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Materials and methods 7 

Most meta-analyses do not use the published correlation estimate itself because it usually 8 

does not have a normal distribution. Rather, the published correlation is converted to the Fisher’s 9 

Z scale, and all analyses are performed using the transformed values. The results, such as the 10 

estimated parameter and its confidence interval, would then be converted back to correlations for 11 

presentation (Borenstein et al., 2009). The approximate normal scale based on Fisher’s Z 12 

transformation (Steel and Torrie, 1960; Borenstein et al., 2009) is as follows: 13 
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where rgij is the published genetic correlation estimate for the ith trait in the jth article. To 15 

return to the original scale, the following equation (Borenstein et al., 2009) was used: 16 
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where *

ijgr is the re-transformed genetic correlation for the ith trait in the jth article and Zij 18 

is the Fisher’s Z transformation. 19 

The 95% lower and upper limits for the estimated parameter would be computed 20 

respectively for each trait as follows: 21 
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where SE


is the predicted standard error for the estimated parameter , given by: 23 
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Publication bias 25 
 26 

Egger’s linear regression asymmetry was used to examine the presence of publication 27 

bias. When significant (P<0.10) bias was detected; the trim-and-fill method (Duval and Tweedie, 28 

2000) was applied to find the number of missing studies (Sales, 2011). Also, funnel plots were 29 

used to present asymmetry. This technique indicates the symmetric distribution of effect sizes 30 

around the true effect size if it is assumed that no publication bias exists, that is, the most 31 

extreme results have not been published. Once the number of missing observations is estimated, 32 

estimated missing values are included to recalculate a weighted mean effect size and its variance. 33 

When heterogeneity (Q test, P<0.10) was detected for the parameters analyzed, testing for the 34 

occurrence of possible publication bias is inappropriate as it may lead to false-positive claims 35 

(Ioannidis and Trikalinos, 2007; Sales, 2011). 36 

Discussion 37 

A strong and popular tool to merge findings from various studies is meta-analysis. This 38 

technique helps to decide in different scopes. The definition of objectives in this study and 39 

generally the wide variability among genetic parameter estimates from different studies showed 40 

the essentiality of considering the random-effects model. In the field of animal breeding and 41 

genetics, it is necessary to conduct a meta-analysis based on a random-effects model due to the 42 

interest in making inferences at the population level (de Oliveira et al., 2017; Ghavi Hossein-43 

Zadeh, 2021). A random-effects model provides outputs that can be generalized (Sutton et al., 44 

2000; Safari et al., 2005). 45 
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Sodium is an essential macro-mineral that has been indicated to be a significant factor in 46 

milk production (Spek et al., 2013), and is disappeared through milk, urine, saliva, and feces 47 

(Denholm et al., 2019). Milk phosphorus presents in numerous forms (e.g., phospholipids, 48 

colloidal Ca phosphate, and casein phosphoserines), all of which are known to indicate great 49 

genetic variation (Heck et al., 2008). Therefore, a portion of the genetic variation in milk 50 

phosphorus can be justified by its casein phosphoserine residues. Milk magnesium presents 51 

chiefly as citrate, phosphate, and free ions. Only 35% of magnesium is attached to casein 52 

micelles (Gaucheron, 2005); thus, the number of casein phosphoserines might not be so 53 

influential in assessing the milk magnesium variation. The milk calcium secretion is a very 54 

complicated event with a great variety of forms, including casein-bound Ca, colloidal Ca 55 

phosphate, Ca citrate, and free ionized Ca (Neville et al., 1995). Most of Ca (nearly 65%) is 56 

connected with casein micelles (Neville et al., 1995). Therefore, the number of casein 57 

phosphoserines in milk may determine Ca concentrations and maybe also Zn concentrations 58 

because the major part of Zn is also attached to casein micelles (Neville et al., 1995). Large 59 

influences of dietary Se concentration on its content in milk have been reported (Haug et al., 60 

2007; Phipps et al., 2008). Also, the Se content of soil impacts the Se content in plants which are 61 

applied as roughages. Furthermore, it is observed that Se content in milk can be enhanced by 62 

increasing Se content in the fertilizer that is used in grassland (van Hulzen et al., 2009). Wiking 63 

et al. (2008) reported that the Zn content of bovine milk is significantly influenced by the dietary 64 

intake of fat. Fat transfer from diet to milk eases the transfer of Zn from diet to milk (van Hulzen 65 

et al., 2009). 66 
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Table S1. The list of studies included in the database for conducting this meta-analysis 166 

Reference Country Breed Method of analysis 

Bonfatti et al. (2017) Italy Italian Simmental REML 

Buitenhuis et al. (2015) Denmark Danish Holstein and Jersey REML 

Costa et al. (2019) Italy Holstein REML 

Denholm et al. (2019) United Kingdom Holstein REML 

Govignon-Gion et al. (2015) France Holstein, Montbéliarde, and 

Normande 

REML 

Sanchez et al. (2018) France Montbéliarde REML 

Soyeurt et al. (2012) Belgium Holstein REML 

Toffanin et al. (2015) Italy Holstein REML 

Tsiamadis et al. (2016) Greece Holstein REML 

van Hulzen et al. (2009) Netherlands Holstein REML 

Visentin et al. (2019) Italy Holstein REML 

Zaalberg et al. (2021) Denmark Danish Holstein and Jersey Bayesian 

 167 
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 169 
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Table S2. Results from statistical tests to evaluate publication bias and the trim-and-fill method 177 

to correct funnel plot asymmetry in mean heritability estimates of minerals that did not present 178 

heterogeneity 179 

Trait  Egger’s test p-

value 

 Trim-and-fill method 

Missing Mean 95% CI 

Sem 0.783 0 0.171 0.076-0.266 
Znm 0.437 2 0.337 0.213-0.461 
Fem 0.553 0 0.013 0.000-0.067 

“m” subscript indicated the concentrations of the minerals in milk. 180 

Missing: Number of missing studies. 181 

 182 

 183 

Table S3. Results from statistical tests to evaluate publication bias and the trim-and-fill method 184 

to correct funnel plot asymmetry in mean genetic correlation estimate between milk calcium and 185 

phosphorus 186 

Egger’s test p-value  Trim-and-fill method 

Missing Mean 95% CI 

0.279 2 0.430 0.275-0.563 

Missing: Number of missing studies. 187 

 188 

 189 

 190 

 191 
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 199 

Fig. S1. The forest plots of individual studies and the overall outcome for heritability estimates 200 

of serum calcium and potassium in dairy cows. Detailed information is provided in Fig. 1. 201 
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 213 

214 
Fig. S2. The forest plots of individual studies and the overall outcome for heritability estimates 215 

of serum phosphorus and magnesium in dairy cows. Detailed information is provided in Fig. 1. 216 
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223 
Fig. S3. Funnel plot of mean heritability estimates for milk zinc. Detailed information is 224 

provided in Fig. 5. 225 

 226 

227 
Fig. S4. Funnel plot of mean heritability estimates for milk iron. Detailed information is 228 

provided in Fig. 5. 229 

 230 
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231 
Fig. S5. The forest plots of individual studies and the overall outcome for genetic correlation 232 

estimates between milk calcium with milk phosphorus and sodium in dairy cows. Detailed 233 

information is provided in Fig. 1. 234 
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246 
Fig. S6. The forest plots of individual studies and the overall outcome for genetic correlation 247 

estimates between milk calcium with milk potassium and magnesium in dairy cows. Detailed 248 

information is provided in Fig. 1. 249 
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261 
Fig. S7. The forest plots of individual studies and the overall outcome for genetic correlation 262 

estimates between milk sodium with milk phosphorus, magnesium, and potassium in dairy cows. 263 

Detailed information is provided in Fig. 1. 264 
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271 
Fig. S8. The forest plots of individual studies and the overall outcome for genetic correlation 272 

estimates between milk magnesium with milk phosphorus and potassium, and between milk 273 

phosphorus with milk potassium in dairy cows. Detailed information is provided in Fig. 1. 274 
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281 
Fig. S9. The forest plots of individual studies and the overall outcome for genetic correlation 282 

estimates between milk calcium and phosphorus with milk yield in dairy cows. Detailed 283 

information is provided in Fig. 1. 284 
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286 
Fig. S10. Funnel plot of Fisher’s Z for the genetic correlations between milk calcium and 287 

phosphorus in dairy cows. Detailed information is provided in Fig. 5. 288 


