Economic selection index in small rural dairy farms

Marcos Jun-Iti Yokoo, Leonardo de Oliveira Seno, Luiza Corrêa Oliveira, Pedro U. N. da Costa, Gustavo M. da Silva, Renata W. Suñé & Fernando Flores Cardoso

SUPPLEMENTARY MATERIALS AND METHODS

The weight factors (**b**) were estimated (in matrix notation) by: $\mathbf{b} = \mathbf{P}^{-1}_{11} \mathbf{G}_{12} \mathbf{V}$, where: \mathbf{P}^{-1}_{11} = inverse phenotypic (co)variance matrix among the selection criteria (e.g., MY, FY, PY, etc.); \mathbf{G}_{12} = genetic (co)variance matrix among the selection criteria (row) and the breeding goal (column); \mathbf{V} = vector of economic values of the selection goal expressed as monetary unit (dollar) per unit improved in each trait.

The relative importance (RI, in %) of each selection criterion, for its respective economic selection index, was estimated using the following equation: $RI = \frac{|b_j| \times \sigma_{g(j)}}{\sum_{j=1}^{t} (|b_j| \times \sigma_{g(j)})} \times 100$, where: $\sigma_{g(j)}$ is the genetic standard deviation of the selection

criterion *j* used in the economic selection index.

The accuracy of the index (R_{IH}) was calculated as the correlation between the economic selection index (ESI) and the breeding goal (aggregated genotype, H), given by: $\mathbf{R}_{IH} = \frac{\text{Cov}(\text{ESI,H})}{\sqrt{\sigma_{ESI}^2 \times \sigma_H^2}} = \frac{\sigma_{ESI}^2}{\sigma_{ESI} \times \sigma_H} = \frac{\sigma_{ESI}}{\sigma_H}$, where σ_{ESI} and σ_H are the standard deviations of the ESI and of the breeding goal (aggregated genotype, H), respectively. Meanwhile, $\sigma_{ISE} = \sqrt{b' \text{Var}(\tilde{u}_j)b}$, where $\sqrt{ar}(\tilde{u}_j) = B' P_{11}B$, where P_{11} is the phenotypic (co)variance matrix among the selection criteria (e.g., MY, FY, PY, etc.) and $B = P_{11}^{-1} \times G_{11}$. The standard deviation of the aggregated genotype (σ_H) was calculated as $\sigma_H = \sqrt{VCV}$, where C is the genetic (co)variance matrix among the breeding goals (MY, FP, PP, LW, CI, and SCC).

The genetic superiority expected in the breeding goals (S_{ESI}) for one standard deviation in the selection using the ESI is given by $S_{ESI} = i \times R_{IH} \times \sigma_H = i \times \frac{\sigma_{ESI}}{\sigma_H} \times \sigma_H = i \times \sigma_{ESI}$, where i is the selection intensity. If i equals the unit (1), then $S_{ESI} = \sigma_{ESI}$. The genetic gain of each trait was calculated following the study by **Yamada et al. (1975)**, where $R_g = (1/\sigma^2_{ISE}) G^* R b$, in which G^* is the transpose matrix of genetic (co)variance among the selection criteria (row) and the breeding goal (column) and R is the diagonal matrix of the *n* traits. Meanwhile, the matrix R represents Wright's coefficient to provide the relation between the candidate to selection and the animal that provides the phenotype. In this study, every diagonal equal to 1 remained.