1 2	Monitoring residue concentrations in milk from farm and throughout a milk powder manufacturing process
3	
4	Lizandra F. Paludetti ^{1,2} , Alan L. Kelly ² , Bernadette O'Brien ¹ , David Gleeson ¹ *
5	
6	¹ Teagasc Moorepark, Animal & Grassland Research and Innovation Centre, Fermoy, County Cork,
7	Ireland
8	² School of Food and Nutritional Sciences, University College Cork, County Cork, Ireland
9	
10	
11	
12	Short title: Milk quality from farm to milk powder
13	
14	
15	
16	Correspondence: David Gleeson,
17	Teagasc Moorepark
18	Animal Grassland Research and Innovation Centre
19	Fermoy
20	County Cork
21	Ireland
22	Tel.: +353 025 42269
23	Email address: David.Gleeson@teagasc.ie
24	
25	
26	
27 28	SUDDI FMENTADV FILF
20 29	SULLEMENTARI FILE

30 Materials & Methods

- 31 *Comparison between the residue levels in farm bulk tanks in mid- and late-lactation*
- 32 In late-lactation (November 2016), the average $(\pm SD)$ milk volume that was stored in each
- BT of the 67 farms during sampling was $1,683 \pm 1,031$ L (range: 125 to 4,519 L), which were
- stored for an average (\pm SD) of 34 \pm 15 h, at 3.3 \pm 1.2 °C.
- 35
- 36 *Quantification of trichoromethane*

In each sample vial, 2 mL of milk or reconstituted SMP were added with 5 µL of internal 37 38 standard and 5 µL of of ethanol. The internal standard consisted of a solution prepared using 2-bromo-1-chloropropane and ethanol (0.2 mg/ mL). Samples were placed on an autosampler 39 tray (CTC analytics Combi-pal; CTC Analytics AG Industriestrasse 20 CH-4222, Zwingen, 40 Switzerland) and were incubated for 15 min at 80 °C and agitated at 750 rpm. Samples were 41 injected (500 µL) into an Agilent 19095J-121LTM column (10 m x 0.53 mm x 2.65 µm; 42 Agilent Technologies, Santa Clara, California, USA) with a heated gas-tight syringe (90 °C). 43 Helium was used as the carrier gas, and the column temperature was kept at a constant 44 temperature of 200 °C, which decreased to 70 °C in the end of analysis. 45

46

47 *Quantification of total iodine*

In each vial, 1:1 (w/v) solutions of sample and 5% tetramethyl-ammonium hydroxide (TMAH) extraction solution were added and gently swirled. Vials were placed in an oven at 90 °C for 3 h and afterwards they were allowed to cool. The standards used for the calibration consisted of solutions of iodine with 0.5 mL of a Tellurium solution (1,000 μ g/ mL), which contained 1% TMAH.

53

- 54
- 55
- 56
- 57
- 58
- 59
- 60

СТ	Numbor	Total valuma	Moon (+ SD) volume	Moon TCM concentration	Predicted TCM concentration	95% CI‡		Mean TCM
C1				of each CT (may ba)	(weighted means \pm S.E.) [†]	- ~-		- concentration of each CT
number	of farms	per tanker (L)	measured per farm (L)	of each CT (mg/ kg)	(mg/ kg)	LCL	UCL	covered by predicted C.I.
1	4	23771	$5,943 \pm 1,271$	0.0015	0.0014 ± 0.0009	0.0000	0.0043	Yes
2	5	26503	$5,301 \pm 2,385$	0.0008	0.0005 ± 0.0002	0.0000	0.0011	Yes
3	6	29122	$4,854 \pm 1,763$	0.0012	0.0009 ± 0.0003	0.0001	0.0016	Yes
4	6	23780	$3,963 \pm 2,683$	0.0012	0.0009 ± 0.0003	0.0002	0.0016	Yes
5	8	27585	$3,448 \pm 2,214$	0.0008	0.0004 ± 0.0001	0.0002	0.0005	Yes
6	7	28628	$4,090 \pm 1,208$	0.0011	0.0008 ± 0.0004	0.0000	0.0018	Yes
7	7	27188	$3,884 \pm 2,064$	0.0006	0.0004 ± 0.0001	0.0002	0.0006	Yes
8	7	28470	$4,067 \pm 2,437$	0.0007	0.0004 ± 0.0002	0.0001	0.0008	Yes
9	2	27147	$13,574 \pm 11,312$	0.0010	0.0007 ± 0.00004	0.0002	0.0012	Yes
10	5	25248	$5,050 \pm 3,877$	0.0007	0.0003 ± 0.0001	0.0000	0.0006	Yes
11	10	28561	$2,856 \pm 1,764$	0.0008	0.0005 ± 0.0001	0.0003	0.0008	Yes

Table S1. Comparison of mean trichloromethane (TCM) concentrations measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) during mid-lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT.

[†] Weighted means were calculated considering the volume of milk supplied by each farm or by each CT.

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits.

Table S2. Comparison of mean trichloromethane (TCM) concentrations measured in the whole milk silo (WMS) during mid- and late-lactation and those predicted (\pm standard error; S.E.) from the combined collection tankers (CTs) samples.

	Mean TCM concentration of the WMS (mg/ kg)	Mean (± SD) volume measured per CT (L)	Predicted TCM concentration (weighted means ± S.E.)† (mg(lsg)	95% CI‡		Mean TCM concentration of WMS covered by predicted C.I.
			(mg/kg)			
Mid-lactation	0.0009	$26,909 \pm 1,902$	0.0007 ± 0.00009	0.0005	0.0009	Yes
Late-lactation	0.0018	$24,357 \pm 3,768$	0.0019 ± 0.0002	0.0014	0.0024	Yes

[†] Weighted means were calculated considering the volume of milk supplied by each CT.

Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits.

СТ	Number	Mean (± SD) volume	Total volume	Iodine concentration measured	Predicted iodine concentrations	95% CI ‡		Mean iodine concentration of
	of farms	measured per farm (L)	per CT (L)	in each CT sample (μ g/ L)	(weighted means \pm SE) (µg/ L) \dagger	LCL	UCL	each CT covered by predicted CI
1	4	5,943 ± 1,271	23,771	83.9	89.2 ± 21.8	19.8	158.6	Yes
2	5	$5,301 \pm 2,385$	26,503	81.8	90.0 ± 23.8	23.9	156.2	Yes
3	6	$4,854 \pm 1,763$	29,122	120.0	117.9 ± 45.6	0.6	235.3	Yes
4	6	$3,963 \pm 2,683$	23,780	58.3	61.2 ± 8.5	39.3	83.7	Yes
5	8	$3,448 \pm 2,214$	27,585	125.9	141.0 ± 27.8	75.4	206.7	Yes
6	7	$4,090 \pm 1,208$	28628	138.4	144.1 ± 55.7	7.9	280.3	Yes
7	7	$3,884 \pm 2,064$	27188	112.0	116.7 ± 15.7	78.4	155.1	Yes
8	7	$4,067 \pm 2,437$	28470	76.3	82.9 ± 20.9	31.6	134.1	Yes
9	2	$13,574 \pm 11,312$	27147	390.8	335.7 ± 91.6	0	1,500	Yes
10	5	$5,\!050\pm3,\!877$	25248	202.9	282.7 ± 121.2	0	619.7	Yes
11	10	$2,856 \pm 1,764$	28561	80.0	101.7 ± 12.1	74.3	129.1	Yes

Table S3. Comparison of mean iodine concentrations measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) during midlactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT.

[†] Weighted means were calculated considering the volume of milk supplied by each farm.

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits.

Table S4. Comparison of mean iodine concentrations measured in the whole milk silo (WMS) during the mid- and late-lactation periods and those predicted (± standard error; S.E.) from the combined collection tankers (CTs) samples.

	Mean $(\pm SD)$ iodine concentration	Mean (± SD) volume	Predicted iodine concentration	95% CI ‡		Mean iodine concentration of the
	of the WMS (µg/ L)	measured per CT (L)	(weighted means ± SE) (µg/ L) \ddagger	LCL	UCL	WMS covered by predicted CI
Mid-lactation	135.5 ± 7.6	26,909 ± 1,902	134.2 ± 28.3	71.0	197.3	Yes
Late-lactation	419.0 ± 2.8	$24,357 \pm 3,768$	421.4 ± 50.5	308.8	534.0	Yes

[†] Weighted means were calculated considering the volume of milk supplied by each CT.

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits.

-

Figure S1. Milk supply chain and manufacturing process for conversion to low-heat skim milk powder, conducted in the mid- and late-lactation periods. The sampling points for chlorate (CHLO) and perchlorate (PCHLO), iodine and trichloromethane (TCM) are indicated with a \bullet , \blacktriangle and \blacksquare , respectively.