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SUPPLEMENTARY MATERIAL: BOUNDS FOR THE CHI-SQUARE
APPROXIMATION OF THE POWER DIVERGENCE FAMILY OF
STATISTICS

ROBERT E. GAUNT," The University of Manchester

Proof of Lemma 3.6. (i) Without loss of generality, we let a = 1; the general

a > 0 case follows by rescaling. We therefore need to prove that, for = > 0,
[f(2)] < |z =1, (1)
where
f(z) :=2zlog(z) — 2(x — 1) — (z — 1)%

It is readily checked that inequality (1) holds forz = 0and z = 2. For 0 < z < 2

(that is |x — 1| < 1), we can use a Taylor expansion to obtain the bound

= 2|z -1 <2z —1PYy =z -1
@l =2l 17| 3 | <2 "> ey =l

so inequality (1) is satisfied for 0 < x < 2. Now, suppose x > 2. We have that
f(z) = 2log(z) — 2(z — 1) and L ((z —1)%) = 3(z — 1)2. By the inequality
log(u) <wu—1, for u > 1, we get that

|f'(2)] = [21og(z) — 2(x — 1)| = 2(z — 1) — 2log(z) < (x —1)* < 3(z — 1),

where the final inequality holds because = > 2. Therefore, for z > 2, (z — 1)3
grows faster than |f(x)|. Since |f(2)| = (2 —1)3 = 1, it follows that inequality
(1) holds for all x > 2. We have now shown that inequality (1) is satisfied for
all x > 0, as required.
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(ii) Again, without loss of generality, we may set a = 1. We therefore need to
prove that, for x > 0,

(A= DAA+1)
6

lga(z)] < (1+22) |z = 1P, (2)

where

AA+1)

ga@) == 21— (A D — 1) - (1), (3)

A1 about & = 1 we have that

A=DAXA+1)
6

By a Taylor expansion of x

gr(x) = & @ - 1), (4)

where £ > 0 is between 1 and z. Now, as ¢ is between 1 and x and because

A > 2, we have that
7% < (max{L,a})} 2 < 142272

and applying this inequality to (4) gives us (2), as required.

(iii) Suppose now that A € (—1,2) \ {0}. Without loss of generality, we set

a =1, and it therefore suffices to prove that, for x > 0,

(A= DA
2

lga(@)] < o — 1. (5)

We shall verify inequality (5) by treating the cases 0 < z < 2 and x > 2
separately (it is readily checked that the inequality holds at = 0). For 0 <

x < 2 (that is |z — 1| < 1) we can use a Taylor expansion to write

gr(z) = (z — 1)°Gi(),

where -
A+1 &
G = -1
0= (4 1,) @1
k=0
and the generalised binomial coefficient is given by (;) =la(a—1)(a—2) - (a—
j+1)]/4!, for a > 0 and j € N. We now observe that, since A < 2, the generalised

A+1

i +3) are either positive for all even £ > 0 and negative

binomial coefficients (

for all odd k& > 1, or are negative for all even k > 0 and positive for all odd
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k > 1 (or, exceptionally always equal to zero if A\ = 1, which is a trivial case
in which gy(x) = 0 for all x > 0). Hence, for 0 < x < 2, G)(z) is bounded
above by |Gx(0)|, and a short calculation using the expression (3) (note that
Ga(7) = gx(x)/(x —1)3) shows that G(0) = [(A—1)A|/2. Thus, for 0 < z < 2,
we have the bound

on(a) < A

Suppose now that > 2. Recall from (4) that

() = A AOH Dorsy e

where £ > 0 is between 1 and z. In fact, because we are considering the case
x > 2, we know that & > 1. Therefore, since A < 2, we have that £}2 < 1.
Therefore, for x > 2,

(A= DAA+1)]

o — 1P <
6

|.’L’* 1|3a

n(2)] = e

where the second inequality follows because A € (—1,2) \ {0}. We have thus
proved inequality (5), which completes the proof of the lemma. O



