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A.1 Additional data description 
 
 

Figure A.1: Distributions of weekly minimum and maximum temperatures 

 
Notes: This figure shows the distributions of weekly and maximum temperatures during our sample period.



 

A.2 Supplement to the main analysis results 

Figure A.2 shows the development of the infant mortality rate and how this 

variable was influenced by warm weeks by different periods. This supports the 

evidence presented in Figure 1 by showing that our results are not driven by any scale 

effects coming from fertility declines. 
 

Figure A.2: Infant mortality rate and warm-week effect by period 

 
Notes: This figure shows the development of the infant mortality rate, which is calculated as the 
number of infant deaths during a particular week and scaled with the average number of births over 
the past 52 weeks (x100). The thick horizontal grey lines show warm-week estimates for different 
periods (1874-1879, 1880-1889, 1890-1899, 1900-1914, 1919-1929, 1930-1939, and 1949-1965). The 
regressions use the average of the contemporary effect and seven lags and control for week-the-year 
fixed effects, year fixed effects, weekly rainfall, and weekly fog events.



 

A.2.1 Timing of the decline in infant digestive disease deaths 
 

Here we present some additional evidence on the timing of the decline in infant digestive 
deaths. First, Figure A.3 presents results plotting out the pattern of infant and digestive disease 
deaths by year. Second, Figures A.4-A.5 describes the changing distribution of infant and 
digestive mortality across weeks of the year by different periods. 
 

Figure A.3: Timing of infant and digestive disease mortality declines 

 
Notes: This figure shows the weekly average number of infant and digestive deaths by year (1873-1965), including 
95 percent confidence bands, calculated for each year. The smooth black solid lines are fourth order polynomial fits 
for before/after the years 1900. The vertical lines are placed at year 1900. 
 
 



 

Figure A.4: Distribution of infant deaths across weeks, by period 

 
Notes: This figure shows the average number of infant deaths by week of the year, where 1 is the first week of January 
and 52 is the last week of December, for the periods: 1873-1879, 1880-1889, 1890-1899, 1900-1914, 1919-1929-
1939, and 1949-1965 (averages and 95 confidence bands are based on these periods). The vertical lines are placed at 
week 23, which is typically around the first week of June. 
 
 



 

Figure A.5: Distribution of digestive deaths across weeks, by period 

 
Notes: This figure shows the average number of digestive deaths by week of the year, where 1 is the first week of 
January and 52 is the last week of December, for the periods: 1873-1879, 1880-1889, 1890-1899, 1900-1914, 1919-
1929-1939, and 1949-1965 (averages and 95 confidence bands are based on these periods). The vertical lines are 
placed at week 23, which is typically around the first week of June. 
 
 
 
A.2.2. Additional total mortality results 
 

Figure A.6  reports additional leads from our main total mortality regression results. Specifically, 

the figures plot the results for weeks 2-5 weeks before the week in which a particular temperature 

event is observed. These come from our main regression specification and are estimated at the 

same time as the remaining leads and lags presented in Figure 2. The main purpose here is to 

provide some additional evidence on the estimated pre-trends in weeks before a weather event is 

observed. The essentially flat and generally statistically insignificant estimates show that, as we 

would expect, weather events in a week are not systematically correlated with mortality in previous 

weeks. 



 

 

 

 
 

Figure A.6: Additional leads and lags for total mortality regressions 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality for leads 2-5 
and lags 5-7 which were not reported in Figure 2. The pre-WWI sample is from 1866 to 1914 and the post-WWI sample 
is from 1919-1939 and 1949 to 1965. The reference weeks have minimum temperature above 35F and maximum 
temperature below 65F. 
 
 

One potential concern in our analysis is that there may be serial correlation in the data, which are 

structured as a time series. A standard way to address serial correlation concerns is to allow 

correlation across temporally adjacent weeks using Newey-West standard errors.



 

In Figure A.7 we estimate results allowing correlation across time periods within seven weeks 

of each other and compare these to the results obtained from the robust standard errors presented 

in the main text. These results show that allowing for serial correlation typically leads to smaller 

confidence intervals, indicating that there may be mild negative serial correlation in the data. This 

should not be surprising given that we are studying mortality, because a high number of deaths in 

one week will reduce the population at risk of dying in the following week. 

 
Figure A.7: Temperature and total mortality with Newey-West standard errors 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality for the first lead, 
the current effect, and four lags with robust Newey-West SEs allowing correlated errors across seven weeks. The 
length of the lag allowed in the Newey-West standard errors is based on the standard rule-of-thumb 𝑇𝑇1 4⁄  where T is 
the number of time periods in the analysis. We use the T from the longest sub-period that we analyze, the pre-WWI 
sample, which implies a lag length of seven. For consistency we apply this length to all of the time periods we study. 
The pre-WWI sample is from 1866-1914 and the post-WWI sample is from 1919-1939 and 1949-1965. The reference 
weeks have minimum temperature above 35F and maximum temperature below 65F.



 

It is also interesting to study results where we include month-by-year effects. Including such a 

rich set of fixed effects is possible due to the high-frequency nature of our data, though we do not 

use this as our main specification because it is likely to be over-controlling in a way that biases 

our results toward zero. It is worth noting that this specification allows us to control for time effects 

as flexibly as is possible in existing studies using monthly panel data, such as Barreca et al. (2016). 

In fact, because our study contains only one location, this specification is actually more flexible, 

since it is equivalent to including month-by-year-by-location effects in a panel data study, though 

that level of flexibility is impossible in panel data studies using monthly data at the location level. 

The results, in Figure A.8, show that even with this very flexible set of time effects we still obtain 

results that are similar to those presented in the main text, though the reduction in degrees of 

freedom means that we now have slightly larger standard errors. In summary, these results 

illustrate that we can control as flexibly for time effects as any existing panel data study that is 

reliant on monthly data.



 

Figure A.8: Temperature and total mortality with month-by-year fixed effects 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality as in Figure 2, 
but also controlling for month-by-year fixed effects. 
 

In the main analysis, we use temperature measures from Oxford rather than those available 

from London. In the next set of results, we show that the findings obtained from the Oxford data 

are essentially unchanged if we instead use temperature data from London. Note, however, that 

the London temperature comes from two different locations, Greenwich before WWII and Kew 

Gardens after. Also, only mean temperature is available, rather than average high and low 

temperatures for the week. This means that we have to work with different temperature bins in 

these results. The bins that we use are: under 35F (q1), 35-40 (q2), 40-45 (q3), 45-60 (q4, the 

reference bin), 60-65 (q5), and above 65 (q6). Note that, because we have to change our bin 

definitions, the coefficients will not be directly comparable to those shown in the main text. 

Figure A.9 presents the estimated coefficients obtained when using the mean weekly 

temperature from London locations. Overall, the patterns shown in this figure are similar to those 

obtained from our preferred Oxford temperature data. We see no evidence of pre-trends in the top-



 

left panel. In the top right-panel, we see that both warm and cold weeks exhibit increased mortality, 

with the hot effects being stronger. The remaining panels show that the warm week effect persists 

strongly in the period before WWI but is essentially absent after WWI, while the effect of cold 

weather is similar in both periods and, if anything, somewhat stronger in the post-WWI period. 

Overall, these results confirm the patterns identified in our main specifications. 

 

Figure A.9: Total mortality results using temperature measured in London 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality for the first lead, 
the current effect, and four lags. The temperature bins are based on mean weekly temperature measured in Greenwich 
Observatory before WWII and Kew Gardens after WWII. The pre-WWI sample is from 1866-1914 and the post-WWI 
sample is from 1919-1939 and 1949-1965. The omitted reference weeks have mean temperature from 45-60F. 
 

In the main analysis, we have included the period from 1901-1914 as part of our early period. 

However, as shown in Figures A.3-A.5, this is perhaps better thought of as a transition period from 

a high infant and digestive mortality regime of the late 19th century to the lower mortality regime 

the existed after WWI. Thus, we may be worried that the inclusion of 1900-1914 in our early 



 

period is influencing those results. As a check on this, in Figure A.10, we present results in which 

we excluded 1900-1914 from the early sample (those years are dropped from the analysis, not 

included in the later sample period). Overall, we can see that this has little impact on our results. 

 

Figure A.10: Total mortality results with the early period ending in 1900 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality for the first lead, 
the current effect, and four lags. The pre-WWI sample is from 1866-1900 and the post-WWI sample is from 1919-
1939 and 1949-1965. The omitted reference weeks have minimum temperature above 35F and maximum temperature 
below 65F. 

In the next set of results, we study the temperature-mortality relationship in more recent data 

stretching from 1981-2006. These estimates, in Figure A.11, are very similar to what we observe in 

the period from 1919-1965. As in that period, we see an uptick in mortality in the week in which 

there is an unusually warm temperature event, followed by reduced mortality for the next couple of 

weeks. The effect of unusually cold weeks remains positive, though the magnitude is smaller than 

what we observed in the 1919-1965 period. 



 

It is worth noting that these results may be influenced by changes in the age profile of London 

across this period. Unfortunately, we cannot explore this possibility further because the U.K. 

Office of National Statistics has been unwilling to provide weekly mortality data by age group for 

London during this period and the data do not appear in printed records such as those produced for 

the years before 1970. 

 
 

Figure A.11: Total mortality results for the modern period (1981-2006) 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality for one lead, 
the current effect, and four lags, using data from 1981 to 2006. The reference weeks have minimum temperature above 
35F and maximum temperature below 65F. 
 

 

 

 

 



 

In the next set of results, we consider the possibility that variation in humidity may be 

influencing our estimates of the temperature-mortality relationship. Existing work by Barreca 

(2012) suggests that humidity can impact mortality in addition to just temperature, and that there 

may be an interaction between temperature and humidity. Thus, this is an important possibility to 

consider. 

As a first step in assessing this issue, we use the relative humidity, temperature and pressure 

to calculate absolute humidity in each week. We then divide weeks into eight equally-sized bins 

based on average humidity level and construct a full set of five leads and seven lags for each of 

these absolute humidity bins (leaving out the middle bin as the reference). Figure A.12 presents 

regression results describing the relationship between temperature and total mortality obtained 

from a specification that includes the full set of binned absolute humidity variables (including 

leads and lags). These results are notably similar to those obtained in our main analysis 

specification, which suggests that controlling for humidity does not have a major impact on the 

estimated temperature mortality relationship. Figure A..13  reports the estimated humidity effects 

from the same regression. The pattern of elevated mortality at low humidity levels matches existing 

results from Barreca (2012). 

 



 

Figure A.12: Total mortality results controlling for a full set of leads and lags of absolute 
humidity 

 
Notes: This figure shows the non-parametric relationship between temperature and log total mortality for the first lead, 

the current effect, and four lags as in Figure 2, but also controlling for the non-parametric relationship between 

mortality and absolute humidity for a set of five leads, the contemporary effect, and seven lags, as well as the 

interaction between the highest temperature bin and the highest humidity bin. The main humidity estimates are reported 

in Figure A.13. The pre-WWI sample is from 1866-1914 and the post-WWI sample is from 1919-1939 and 1949-

1965. The reference weeks have minimum temperature above 35F and maximum temperature below 65F. 
 
 
 
 
 
 



 

Figure A.13: Humidity and total mortality before and after WWI controlling for a 
full set of leads/lags of temperature 

 
Notes: This figure shows the non-parametric relationship between absolute humidity and log total mortality for the first 
lead, the current effect, and four lags from the same regression as in Figure A.12. The pre-WWI sample is from 1866-
1914 and the post-WWI sample is from 1919-1939 and 1949-1965.



 

A.2.3 Additional infant mortality results 
 

Next, we present additional infant mortality results. Figure A.14 reports leads 2-5 and lags 5-

7 for log infant mortality, showing that there is no evidence of pre-trends in this specification, for 

example. Figure A.15 shows that our infant mortality results are largely unchanged if we include 

month-by-year fixed effects in the specification. Figure A.16 presents results using temperature 

data from London rather than Oxford. Figure A.17 presents estimates where the early period ends 

in 1910 rather than 1914. Figure A.18 shows that our infant results are robust to controlling for 

humidity as was also the case for total mortality, and Figure A.19 reports the humidity estimates 

from this specification. The patterns of the humidity estimates are similar to the results for total 

mortality, but somewhat weaker in numerical magnitude for the first lag. As our final robustness 

check for infant mortality, Figure A.20 shows that our results are not driven by any scale effects 

coming from the ongoing fertility transition during this period, as was also the main message coming 

from Figure A.2. 

 



 

Figure A.14: Additional leads and lags from the infant mortality regressions 

 
Notes: This figure shows the non-parametric relationship between temperature and log infant mortality for leads 2-5 
and lags 5-7 which were not reported in Figure 3. The pre-WWI sample is from 1874 to 1914 and the post-WWI sample 
is from 1919-1939 and 1949-1965. The omitted reference temperature bin is q = 4 or 35F − 65F.



 

Figure A.15: Temperature and infant mortality before and after WWI, controlling for month- by-
year fixed effects 

 
Notes: This figure shows the non-parametric relationship between temperature and log infant mortality as in Figure 
3, but also controlling for month-by-year fixed effects.



 

Figure A.16: Infant mortality results using mean weekly temperature measured in London 

 
Notes: This figure shows the non-parametric relationship between temperature and log infant mortality for the first 
lead, the current effect, and four lags. The temperature bins are based on mean weekly temperature measured in 
Greenwich Observatory before WWII and Kew Gardens after WWII. The pre-WWI sample is from 1866-1914 and 
the post-WWI sample is from 1919-1939 and 1949-1965. The omitted reference weeks have mean temperature from 
45-60F. 
 
 
 
 
 
 
 



 

Figure A.17: Temperature and infant mortality excluding data from 1900-1914 

 
Notes: This figure shows the non-parametric relationship between temperature and log infant mortality for the first 
lead, the current effect, and four lags. The pre-WWI sample is from 1866-1900 and the post-WWI sample is from 
1919-1939 and 1949-1965. The omitted reference weeks have minimum temperature above 35F and maximum 
temperature below 65F. 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

Figure A.18: Temperature and infant mortality controlling for a full set of leads and lags of 
absolute humidity 

 
Notes: This figure shows the non-parametric relationship between temperature and log infant mortality for the first 
lead, the current effect, and four lags as in Figure 3, but also controlling for the non-parametric relationship between 
mortality and absolute humidity for a set of five leads, the contemporary effect, and seven lags. The main humidity 
estimates are reported in Figure A.19. The pre-WWI sample is from 1874-1914 and the post-WWI sample is 
from 1919-1939 and 1949-1965. The omitted reference temperature bin is q = 4 or 35F − 65F.



 

Figure A.19: Humidity and infant mortality before and after WWI controlling for full set of 
leads/lags of temperatures 

 
Notes: This figure shows the non-parametric relationship between humidity and log total mortality for the first lead, 
the current effect, and four lags from the same regression as in Figure 18A. The pre-WWI sample is from 1866-1914 
and the post-WWI sample is from 1919-1939 and 1949-1965. The omitted reference humidity bin is q = 4 or 35F − 65F.



 

Figure A.20: Temperature and the infant mortality rate before and after WWI 

 
Notes: This figure shows the non-parametric relationship between temperature and the log infant mortality rate for the 
first lead, the current effect, and four lags. The denominator of the infant mortality rate uses the number of births the 
past 52 weeks. The pre-WWI sample is from 1874-1914 and the post-WWI sample is from 1919-1939 and 1949-1965. 
The omitted reference temperature bin is q = 4 or 35F − 65F.



 

A.3 Analysis of temperature and births 
 

Figure A.21 reports the relationship between live births and temperature before and after WWI. 

The most notable feature from this graph is that the number of live births are lower during weeks 

with cold and warm temperatures, but this relationship appears to have been stable over our study 

period. This finding is consistent with literature from modern developed countries showing that 

exposure to temperature extremes is associated with an increased risk of stillbirth (Strand, Barnett, 

and Tong, 2011; Auger et al., 2017). While existing work focuses primarily on hot temperatures, 

our findings provide some indirect evidence that low temperatures may also be associated with an 

increase in stillbirths. 

The results in Figure A.21 relate to a relatively small literature looking at the relationship 

between ambient temperature and contemporaneous births. One recent paper in this area is Auger 

et al. (2014). That study, which uses data from Montreal, CA covering 1981-2010, looks at the 

relationship between the number of births in a week and temperature in the previous week. The 

authors find evidence that temperatures above 32 C in the past week are associated with an increase 

in births at term of around 4%, with no impact on pre- term births. It is somewhat difficult to 

compare these results with our findings, since we study a broader set of contemporaneous and 

lagged effects, rather than just a single one-week lag. However, we do find some evidence of a 

weak lagged increase in births, which seems consistent with their results, though this effect is 

strongest two weeks after a high temperature event. Similar patterns are observed in other studies, 

such as Ha et al. (2016). Note that this literature differs from work, such as Barreca (2017) and 

Barreca, Deschênes, and Guldi(2018), which focuses mainly on the impact of temperature on 

conception.



 

Figure A.21: Temperature and live births before and after WWI 

 
Notes: This figure shows the non-parametric relationship between temperature and log live births for the first lead, 
the current effect and four lags. The pre-WWI sample is from 1866 to 1914 and the post-WWI sample is from 1919-
1939 and 1949-1965. The omitted reference temperature bin is q = 4 or 35F − 65F. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

A.4 Additional analysis of causes of death 
 

This section presents additional results looking at digestive disease mortality data. First, 
Figure A.22 reports the remaining leads, not reported in the paper, for digestive mortality. 
 

Figure A.22: Additional leads and lags for the digestive disease mortality regressions 

 
Notes: This figure shows the non-parametric relationship between temperature and log digestive mortality for four 
additional leads and three additional lags which were not reported in Figure 5. The pre-WWI sample is from 1870 to 
1914 and the post-WWI sample is from 1919-1939 and 1949-1965. The omitted reference temperature bin is q = 4 
or 35F − 65F. 

 
Next, Figures A.23 and A.24 present additional results breaking down digestive disease deaths 

into subcategories. These results focus on data prior to 1911, both because this allows us to 

construct more consistent series and because some of these categories, such as cholera, had 

effectively disappeared by the end of that period. The results in Figure A.23 show that both cholera 

and the (much larger) diarrhea and dysentery cause of death groupings exhibited increased 

mortality associated with hot weather. The estimates for the heat effect on cholera deaths are large, 

but recall that this was applied on a much lower baseline level of cholera deaths. 



 

Figure A.23: Results for cholera and the diarrhea & dysentery categories, 1870-1910 

 
Notes: This figure shows the non-parametric relationship between temperature and log cholera mortality or log 
mortality from diarrhea (which includes dysentery, enteritis and gastritis) for the first lead, the current effect and four 
lags. The pre-WWI sample is from 1866 to 1914 and the post-WWI sample is from 1919-1939 and 1949-1965. The 
omitted reference temperature bin is q = 4 or 35F − 65F. 
 

In the next set of results, Figure A.24, we present estimates for deaths due to typhoid fever 

and, for comparison, results from other fevers (which are not included in the digestive disease 

category). These results show that typhoid deaths were not strongly associated with warmer 

temperature. Only in the contemporaneous week do we see evidence (not statistically significant) 

of an increase in typhoid deaths. Typhoid appears to make no contribution to the lagged impact of 

temperature on mortality, which formed the bulk of the impact of high temperature on mortality 

in Figure 5. Deaths due to other fevers also show no increase during periods of high temperature, 

and there is evidence of negative lagged effects which probably operate through competing risk 

effects. 

 



 

Figure A.24: Temperature and deaths due to typhoid or other fevers, 1870-1910 

 
Notes: This figure shows the non-parametric relationship between temperature and log typhoid fever mortality or log 
mortality due to other fevers (including simple continued fever and remittent fever) for the first lead, the current effect 
and four lags. The pre-WWI sample is from 1866 to 1914 and the post-WWI sample is from 1919-1939 and 1949-
1965. The omitted reference temperature bin is q = 4 or 35F − 65F. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
A.5 Effect of cumulative weeks of high or low temperature 
 

In this appendix, we explore the additional impact of having multiple weeks of hot or cold 

temperature in a row. While the results in our main analysis allow lagged temperature effects, 

they do not explicitly incorporate the possibility that having several weeks of unusually cold or 

warm weather may have cumulative effects. To capture these cumulative effects, we construct 

additional variables reflecting whether a particular warm or cold week has been preceded by 

one, two or three similar weeks. In constructing these variables, we consider a hot week any 

week falling into the top two temperature bins and a cold week any week falling into the 

bottom two bins. We then add these variables into our standard regressions, so that the 

resulting coefficients reflect the additional effect of having multiple weeks of high or low 

temperatures in a row, beyond the direct effect of having high or low temperature in a week or 

in a previous week captured by our standard temperature variables. 
The results for total mortality are presented in Table A.1. The results in Columns 2 and 4 

look at the impact of having two hot or two cold weeks in a row in, respectively, the pre-WWI 

and post-WWI periods. Columns 2 and 5 look across three week windows while Columns 3 

and 6 look across four-week windows. These results provide evidence that in the pre-WWI 

period, multiple weeks of high temperature resulted in additional deaths, beyond the direct 

effect of temperature in a week measured previously. This effect appears most strongly when 

we have two or three weeks of high temperature in a row. No similar pattern of cumulative 

effects appears for low temperatures, or for high temperatures in the post-WWI period. Table 

A.2 presents similar results for infant mortality. Here we see similar patterns with even 

stronger cumulative effects of high temperatures in the pre-WWI period. 
 

 

 

 

 

 



 

Table A.1: Estimates of the cumulative effect of multiple hot or cold weeks in a row on total 
mortality 

  DV: Log total mortality 
 Pre-WWI Post-WWI 

  (1) (2) (3) (4) (5) (6) 
High temp for 0.0196   -0.0172   
two weeks (0.0162)   (0.0125)   

       
Low temp for -0.0120   0.0144   
two weeks (0.0126)   (0.0198)   

       
High temp for  0.0344**   0.00644  
three weeks  (0.0171)   (0.0116)  

       
Low temp for  -0.00536   0.0136  
three weeks  (0.0130)   (0.0206)  

       
High temp for   0.0520**   0.0200 
four weeks   (0.0203)   (0.0135) 

       Low temp for   0.00429   0.0342 
four weeks     (0.0152)     (0.0233) 
Observations 2,498 2,498 2,498 1,889 1,889 1,889 
R-squared 0.716 0.717 0.717 0.848 0.848 0.849 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Regressions also include a 
full set of temperature bin indicator variables for five leads, the current period, and seven lags, as well as 
weekly controls for rainfall and fog events. 
 

 

 

 

 

 

 

 

 

 

 

 
 



 

Table A.2: Estimates of the cumulative effect of multiple hot or cold weeks in a row on infant 
mortality 

  DV: Log infant mortality 
 Pre-WWI Post-WWI 

  (1) (2) (3) (4) (5) (6) 
High temp for 0.0591   -0.0954***   
two weeks (0.0417)   (0.0360)   

       
Low temp for 0.00291   -0.0283   
two weeks (0.0154)   (0.0295)   

       
High temp for  0.123**   -0.0521  
three weeks  (0.0478)   (0.0341)  

       Low temp for  -0.00920   -0.0208  
three weeks  (0.0151)   (0.0309)  

       High temp for   0.176***   0.00814 
four weeks   (0.0535)   (0.0388) 

       Low temp for   -0.00208   0.00969 
four weeks     (0.0166)     (0.0346) 
Observations 2,101 2,101 2,101 1,889 1,889 1,889 
R-squared 0.727 0.730 0.732 0.908 0.908 0.908 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Regressions also include a full set 
of temperature bin indicator variables for five leads, the current period, and seven lags, as well as weekly controls 
for rainfall and fog events. 
 

 

 
A.6 Summary effects across eight-week periods 

 
In this appendix, we present estimates of summary effects of a hot or cold temperature event across 

the week in which it occurs and the following seven weeks. These provide a useful summary of the 

magnitude of the effects that we observe averaged across an eight-week period, starting with the week 

in which exposure occurred. The estimating equation for this exercise is, 

ln(𝑦𝑦𝑤𝑤𝑤𝑤) = � 𝛽𝛽𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤
𝑞𝑞 + 𝛿𝛿𝑤𝑤 + 𝛿𝛿𝑡𝑡 + 𝑋𝑋𝑤𝑤𝑤𝑤𝜂𝜂 + 𝜀𝜀𝑤𝑤𝑤𝑤

8

𝑞𝑞=1,𝑞𝑞≠4

 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤
𝑞𝑞  is an indicator that takes a value of one if the temperature in any week between 

wt and wt-7 fell into the q’th temperature bin and zero otherwise. Thus, the coefficient β1 reflects the 

impact of having temperature fall into the lowest temperature bin in a week, averaged across that 



 

week and the next seven weeks. Similarly, β8 reflects the impact of having temperature fall into the 

highest temperature bin in a week, averaged across that week and the next seven weeks. These 

provide a useful way to summarize the contemporaneous and lagged effects (out to seven weeks) 

of high or low temperature events. This approach is similar to computing simple averages of the 

estimated coefficients from the baseline full lag model (i.e., with one contemporaneous coefficient 

and the seven lagged coefficients). 

The results obtained when applying this approach to total mortality, infant mortality, and 

digestive disease mortality are presented in Table A.3, focusing only on the highest and lowest 

temperature bins. Columns 1 and 2 present, respectively, results for total mortality before and after 

WWI. In both periods, cold weeks increase total mortality by about 7 percent. Warm weeks raise 

total mortality by about 4 percent in the earlier period, but have essentially no effect after WWI. 

Columns 3-4 focus on infant deaths. These show that warm weeks increased mortality by about 10 

percent in the pre-1914 period, but that this decreased to a statistically insignificant 2.3 percent after 

1919. We observe only mild evidence of an increase in infant mortality associated with cold weeks. 

We estimate similar patterns when focusing on the infant mortality rate (i.e., infant mortality relative 

to births in the past 52 weeks) in Columns 5-8. Finally, in Columns 9-10 we look at the impact of 

temperature on deaths due just to digestive diseases. These jump by 23 percent after warm weeks in 

the period before 1914. In the later period we observe a much smaller increase of around 7.7 

percent. For cold weeks, we observe no meaningful effect on digestive disease deaths.



 
 
 
 

Table A.3: Estimated effects across eight-week windows 

DV: Log total deaths Log infant deaths Log infant mort. Rate Infant mort. Rate Log digestive deaths 
           

Lowest 
0.0707**

* 
0.0770**

* 0.0141 0.0239 0.0121 0.0248 0.241 0.164* -0.0348* 0.0282 
temp bin (0.00772) (0.0102) (0.0118) (0.0147) (0.0118) (0.0154) (0.185) (0.0925) (0.0195) (0.0338) 
           

Highest 
0.0424**

* -0.00660 0.102*** 0.0227 0.102*** 0.0239 1.740*** 0.148 0.282*** 0.132*** 
temp bin (0.00766) (0.00816) (0.0168) (0.0181) (0.0167) (0.0184) (0.288) (0.0960) (0.0337) (0.0422) 
           
Observations 2,498 1,900 2,101 1,900 2,101 1,808 2,101 1,808 2,289 1,876 
R-squared 0.608 0.804 0.662 0.903 0.595 0.849 0.544 0.762 0.819 0.755 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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