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APPROXIMATION OF THE POWER DIVERGENCE FAMILY OF

STATISTICS

ROBERT E. GAUNT,∗ The University of Manchester

Proof of Lemma 3.6. (i) Without loss of generality, we let a = 1; the general

a > 0 case follows by rescaling. We therefore need to prove that, for x ≥ 0,

|f(x)| ≤ |x− 1|3, (1)

where

f(x) := 2x log(x)− 2(x− 1)− (x− 1)2.

It is readily checked that inequality (1) holds for x = 0 and x = 2. For 0 < x < 2

(that is |x− 1| < 1), we can use a Taylor expansion to obtain the bound

|f(x)| = 2|x− 1|3
∣∣∣∣ ∞∑
k=0

(−1)k(x− 1)k

(k + 2)(k + 3)

∣∣∣∣ ≤ 2|x− 1|3
∞∑
k=0

1

(k + 2)(k + 3)
= |x− 1|3,

so inequality (1) is satisfied for 0 < x < 2. Now, suppose x > 2. We have that

f ′(x) = 2 log(x) − 2(x − 1) and d
dx

(
(x − 1)3

)
= 3(x − 1)2. By the inequality

log(u) ≤ u− 1, for u ≥ 1, we get that

|f ′(x)| = |2 log(x)− 2(x− 1)| = 2(x− 1)− 2 log(x) ≤ (x− 1)2 ≤ 3(x− 1)2,

where the final inequality holds because x > 2. Therefore, for x > 2, (x − 1)3

grows faster than |f(x)|. Since |f(2)| = (2− 1)3 = 1, it follows that inequality

(1) holds for all x > 2. We have now shown that inequality (1) is satisfied for

all x ≥ 0, as required.

Received 10 August 2021; revision received 23 December 2021.
∗ Postal address: Department of Mathematics, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK. Email: robert.gaunt@manchester.ac.uk

1



2 R. E. GAUNT

(ii) Again, without loss of generality, we may set a = 1. We therefore need to

prove that, for x ≥ 0,

|gλ(x)| ≤ (λ− 1)λ(λ+ 1)

6

(
1 + xλ−2

)
|x− 1|3, (2)

where

gλ(x) := xλ+1 − 1− (λ+ 1)(x− 1)− λ(λ+ 1)

2
(x− 1)2. (3)

By a Taylor expansion of xλ+1 about x = 1 we have that

gλ(x) =
(λ− 1)λ(λ+ 1)

6
ξλ−2(x− 1)3, (4)

where ξ > 0 is between 1 and x. Now, as ξ is between 1 and x and because

λ ≥ 2, we have that

ξλ−2 ≤ (max{1, x})λ−2 ≤ 1 + xλ−2,

and applying this inequality to (4) gives us (2), as required.

(iii) Suppose now that λ ∈ (−1, 2) \ {0}. Without loss of generality, we set

a = 1, and it therefore suffices to prove that, for x ≥ 0,

|gλ(x)| ≤ |(λ− 1)λ|
2

|x− 1|3. (5)

We shall verify inequality (5) by treating the cases 0 < x ≤ 2 and x ≥ 2

separately (it is readily checked that the inequality holds at x = 0). For 0 <

x < 2 (that is |x− 1| < 1) we can use a Taylor expansion to write

gλ(x) = (x− 1)3Gλ(x),

where

Gλ(x) =

∞∑
k=0

(
λ+ 1

k + 3

)
(x− 1)k,

and the generalised binomial coefficient is given by
(
a
j

)
= [a(a−1)(a−2) · · · (a−

j+1)]/j!, for a > 0 and j ∈ N. We now observe that, since λ < 2, the generalised

binomial coefficients
(
λ+1
k+3

)
are either positive for all even k ≥ 0 and negative

for all odd k ≥ 1, or are negative for all even k ≥ 0 and positive for all odd
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k ≥ 1 (or, exceptionally always equal to zero if λ = 1, which is a trivial case

in which gλ(x) = 0 for all x ≥ 0). Hence, for 0 < x < 2, Gλ(x) is bounded

above by |Gλ(0)|, and a short calculation using the expression (3) (note that

Gλ(x) = gλ(x)/(x−1)3) shows that Gλ(0) = |(λ−1)λ|/2. Thus, for 0 ≤ x < 2,

we have the bound

|gλ(x)| ≤ |(λ− 1)λ|
2

|x− 1|3.

Suppose now that x ≥ 2. Recall from (4) that

gλ(x) =
(λ− 1)λ(λ+ 1)

6
ξλ−2(x− 1)3,

where ξ > 0 is between 1 and x. In fact, because we are considering the case

x ≥ 2, we know that ξ > 1. Therefore, since λ < 2, we have that ξλ−2 < 1.

Therefore, for x ≥ 2,

|gλ(x)| = |(λ− 1)λ(λ+ 1)|
6

|x− 1|3 ≤ |(λ− 1)λ|
2

|x− 1|3,

where the second inequality follows because λ ∈ (−1, 2) \ {0}. We have thus

proved inequality (5), which completes the proof of the lemma. �


