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1. Recall on important notation
For y > 0, we denote T'(y) = U(e¥) and, for ¢t < z*, we define the functions

T+T~ (1)) ~t _ v

@ v v>0
-1 _
pt<y) = T(y+7;(t)(t)) L - y7 7 = 0 bl
Ty+T ') —a" =y 's(t) _ 11
s(t) ‘ 5y IS 0

with s(t) = (1 — F(£))/f(t), and

) = Il +yepi(y)], 7 #0

Pe(y), 7=0
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Finally, for z € R, v € R, p < 0, we set

fow evs f; eP?dzds, v>0
L p(z) =
— [ e [ errdzds, v <0

x

2. Proof of Lemma 4.1

By Lemma 5 in [3], for all € > 0 there exists xg such that, for all ¢t € (g, 2*) and

y >0,
e Ipe(y) < (1+e)|A(e” D)L, ,(y)e” 7.
Moreover, for a positive constant 1,
[%p(y)ef(W*S)y < 9,2,
Combining these two inequalities, we deduce that
e piy)] < (L+ AT, (1)

As a consequence, for any a > 0 there exists a constant 2 such that

sup e pu(y)] < Dol AT )R (2)
ye(0,—aln |A(eTH®)])
Therefore, choosing e sufficiently small, e=7"¥|p;(y)| converges to zero uniformly over
the interval (0, —aIn|A(eT ®)]) as t — z*.
It now follows that, if y € (0, —aln |A(6T_1(t))|) and ¢t > z; for a sufficiently large

value z1 < z*, when v # 0 a first-order Taylor expansion of the logarithm at 1 yields

() = | L —2e iy
v 1+ 9(t,y)ve pe(y)

< Dal A",
where ¥(t,y) € (0,1) and ¥4 is a positive constant, while when v = 0 it holds that

g (y)| = €Ye " |p(y)
< 195|A(6T71(t))|e26y’
where ¢35 is a positive constant. The result in the statement is a direct consequence of

the last two inequalities.
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3. Proof of Lemma 4.2

Ifvy#£0

y+T 1 ()

exp{ :T—l(t) AEL“) du}

() —
el = ey
while if v =0
VT ()
Au
1+ q;(y) = exp /Tdm %du

Therefore, if y € (0, —aln |A(eTﬁl(t))|) and t > x5 for a sufficiently large value x5 < x*,

using the bounds in formulas (1)—(2) and choosing a suitably small ¢ we deduce
VT ()
exp { oT—1(t) Aiu)du}
— L=y # 0)lyle™¥|pi(y)]
1

T (1)
<exp {y|A(e )‘} 1 — wy |A(eT () |e2ev

< exp {wg\A(eTﬂ(t)ﬂe%y} ,

1+ q(y) <

for positive constants w;, ¢ = 1,2. Similarly,
y+T ()
exp{ :;—M) Aiu)du}
1410y # Oyl pe(y)]
1

—1
> ®
= exp{ y|A( )‘} 1 +W3|A(€T71(t)>|€26y

> exp { —wil AT O)e2v ]

L+q(y) >

for positive constants w;, i = 3,4. The result now follows.

4. Proof of Lemma 4.3

Let vg > 0 satisfy U(vg) # 0 and U’ (vg) # 0. Then, for v > v it holds that

nU() = S -
LUl U0,
= U ) /vo vU’(v)dT 1.
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Moreover, by definition of A, we have the identity

v U'(r) 1 U'(zv)
dr —1= dz—1
TS oUW V/W U'(v)

_ /1/ 2! {exp {/1 A(Zu)du} - 1] dz - (2)".

Therefore, denoting by Ro(v) the first term on the right-hand side and setting

m= Ll (2

we have n(U(v)) = R1(v) + R2(v). On one hand, the function Rq(v) is regularly
varying of order —v. On the other hand, for any 5 € (0, 1), the function Rs(v) can be

decomposed as follows

o—(=5)

1 lA
/ +/ 11 [exp{—/ (Uu)du} — 1} dz
vo /v v—(1=8) z U

=: RQJ(U) =+ R272(U).

RQ(U)

Assuming that A is ultimately positive and selecting vy suitably large, we have

o= (1=8)

Ry (v)] < // 21 {1 ~ exp {—A(;’Z)H dz

— O(U*V(lfﬁ))

and
1

Ran(v)] < /

yz7 7L [1 — zA(“ﬂ)} dz
v=(1=6)

= 0w 1A v AWPY).
Consequently, there exists a regularly varying function R of index o = v(8 — 1) V pg8
complying with the property in the statement as v — oo.

Similarly, if A is ultimately negative, choosing 8 such that g < 2+ and vy suitably

large, we have

o= (1=8)

Rea(0) < [

vo /v

vzt [uA(“‘)) — 1} dz
— O(U—(W—ﬂ/Q)(l—ﬁ))

and
1

Raa(v)] < /

p—(1=8)

A [ZA(“ﬁ) - 1} dz

— O(U—(7—5/2)(1—B) vV |A(UB)|)
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as v — 0o. Hence, there exists a regularly varying function R of index o = (8 —1)(y —

B/2) V pB complying with the property in the statement. The proof is now complete.

5. Proof of Lemma 4.4

Let R*(t) := R(1/(1 — F(t))), where R is as in Lemma 4.3. Then R*(t) is regularly

varying of index o/ (see, e.g., [4], Proposition 0.8(iv)). In turn, by Karamata’s

theorem (e.g., [4], Proposition 0.6(a)) we have that for a large t*

[ g o

« 149
and thus, by Proposition 2.1.4 in [2], we conclude that
1—F(t)
= li 0
TR T () € (0,00)

As a consequence, for any 6 € (0, —p), as t = 00

. 1
Rw”RQﬂ—m@J
—O({1— H, (1)},

The conclusion now follows by Proposition 2.1.5 in [2].

6. Proof of Lemma 4.5

By definition,

oo f@ -1y [l —1/y) 1
U2k sy pr i Rl by g o

=71 (y) + 72 (v) -

On one hand, we have that as y — oo

i (y) = O(1/y).

On the other hand, for v > 1 we have the identity

T

Hence, if A is ultimately positive,

m(ﬁ_imw)s—vzmwﬁgﬂw_nw
— O(A(v))
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while, if A is ultimately negative,

72 (z*lU(v))‘ < ~vA(v) /100 27 1nzdz
= O(|A(v)]).

As a result of the two above inequalities, as v — oo

() = O (‘A (1—F(9[:1—1/y)> D ’

Therefore, by regular variation of 1/(1 — F(z* — 1/y)) with index —1/v, 72(y) is
eventually dominated by a regularly varing function of index —p/v. The final result

now follows.

7. Proof of Lemma 4.6

The function f(y) = f(a* — 1/y)y~2 is the density of the distribution function
F(y) := F(z* — 1/y), which is in the domain of attraction of G5, with 4 = —y.

Moreover,

_oo - A+ fly)
77(9) = 1_ ﬁ(y)

By Lemma 4.5 and regular variation of 1 — Hs with index —1/4, we have

i(y) = O({1 — Hs(y)}’)
for any 6 > 0 such that —5/’? > g. Therefore, by Proposition 2.1.5 in [2], as y — oo it
holds that

Fy) = hs()L +O({1 - Hy(y)}°)],

which is the result.

8. Proof of Lemma 4.7

We analyse the cases where v > 0 and v < 0 separately.
Case 1: v > 0. In this case, I, =1,. By Lemma 4.4, there are positive constants &,
0 and € such that, for all large ¢ and all z > 0
W(x) _ h(s(t)z +1)  s()
(@) = hy@)  1-F()
I+x ] e 1+¢
(L+71)/s(t) + 7z (s (1= F(t)

[1 + 1 {1 — Hy(s(t)z + t)}5]
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Moreover, by Lemma 4.3 it holds that as t — oo

1+t
s(t)

and, in turn, (s(t))/7 ~ (1 +~4t)*/7. These two facts, combined with the tail equiva-

1+7(t) =1+o0(1)

lence relation in formula (3), imply that for all sufficiently large ¢ and all z > 0

Li(z) <{ 147z ]1“/’* 1+e
hy(z) = [1—e+x (1—e)r
<{ 1 TJFIM 1+e
“|1—e¢ (1—e)T’

The result now follows.

Case 2: v < 0. In this case, for any = € (0,—1/7)

y) y*1—F(t)
where .
S N I

v=vta) = 5[5 -]

Note that y is bounded from below by —v/s(t), which converges to co as t — z*. Thus,

by Lemma 4.6 there are positive constants 5, € and K such that

(@) < (1 —7y)" "ML+ R{L - Hw(y)}ghygz%
1 51 (1+€)(—’Y_15(t))_1/’y
< (o) [S(t) (_’v - x) - 7} 1— F(t) :

Finally, for all large t,
-1
- s(t)
— L << (1 +
Tt =t ( 2

Combining all the above inequalities we can now conclude that, for all large ¢ and for
any x € (0, (z" —1)/5(1)),

<o
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Now, setting t = U(v), we have that v — oo if and only if ¢ — z* and, by Theorem

2.3.6 in [1], there is a constant @ > 0 such that for all large ¢

G

T <O = [+ 9]

The result now follows.
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