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SM1. Proofs of Section 3

Proof of Lemma 3.1. For sufficiently large x we find that

P(Zφ(U, S) > x) =
1

ν(A)
F
({

(u, s, z) ∈ Rd × R× R+ : zφ(u, s) > x
})

=
1

ν(A)

∫
B′×T ′

L
(x
c

)
exp
(
−β x

c

)
m(du,ds)

+
1

ν(A)

∫
(B′×T ′)c

L
( x

φ(u, s)

)
exp
(
−β x

φ(u, s)

)
m(du,ds),

where the first term equals L(x/c) exp(−βx/c) times the desired limit. The result

follows when the latter integral is shown to be of order o(L(x/c) exp(−βx/c)), as

x→∞. Let h(u, s;x) denote the integrand. For all (u, s) 6∈ B′×T ′ we have φ(u, s) < c.

Combined with (2.4), this implies the existence of γ > 0 and C > 0 such that

h(u, s;x)

L(x/c) exp(−βx/c)
≤ C exp(−γx)

for sufficiently large x. Thus, the integrand h(u, s;x) is o(L(x/c) exp(−βx/c)) at

infinity. By dominated convergence, the integral is of order o(L(x/c) exp(−βx/c))

if we can find an integrable function g : Rd × R→ R such that

h(u, s;x)

L(x/c) exp(−βx/c)
≤ g(u, s)
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for all (u, s) ∈ Rd × R. Returning to (2.5) we see that for all 0 < γ < β/c there is

C > 0 and x0 such that

h(u, s;x)

L(x/c) exp(−βx/c)
≤ C exp

(
−x0(β − γc)

( 1

φ(u, s)
− 1

c

))
(SM1.1)

for all x ≥ x0. Independent of (u, s) we can find a finite constant C̃ such that the right

hand side of (SM1.1) is bounded by C̃φ(u, s), which is integrable by assumption. This

shows the desired order of convergence.

From [4, Lemma 2.4(i)] the distribution of Zφ(U, S) is convolution equivalent with

index β/c. The integrability result follows from [4, Corollary 2.1(ii)]. �

Corollary SM1.1. If V 1, V 2, . . . are i.i.d. fields with distribution ν1, then

E
[
exp
(
β sup
u∈B

sup
s∈[0,T ]

λu,s
(
(V 1
v,t + · · ·+ V nv,t)(v,t)

))]
<∞

for all n ∈ N.

Proof. Because each V i can be represented by (Zif(|v −U i|, t− Si)(v,t)∈B′×T ′ , the

result follows from (3.8) and (3.10). �

Proof of Theorem 3.2. We will show the claim by induction over n: We note that

the case n = 1 follows easily from Theorem 3.1. Now assume that the result holds

true for some n ∈ N and let for convenience V ∗n = V 1 + · · · + V n. Also, let y∗ =

sup(v,t)∈B′×T ′ yv,t. Using (3.7) and the representation V i = Zif(|v − U i|, t − Si), we

find

P(Ψ(V ∗nv,t + V n+1
v,t + yv,t) > x)

≤ P
( n∑
i=1

Ziφ(U i, Si) >
x− y∗

2
, Zn+1φ(Un+1, Sn+1) >

x− y∗

2
,

Ψ(V ∗nv,t + V n+1
v,t + yv,t) > x

)
+ P

( n∑
i=1

Ziφ(U i, Si) ≤ x− y∗

2
,Ψ(V ∗nv,t + V n+1

v,t + yv,t) > x
)

+ P
(
Zn+1φ(Un+1, Sn+1) ≤ x− y∗

2
,Ψ(V ∗nv,t + V n+1

v,t + yv,t) > x
)
. (SM1.2)

The first term in (SM1.2) is bounded from above by

P
( n∑
i=1

Ziφ(U i, Si) >
x− y∗

2

)
P
(
Zn+1φ(Un+1, Sn+1) >

x− y∗

2

)
.
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In Lemma 3.1 we showed that the distribution of Ziφ(U i, Si) is convolution equivalent

with index β/c, and hence, from [3, Corollary 2.11] and (3.9), both factors are asymp-

totically equivalent to ρ1((x/(2c),∞)) as x→∞. Following the proof of [2, Lemma 2]

we see that the product is o((ρ1 ∗ ρ1)((x/c,∞))), and as such the first term in (SM1.2)

is o(ρ1((x/c,∞))) due to the convolution equivalence of ρ1. By Theorem 3.1 it is of

order o(P(Ψ(V 1
v,t) > x)) as x→∞.

By independence, the two remaining terms in (SM1.2) divided by P(Ψ(V 1
v,t) > x)

are ∫
Cx

P(Ψ(
∑n
i=1 z

if(|v − ui|, t− si) + V n+1
v,t + yv,t) > x)

P(Ψ(V 1
v,t) > x)

× F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
C̃x

P(Ψ(V ∗nv,t + z1f(|v − u1|, t− s1) + yv,t) > x)

P(Ψ(V 1
v,t) > x)

F1(d(u1, s1, z1)),

(SM1.3)

where F⊗n1 is the n-fold product measure of F1 and

Cx =
{

(u1, s1, z1; . . . ;un, sn, zn) :

n∑
i=1

ziφ(ui, si) ≤ x− y∗

2

}
,

C̃x =
{

(u1, s1, z1) : z1φ(u1, s1) ≤ x− y∗

2

}
.

Above we used the representation V i = Zif(|v − U i|, t − Si) again. By Theorem 3.1

and the induction assumption, the integrands of (SM1.3) have the following limits as

x→∞,

f1(u1, s1, z1; . . . ;un, sn, zn)

=

∫
B

∫ T
0

exp
(
βλu,s

(∑n
i=1 z

if(|v − ui|, t− si) + yv,t
))

dsdu

m(B × [0, T ])
,

f2(u1, s1, z1)

=
n
∫
B

∫ T
0
E
[
exp

(
βλu,s

(
V 1
v,t + · · ·+ V n−1v,t + z1f(|v − u1|, t− s1) + yv,t

))]
dsdu

m(B × [0, T ])
,

respectively. When integrated with respect to the relevant measures we find∫
f1(u1, s1, z1; . . . ;un, sn, zn)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
f2(u1, s1, z1)F1(d(u1, s1, z1))

=
n+ 1

m(B × [0, T ])

∫
B

∫ T

0

E
[
exp

(
βλu,s

(
V 1
v,t + · · ·+ V nv,t + yv,t

))]
dsdu,
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which is the desired expression. To show convergence of the integrals in (SM1.3), using

Fatou’s lemma, it suffices to find integrable functions g1(u1, s1, z1; . . . ;un, sn, zn;x)

and g2(u1, s1, z1;x) that are upper bounds of the integrands such that their limits

exist when x→∞ and such that∫
g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
g2(u1, s1, z1;x)F1(d(u1, s1, z1))

→
∫

lim
x→∞

g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
lim
x→∞

g2(u1, s1, z1;x)F1(d(u1, s1, z1))

as x→∞. Using (3.7) and properties of Ψ, we can choose the functions

g1(u1, s1, z1; . . . ;un, sn, zn;x) = 1Cx

P(Z1φ(U1, Z1) > x− y∗ −
∑n
i=1 z

iφ(ui, si))

P(Ψ(V 1
v,t) > x)

and

g2(u1, s1, z1;x) = 1C̃x

P(
∑n
i=1 Z

iφ(U i, Zi) > x− y∗ − z1φ(u1, s1))

P(Ψ(V 1
v,t) > x)

.

From Theorem 3.1 and (3.9) we find that

P(Z1φ(U1, S1) > x) ∼ m(B′ × T ′)
m(B × [0, T ])

P(Ψ(V 1
v,t) > x) (SM1.4)

as x→∞. The fact that the distribution of Z1φ(U1, S1) is convolution equivalent and

in particular has an exponential tail implies

g1(u1, s1, z1; . . . ;un, sn, zn;x)→ m(B′ × T ′)
m(B × [0, T ])

exp
(β
c

(
y∗ +

n∑
i=1

ziφ(ui, si)
))

as x→∞. Similarly, (SM1.4) and an application of [3, Corollary 2.11] gives

g2(u1, s1, z1;x)

→ m(B′ × T ′)
m(B × [0, T ])

n exp
(β
c

(y∗ + z1φ(u1, s1))
)(

E exp
(β
c
Z1φ(U1, S1)

))n−1
as x→∞, and we conclude that∫

lim
x→∞

g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
lim
x→∞

g2(u1, s1, z1;x)F1(d(u1, s1, z1))

=
m(B′ × T ′)
m(B × [0, T ])

(n+ 1) exp(βy∗/c)
(
E exp

(β
c
Z1φ(U1, S1)

))n
. (SM1.5)
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For notational convenience, we let µ denote the distribution of Ziφ(U i, Si). Then,

again by [3, Corollary 2.11] and (SM1.4), (SM1.5) equals

lim
x→∞

m(B′ × T ′)
m(B × [0, T ])

µ∗(n+1)((x− y∗,∞))

µ((x,∞))
= lim
x→∞

µ∗(n+1)((x− y∗,∞))

P(Ψ(V 1
v,t) > x)

. (SM1.6)

Furthermore, we see

P(Ψ(V 1
v,t) > x)

(∫
g1(z1; . . . ; zn;x)µ⊗n(d(z1; . . . ; zn)) +

∫
g2(z;x)µ(dz)

)
=

∫ (x−y∗)/2

0

µ((x− y∗ − z,∞))µ∗n(dz) +

∫ (x−y∗)/2

0

µ∗n((x− y∗ − z,∞))µ(dz).

Since, in particular, the tails of µ and µ∗n are exponential with index β/c, we see from

[2, Lemma 2] that the sum of integrals is asymptotically equivalent to µ∗(n+1)((x −

y∗,∞)). Returning to (SM1.6) concludes the proof. �

Before proving the theorem on the extremal behaviour of X1, we need the following

lemma for a dominated convergence argument.

Lemma SM1.1. Let V 1, V 2, . . . be i.i.d. fields with distribution ν1, and let (U, S, Z)

be distributed according to F1. There exist a constant K such that

P(Ψ(V 1
v,t + · · ·+ V nv,t) > x) ≤ KnP(Zφ(U, S) > x)

for all n ∈ N and all x ≥ 0.

Proof. By Lemma 3.1 the distribution of Zφ(U, S) is convolution equivalent, and it

follows from [3, Lemma 2.8] that there is a constant K such that

P
( n∑
i=1

Ziφ(U i, Si) > x
)
≤ KnP(Zφ(U, S) > x),

for i.i.d. variables (U1, S1, Z1), (U2, S2, Z2), . . . with distribution F1. The result

follows directly from (3.7). �

Proof of Theorem 3.3. From (3.8) and the representation V i = (Zif(|v − U i|, t −

Si))(v,t), we see that

E
[
exp
(
βλu,s

(
X1
v,t

))]
≤ exp

(
ν(A)

(
E[exp(βcZφ(U, S)]− 1

))
.

The first claim now follows from (3.10).
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For the limit result, we find by independence and Lemma SM1.1,

P(Ψ(X1
v,t + yv,t) > x)

= e−ν(A)
∞∑
n=1

ν(A)n

n!
P(Ψ(V 1

v,t + · · ·+ V nv,t + yv,t) > x)

≤ P(Zφ(U, S) > x− y∗)e−ν(A)
∞∑
n=1

ν(A)nKn

n!
,

where y∗ = sup(v,t) yv,t and e−ν(A)
∑∞
n=1

ν(A)nKn

n! < ∞. With the convention that

V 1
v,t + · · · + V n−1v,t = 0 for n = 1, by dominated convergence, Theorems 3.1 and 3.2

and Lemma 3.1 yield

lim
x→∞

P(Ψ(X1
v,t + yv,t) > x)

L(x/c) exp(−βx/c)

=
n

ν(A)
e−ν(A)

∞∑
n=1

ν(A)n

n!

∫
B

∫ T

0

E
[
eβλu,s(V 1

v,t+···+V
n−1
v,t +yv,t)

]
dsdu

= e−ν(A)
∞∑
n=0

ν(A)n

n!

∫
B

∫ T

0

E
[
eβλu,s(V 1

v,t+···+V
n
v,t+yv,t)

]
dsdu

=

∫
B

∫ T

0

E
[
eβλu,s(X1

v,t+yv,t)
]

dsdu.

This concludes the proof. �

Proof of Lemma 3.2. First we show that

E exp(γ sup
(v,t)∈B′×T ′

X2
v,t) <∞ (SM1.7)

for all γ > 0. Applying arguments as in Section 2, we write X2 as the independent

sum X2
v,t = Y 1

v,t + Y 2
v,t. Here Y 1 is a compound Poisson sum

Y 1
v,t =

M∑
k=1

Jkv,t

with finite intensity ν(Ac ∩ D) < ∞ and jump distribution ν2 = νAc∩D/ν(Ac ∩ D),

where D = {z ∈ RK : inf(v,t)∈K zv,t < −1}. Furthermore, Y 2 is infinitely divisible

with Lévy measure νAc∩Dc , the restriction of ν to the set Ac ∩ Dc = {z ∈ RK :

sup(v,t)∈K |zv,t| ≤ 1}. By arguments as before, both fields have t-càdlàg extensions to

B′ × T ′. For each k, Jkv,t ≤ 0 for all (v, t) ∈ B′ × T ′ almost surely, and in particular

E exp(γ sup(v,t)∈B′×T ′ Y
1
v,t) < ∞ for all γ > 0. As (Y 2

v,t)(v,t)∈B′×T ′ is t-càdlàg on
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the compact set B′ × T ′, we find that P(sup(v,t)∈B′×T ′ |Y 2
v,t| < ∞) = 1. Since also

νAc∩Dc({z ∈ RK : sup(v,t)∈K |zv,t| > 1}) = 0, we obtain from [1, Lemma 2.1] that

E exp(γ sup(v,t)∈B′×T ′ |Y 2
v,t|) <∞ for all γ > 0, which yields the claim (SM1.7).

Appealing to properties of λu,s we find that

λu,s (Xv,t) ≤ λu,s
(
X1
v,t + sup

(v,t)∈B′×T ′
X2
v,t

)
= λu,s

(
X1
v,t

)
+

sup(v,t)∈B′×T ′ X
2
v,t

c
.

The assertion now follows from (SM1.7) and the first claim of Theorem 3.3. �

Proof of Theorem 3.4. Let π be the distribution of (X2
v,t)(v,t)∈B′×T ′ . Conditioning

on (X2
v,t)(v,t) = (yv,t)(v,t) we find by independence that

P(Ψ(Xv,t) > x)

P(Ψ(X1
v,t) > x)

=

∫ P(Ψ(X1
v,t + yv,t) > x)

P(Ψ(X1
v,t) > x)

π(dy) =

∫
f(y;x)π(dy)

with f(y;x) = P(Ψ(X1
v,t+yv,t) > x)/P(Ψ(X1

v,t) > x), which, according to Theorem 3.3,

satisfies

f(y;x)→ f(y) =

∫
B

∫ T
0
E
[
exp

(
βλu,s

(
X1
v,t + yv,t

))]
dsdu∫

B

∫ T
0
E
[
exp

(
βλu,s

(
X1
v,t

))]
dsdu

as x→∞. By another application of Theorem 3.3 and since∫
f(y)π(dy) =

∫
B

∫ T
0
E [exp (βλu,s (Xv,t))] dsdu∫

B

∫ T
0
E
[
exp

(
βλu,s

(
X1
v,t

))]
dsdu

,

the proof is completed if we can find non-negative and integrable functions g(y;x) and

g(y) = limx→∞ g(y;x) such that f(y;x) ≤ g(y;x) and such that∫
g(y;x)π(dy)→

∫
g(y)π(dy)

as x→∞. With y∗ = sup(v,t)∈B′×T ′ yv,t we use the function

g(y;x) = P(Ψ(X1
v,t) + y∗ > x)/P(Ψ(X1

v,t) > x)

which, according to properties of λu,s and Theorem 3.3, satisfies

g(y;x)→ g(y) = exp(βy∗/c)

as x → ∞. From [4, Lemma 2.4(i)] and Theorem 3.3 the distribution of Ψ(X1
v,t) is

convolution equivalent with index β/c. Now let G and H denote the distributions of



8 M. STEHR AND A. RØNN-NIELSEN

Ψ(X1
v,t) and sup(v,t)∈B′×T ′ X

2
v,t, respectively. If H(x) = o(G(x)), x → ∞, it follows

from the integrability statement (SM1.7) and [4, Lemma 2.1] that∫
g(y;x)π(dy) =

P(Ψ(X1
v,t) + sup(v,t)∈B′×T ′ X

2
v,t > x)

P(Ψ(X1
v,t) > x)

→ E exp
(β
c

sup
(v,t)∈B′×T ′

X2
v,t

)
=

∫
g(y)π(dy)

as x → ∞. From (SM1.7) we find that limx→∞ eγxP(sup(v,t)∈B′×T ′ X
2
v,t > x) = 0 for

all γ > 0. Combined with the convolution equivalence of the distribution of Ψ(X1
v,t),

this yields H(x) = o(G(x)) and the claim follows. �

SM2. Proofs of Section 5

Proof of Lemma 5.2. Let ω ∈ Ω′1 and (sn) ⊂ S̃ such that sn ↓ t ∈ [0, S]. For all

k ∈ N there exists N ∈ N such that

‖Zsn(ω)−ZsN (ω)‖∞ ≤ 1
k for all n ≥ N. (SM2.1)

This is seen by contradiction as follows: Assume that for any N ∈ N there exists n ≥ N

such that

‖Zsn(ω)−ZsN (ω)‖∞ > 1
k .

Now fix p ∈ N. By this there exist n0 < n1 < n2 < · · · < np such that

‖Zsnj
(ω)−Zsnj−1

(ω)‖∞ > 1
k for j = 1, . . . , p

and we conclude that Z(ω) has 1
k -oscillation p times in S̃ for any p. Hence ω ∈ Ack,

which is a contradiction. From (SM2.1) and the fact that the metric space (C(K,R), ‖ ·

‖∞) is complete, we know that limn→∞Zsn(ω) exists with respect to ‖ · ‖∞ as a

continuous function on K. To show uniqueness of the limit, let (tn) ⊂ S̃ be another

sequence such that tn ↓ t. Then limn→∞Zsn(ω) = limn→∞Ztn(ω): Let (rn) be the

union of (sn) and (tn) ordered such that rn ↓ t. Then similarly for any ε > 0 there is

N ′ such that

‖Zrn(ω)−ZrN′ (ω)‖∞ < ε
2 for n ≥ N ′.

Also there is N ∈ N such that (sn)n≥N , (tn)n≥N ⊆ (rn)n≥N ′ , and hence

‖Zsn(ω)−Ztn(ω)‖∞ ≤ ‖Zsn(ω)−ZrN′ (ω)‖∞ + ‖Ztn(ω)−ZrN′ (ω)‖∞ < ε
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for all n ≥ N . Thus, the limit lims∈Q,s↓tZs(ω) exists uniquely with respect to ‖ · ‖∞.

Similarly for lims∈Q,s↑tZs(ω). �

We let

B(p, ε,D) = {ω ∈ Ω | Z(ω) has ε-oscillation p times in D},

with D ⊆ Q ∩ [0,∞), and

αε(r) = sup{P(‖Zt‖∞ ≥ ε) | t ∈ [0, r] ∩Q}.

Note that a direct consequence of the stochastic continuity from Lemma 5.1 is that

αε(r)→ 0 as r → 0 for all ε > 0.

Lemma SM2.1. Let p be a positive integer, D = {t1, . . . , tn} ⊆ Q∩ [0,∞) and u, r ∈

Q such that 0 ≤ u ≤ t1 < · · · < tn ≤ r. Then P(B(p, 4ε,D)) ≤ (2αε(r − u))
p
.

Proof. We will show the statement by induction in p. For this, define

Ck = {‖Ztj −Zu‖∞ ≤ 2ε, j = 1, . . . , k − 1, ‖Ztk −Zu‖∞ > 2ε} ,

Dk = {‖Ztk −Zr‖∞ > ε}

and note that C1, . . . , Cn are disjoint and

B(1, 4ε,D) ⊆
n⋃
k=1

{‖Ztk −Zu‖∞ > 2ε} =

n⋃
k=1

Ck

=

n⋃
k=1

(Ck ∩Dc
k) ∪ (Ck ∩Dk) ⊆ {‖Zr −Zu‖∞ ≥ ε} ∪

n⋃
k=1

(Ck ∩Dk).

By the Lévy properties in Lemma 5.1 we have P(‖Zr − Zu‖∞ ≥ ε) ≤ αε(r − u)

and furthermore that P(Ck ∩ Dk) = P(Ck)P(Dk) ≤ P(Ck)αε(r − u). The fact that

C1, . . . , Cn are disjoint then implies

P(B(1, 4ε,D)) ≤ P(‖Zr −Zu‖∞ ≥ ε) +

n∑
k=1

P(Ck ∩Dk) ≤ 2αε(r − u),

which is the desired expression for p = 1. We now assume the result to be true for

arbitrary p ∈ N. We define the sets

Fk = {ω : Z(ω) has 4ε-oscillation p times in {t1, . . . , tk},

but does not have 4ε-oscillation p times in {t1, . . . , tk−1}} ,

Gk = {ω : Z(ω) has 4ε-oscillation one time in {tk, . . . , tn}}.
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Then F1, . . . , Fn are disjoint, and P(Fk ∩Gk) = P(Fk)P(Gk) for all k = 1, . . . , n due to

the Lévy properties. Also B(p, 4ε,D) = ∪nk=1Fk, and furthermore

B(p+ 1, 4ε,D) =

n⋃
k=1

(Fk ∩Gk)

with the inclusion ⊆ seen as follows: If ω ∈ B(p+1, 4ε,D) then Z(ω) has 4ε-oscillation

p + 1 times in some {tn0
, . . . , tnp+1

} ⊆ D with n0 < n1 < · · · < np+1. Hence there

is k ≤ np such that ω ∈ Fk. Also ‖Ztnp+1
(ω) − Ztnp

(ω)‖∞ > 4ε and as such also

ω ∈ Gk. From the induction assumption, the case p = 1 and the fact that F1, . . . , Fn

are disjoint we find that

P(B(p+ 1, 4ε,D)) =

n∑
k=1

P(Gk)P(Fk) ≤ 2αε(r − u)P
( n⋃
k=1

Fk

)
= 2αε(r − u)P(B(p, 4ε,M)) ≤ (2αε(r − u))

p+1
.

�

Proof of Lemma 5.3. To show that P(Ω′1) = 1 it suffices to prove P(Ack) = 0 for any

fixed k ∈ N. Since αε(r) → 0 as r ↓ 0 for any ε > 0, we can choose ` ∈ N such that

2α1/(4k)(S/`) < 1. Then by continuity of P we get

P(Ack) ≤ P(Z has 1
k -oscillation infinitely often in S̃)

≤
∑̀
j=1

P(Z has 1
k -oscillation infinitely often in [ j−1` S, j`S] ∩Q)

=
∑̀
j=1

lim
p→∞

P(B(p, 1k , [
j−1
` S, j`S] ∩Q)).

Now fix j = 1, . . . , `, and enumerate the elements of [ j−1` S, j`S]∩Q by (tm)m∈N. From

Lemma SM2.1 we know that

P(B(p, 1k , {t1, . . . , tn})) ≤ (2α1/(4k)(
S
` ))p

for any n ∈ N. By continuity of P we see that

P(B(p, 1k , [
j−1
` S, j`S] ∩Q)) = lim

n→∞
P(B(p, 1k , {t1, . . . , tn})) ≤ (2α1/(4k)(

S
` ))p

which tends to 0 as p→∞ since ` is chosen such that 2α1/(4k)(S/`) < 1. As this holds

for all j = 1, . . . , ` we conclude that P(Ack) = 0. �
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