x7 Yo+ Using (3.7) and the representation V' = Z* f(|v — U’|,t — 57), we
find

P(\I,<Vv*,? + V'ur,ltJrl + y’U,t) > 37)

<P(Y zioU',s') > TS zrteut gt > T
=1

WV + VI 4 ) > )
(SM1.2)

*

n
+P(> 2,5 < T W+ Vi ) > )
=1

+ P(Zn+1¢(Un+17 Sn-‘rl) S

*

r—y
2

The first term in (SM1.2) is bounded from above by

VL + VI yas) > )

*

P(gzw,si) > T p(zrr g sy > T2,
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In Lemma 3.1 we showed that the distribution of Z:p(U?, S%) is convolution equivalent
with index /¢, and hence, from [3, Corollary 2.11] and (3.9), both factors are asymp-
totically equivalent to p1((2/(2¢),0)) as & — co. Following the proof of [2, Lemma 2]
we see that the product is o((p1 * p1)((x/c,00))), and as such the first term in (SM1.2)
is o(p1((z/c,0))) due to the convolution equivalence of p;. By Theorem 3.1 it is of
order o(P(¥(V,},) > x)) as x — oc.

By independence, the two remaining terms in (SM1.2) divided by P(¥(V,};) > x)

are

/ PO, 2 f(lo —u'l,t = ') + Vi + o) > 2)
c. P(U(Vy,) > x)

x FEM(d(ut, s, 24 u™, 8™, 2)) (SM1.3)
PU(Vey + 21 (v —ull ¢ = s") + o) > 7)
+/ : : Fi(d(ut, s, 21)),
é, PE(V,,) > ) '

where F?" is the n-fold product measure of F; and

n
Cr = {(u1 shozli a8 2 Zzid)(ui,si) < m;y },
i=1

A 1 .1 .1 1 1 .1 r—y*
= z 4 < .
Cy {(u,s, ) qb(u,s)_ 5 }

Above we used the representation V¢ = Zif(jv — U?|,t — S*) again. By Theorem 3.1

and the induction assumption, the integrands of (SM1.3) have the following limits as

T — 00,
fi(ut, st 2t um sm 2
_ I fOT exp (ﬁ)\u,s (E?:l 2Zf(lv —utl,t —s') + yv,t)) dsdu

m(B x [0,T]) ’
f2(u1’81721)

_ n [z fOTIE [exp (6)\%5 (Vvl)t +-+ V;ft_l + 2 f(lv — ut|,t — st) +yv,t))] dsdu
m(B x [0,T)]) ’

respectively. When integrated with respect to the relevant measures we find

/ frlut st 2t s M FER (s 2, 7 2)

+1
an 0T / / eXp Au.s (V; i+ Vo + yvﬁt))] dsdu,
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which is the desired expression. To show convergence of the integrals in (SM1.3), using

1 n

Fatou’s lemma, it suffices to find integrable functions g;(u',s',z%;...;u", s, 2" x)

and go(u', s', 2';2) that are upper bounds of the integrands such that their limits

exist when z — oo and such that
/gl(ul,sl7zl;...;u",8"72";96)Ff§)"(d(u1,51,zl;...;u",s"7z"))
+/gg(u17sl,zl;x)Fl(d(ul,sl,zl))
—>/ lim gy (ut,s', 2. um, 8™, 2" ) FEM (d(ut, st 25 u™, 8™, 2™))
Tr—r0o0
+ [ Jim ol st ) Pyt )
Tr—r 00

as ¢ — oo. Using (3.7) and properties of ¥, we can choose the functions

P(Z1¢(U1a Zl) > T — y* - E?:l Z7¢(ulv 57))
: P (V) > )

1 .1 1. ..omo.no.n, _
g(u, s,z 5u" s 2 x) =1¢

and
P(S, Zi0(U°, 2%) > o -y — 2'g(ul, 1))
1l 1oy i=1 ) ) '
galulsshs2li) = e, PE(VL) > 0

From Theorem 3.1 and (3.9) we find that
m(B’ xT")

P(Z (U, S1) > z) ~ m(B % [0,1])

P(Y(V,),) > x) (SM1.4)
as ¥ — oo. The fact that the distribution of Z1¢(U*, S') is convolution equivalent and
in particular has an exponential tail implies

1 .1 1. LML N, m(BIXT/) é * - i [
gi(u s, 2. 5u" 8" 2 ’$>_>7m(Bx[O,T])eXp(c(y —i—;z <Z)(u,s))>

as & — oo. Similarly, (SM1.4) and an application of [3, Corollary 2.11] gives

92(1‘1351721;33)

mnz(BB; >[<0,TI/“)]) nexp(g(y* + 2t p(ut, sl))> (IE exp(nggﬁ(Ul, Sl)))rk1

as x — oo, and we conclude that

/lirn gr(ut, st 2t s 2 ) FEM(d(ut, s 2t a8 2))
xr—r o0
+ [t ol st 25 Fi A 51, 2)
Tr—r 00

m(B' x T") B

=B o " D exp(By/e) (Eexp(Z2t (U, sH))". (SM1.5)
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For notational convenience, we let i denote the distribution of Z'¢(U*, S?). Then,

again by [3, Corollary 2.11] and (SM1.4), (SM1.5) equals

BT (@ yte0) (@ g, o)
zli)H;O m(B x [0,T]) p((z,00)) B Ilﬁoo PO (V) >x) (SML.6)

Furthermore, we see
P(U(V,},) > x) (/ g(zh .2 ) (d(eh . 2) + /gg(z; m)u(dz))
(z—y")/2 (z—y")/2
o A e e A (GRS B}
0 0

Since, in particular, the tails of u and p*™ are exponential with index 8/¢, we see from
[2, Lemma 2] that the sum of integrals is asymptotically equivalent to p*("*+((z —

y*,00)). Returning to (SM1.6) concludes the proof. O

Before proving the theorem on the extremal behaviour of X', we need the following

lemma for a dominated convergence argument.

Lemma SM1.1. Let V1 V2 ... be ii.d. fields with distribution vy, and let (U, S, Z)

be distributed according to Fy. There exist a constant K such that
PI(V,), + -+ V),) >2) < K'"P(Zg(U, S) > x)

for allm € N and all z > 0.

Proof. By Lemma 3.1 the distribution of Z¢(U, S) is convolution equivalent, and it

follows from [3, Lemma 2.8] that there is a constant K such that
IP’(Z Zip(U, S1) > :c) < K"P(Z$(U,S) > ),
i=1

for ii.d. wvariables (U', 81, Z%), (U?,S2,2?),... with distribution F;. The result
follows directly from (3.7). O

Proof of Theorem 3.3. From (3.8) and the representation V¢ = (Z¢f(|v — U?|,t —
5%))(v,t)» We see that

E [exp(BAu,s (X, ,))] < exp (u(A) (Elexp(2Zo(U, 5)] — 1)) :

The first claim now follows from (3.10).



6 M. STEHR AND A. RONN-NIELSEN

For the limit result, we find by independence and Lemma SM1.1,
P(U(X,, + o) > @)

> (A"
—v(A) Z %]}D(\I}(Vz}’t + oV A Yt) > 1)
. _ oo v A nKTL
P(Z$(U,S) >z —y*)e " Z %

%}LK" < 00. With the convention that

where y* = SUD (1) Yot and e~V fozl
Vi 4+ -+ V7! =0 for n =1, by dominated convergence, Theorems 3.1 and 3.2

and Lemma 3.1 yield

B+ > 2
im
z—00 L(a:/c) exp( Ba:/c

= o5 7V(A)Z // (Vv +yw)} dsdu
- —V(A)Z // eﬂA (V) o+- +Vvt+yvt):| dsdu

// ﬁ,\“ v,t+y”‘t):|d5du-

This concludes the proof. O

Proof of Lemma 3.2. First we show that

2) <o (SM1.7)

'U,

Eexp(y sup X
(v,t)eB'XT’

for all v > 0. Applying arguments as in Section 2, we write X2 as the independent

sum Xg ;= Y1 + th Here Y'! is a compound Poisson sum

M
1 _ k
Yv,t - Z ‘]v,t
k=1

with finite intensity v(A° N D) < oo and jump distribution vy = vaenp/v(A° N D),
where D = {z € R* : inf(, ek 2o,y < —1}. Furthermore, Y2 is infinitely divisible
with Lévy measure vacnpe, the restriction of v to the set A°N D¢ = {z € R¥ :
SUP(y ¢)ek |2v,t| < 1}. By arguments as before, both fields have t-cadlag extensions to
B’ x T'. For each k, JF, < 0 for all (v,t) € B’ x T" almost surely, and in particular

E exp(ysup(, pnep < Yor) < 00 for all 4y > 0. As (Y?))(wnep x1 is t-cadlag on
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the compact set B’ x T', we find that P(sup(, yep w7 [Yos| < 00) = 1. Since also

vacnpe({z € R¥ . SUP(y ¢)ek |2v,t] > 1}) = 0, we obtain from [1, Lemma 2.1] that

E exp(ysup(, 1y prx7 |Yore|) < 0o for all 4 > 0, which yields the claim (SM1.7).
Appealing to properties of A, s we find that

su ’ ’ X2
)\u,s (vat) S >\u,s (X;,t 4 sup th) _ )\u,s (Xl t) + p(U,t)EB xT v,t

(wt)EB'XT' ’ c

The assertion now follows from (SM1.7) and the first claim of Theorem 3.3. O

Proof of Theorem 3.4. Let 7 be the distribution of (X2 +)(wyeB x7- Conditioning
on (X2 )ty = (Yu,t) () we find by independence that

P >0 (RO 020
v ]P)(\II(X'U,t)
with f(y; 2) = P(® (X} ;+yu,) > 2)/P(¥(X} ;) > x), which, according to Theorem 3.3,

satisfies .
S5 Jo Elexp (BAus (X34 + yo.))] dsdu

I Ji E [exp (Bhus (X2,))] dsdu

as r — oo. By another application of Theorem 3.3 and since

fly; ) = fly) =

 fy S Eexp (Bus (X)) dsdu
J(y)(dy) |
/ ! fB fo [QXP ( u,s (Xﬁt))] dsdu

the proof is completed if we can find non-negative and integrable functions g(y; x) and

9(y) = lim, o g(y; ) such that f(y;z) < g(y;z) and such that

oot - [ gwria)

as © — oo. With y* = sup(, ;e s x 17 Yv,t We use the function
9(y;2) = P(U(X, ) +y" > 2) /P(¥(X,,) > )
which, according to properties of A, s and Theorem 3.3, satisfies
9(y; x) = g(y) = exp(By”/c)

as & — oo. From [4, Lemma 2.4(i)] and Theorem 3.3 the distribution of ¥(X, ,) is

convolution equivalent with index §/c. Now let G and H denote the distributions of
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v

(X, ;) and sup, ;e prx7 Xe, respectively. If H(z) = o(G(z)), # — oo, it follows
from the integrability statement (SM1.7) and [4, Lemma 2.1] that

_ du) — P(U(X},) + SUD(y 1)e B xT" X2, >x)
g(y,l‘)ﬂ'( y) - ]P(\I,(Xlt) > SL’)

%IEeXP(é sup X3t> :/g(y)ﬂ(dy)
C (vt)eB'xT'

as x — oo. From (SM1.7) we find that lim, o ¢ P(sup, yep 7 Xoy > @) = 0 for
all ¥ > 0. Combined with the convolution equivalence of the distribution of ¥(X, ,),

this yields H(z) = o(G(z)) and the claim follows. O

SM2. Proofs of Section 5

Proof of Lemma 5.2. Let w € Q) and (s,) C S such that s, | t € [0,5]. For all
k € N there exists N € N such that

1Zs, (W) = Zsy (W)]loe <+ forall n>N. (SM2.1)

This is seen by contradiction as follows: Assume that for any N € N there exists n > N
such that
Han(w) —Zsy (W)HOO > %

Now fix p € N. By this there exist ng < n; < ng < --- < n, such that

12, () - 2.,

LG —1

(w)||oo>% for 7=1,...,p

and we conclude that Z(w) has %—oscillation p times in S for any p. Hence w € A,
which is a contradiction. From (SM2.1) and the fact that the metric space (C(K,R), || -
loo) is complete, we know that lim, . Z;, (w) exists with respect to || - || as a
continuous function on K. To show uniqueness of the limit, let (t,) C S be another
sequence such that ¢, | t. Then lim, . Zs, (w) = lim, o, Z¢, (w): Let (r,) be the
union of (s,) and (t,) ordered such that r,, | t. Then similarly for any € > 0 there is
N’ such that
1Z,,(w)—2Z,,, (W)l <§ for n>N'.

Also there is N € N such that (s,)n>n, (tn)n>~N C (7n)n>n7, and hence

125, (W) = Z1, (W)lloo < (125, (W) = Zry (Wlloo + 121, (@) = Zr ) (W)]loo <€
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for all n > N. Thus, the limit lim,eq s;¢ Zs(w) exists uniquely with respect to || - ||oo-
Similarly for limgeq stt Zs(w). O
We let
B(p,e,D) = {w € Q| Z(w) has e-oscillation p times in D},
with D C QN [0,00), and
e(r) = sup{P(| Zillow > ) | £ € [0,7] N Q).

Note that a direct consequence of the stochastic continuity from Lemma 5.1 is that

a.(r) = 0asr— 0 for all € > 0.

Lemma SM2.1. Let p be a positive integer, D = {t1,...,t,} CQN[0,00) and u,r €
Q such that 0 <u <ty <--- <t, <r. Then P(B(p,4¢, D)) < (2ac(r —u))”.
Proof. We will show the statement by induction in p. For this, define
Crh ={ll1Zt; = Zulloo <26, j=1,....k =1, ||Zy, — Zy||oo > 2¢}

Dy =A{l1Zt, — Zr|oo > €}

and note that C1,...,C, are disjoint and

(120, ~ Zu]l > 2 = | J O
1 k=1

C:=

B(1,4¢,D) C
k

(Ck N DY) U(Ch N Dy) C{IZy — Zullow = e} U | (Ch N D).
k=1

C:=

k

Il
_

By the Lévy properties in Lemma 5.1 we have P(||Z, — Z,|lc > €) < ae(r — u)
and furthermore that P(Cy N Dy) = P(Ck)P(Dy) < P(Ck)ac(r — u). The fact that

Ci,...,C, are disjoint then implies
P(B(1,4¢,D)) <P(||Z, — Zu||co > €) + Z]P’(C’k N Dy) < 2a(r — u),
k=1

which is the desired expression for p = 1. We now assume the result to be true for
arbitrary p € N. We define the sets
F, = {w: Z(w) has 4e-oscillation p times in {t1,...,tx},
but does not have 4e-oscillation p times in {t1,...,tk—1}},

Gy, = {w: Z(w) has 4e-oscillation one time in {t,... ¢, }}.
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Then Fi,..., F, are disjoint, and P(F), N Gy) = P(F))P(Gy) for all k =1,...,n due to
the Lévy properties. Also B(p,4e, D) = U}_, F}, and furthermore

B(p+1,4¢,D) = U (F. N Gy)

with the inclusion C seen as follows: If w € B(p+1, 4¢, D) then Z(w) has 4e-oscillation
p + 1 times in some {t,,,...,tn,,,} € D with ng < n; < --- < npy1. Hence there
is k < np such that w € Fi. Also [|Zy, (w) = Zy, (w)|ls > 4e and as such also
w € Gg. From the induction assumption, the case p = 1 and the fact that Fy,..., F,

are disjoint we find that

n

P(B(p+1,4¢,D)) = S P(Gr)P(Fi) < 20 (r — ) (U Fk)
k=1

= 2a.(r — u)P(B(p,4e, M)) < (2a(r — u))p+1 .
O

Proof of Lemma 5.3. To show that P(Q]) = 1 it suffices to prove P(Af{) = 0 for any
fixed k € N. Since ae(r) — 0 as r | 0 for any € > 0, we can choose ¢ € N such that

2011 /(41) (S/f) < 1. Then by continuity of P we get

P(Af) < P(Z has L-oscillation infinitely often in S)

‘
< Z (Z has 1-oscillation infinitely often in [77 % SINQ)
J=1
¢
_ 37 l
_ZpgrgoP(B(p’k’[ ¢ ' 4 ]QQ))
j=1
Now fix j =1,...,¢, and enumerate the elements of [%S, %S] NQ by (tm)men. From

Lemma SM2.1 we know that
P(B(p, 5 {t1, - ta})) < (200)0an) (7))
for any n € N. By continuity of P we see that
B(B(p. }.[5525.45) 0 Q) = lim B(B(p. b {. ... ta}) < 2o jan) (5))7

which tends to 0 as p — oo since £ is chosen such that 20 /() (S/€) < 1. As this holds
for all j =1,...,¢ we conclude that P(A{) = 0. O
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