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Abstract

This internet appendix consists of four major parts. The first part provides sup-

plementary details about the model and the results. The second part contains

technical materials complementing the proofs in the main paper. The third part

covers miscellaneous extensions such as the inclusion of a leverage constraint,

randomized insolvency resolution mechanisms, and the incorporation of transac-

tion costs and decreasing returns to scale. Finally, the last part offers further

numerical results comparing equity-conversion bail-in and write-down bail-in.
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1 Further discussion of the model

1.1 Definition of managers’ claim under bailout regime

We provide further justification behind the definition of managers’ claim under bailout

regime as introduced in Section 2.2. Recall that managers survive a bailout with some

probability po ∈ [0, 1] and their stake in the inside equity is diluted by a factor ξo(≤ 1).

The effect of dismissal and stake dilution upon the arrival of a shock can be captured by

a random variable X which takes on value ξo with probability po or value 0 otherwise.

In the former case insiders still have a claim after the shock, albeit a reduced one as

reflected by the factor ξo ≤ 1. In the latter case insiders lose their claim entirely.

Let Λk ≡
∏k

n=1Xn be the cumulative dismissal-adjusted dilution factor after k

shocks have arrived, where Xn ∼ X are i.i.d random variables independent of the net

worth dynamics. Denote by Tk is the random arrival time of the kth crash. Managers’

optimization problem under the bailout regime can be stated as:

Mo(N) = max
qt,lt,f

E

(∫ T1

0

e−δtU(qtNt)dt+
∞∑
k=1

∫ Tk+1

Tk

e−δtU(ΛkqtNt)dt
∣∣∣N0 = N

)
(A.1)

It is straightforward to verify that:

E
(
Λ1−η
k

)
=
[
E
(
X1−η)]k = [poξ

1−η
o ]k

using the i.i.d. property of Xn ∼ X. Due to the power form of the utility function,

and Xn and Nt being independent, (A.1) can be expressed as:

Mo(N) = max
qt,lt,f

E

(∫ T1

0

e−δtU(qtNt)dt+
∞∑
k=1

∫ Tk+1

Tk

e−δt[poξ
1−η
o ]kU(qtNt)dt

∣∣∣N0 = N

)
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1.2 Convexity, corner solution and the role of “skin in the

game”

Proposition 4 in the main paper suggests that a corner solution fb = 1 is observed in

the liquidation regime while interior solutions are observed in the bailout and bail-in

regime provided that vo > 0, vi > 0. Such phenomena could be understood via the

convexity behaviors of the managers’ objective function. For simplicity of exposition,

suppose l is fixed and we just focus on the optimal choice of f . For small value of f

such that f ≤ 1/l, the firm remains solvent when a crash arrives and the insiders’ net

worth recovery rate is φs(f) = 1−fl (the dependence on l is suppressed as we consider

l fixed here). For large value of f where f > 1/l, the bank becomes insolvent during

a crash and the insiders’ net worth recovery rate is φj(f) under IRM j. The recovery

rate as a function of all values of f can be compactly written as:

φ(f) =


1− fl, f ≤ 1/l

ξj(1− f), 1/l < f ≤ 1

As explained in Section 2.2, the managers’ claim value is the sum of expected

utility of the payout extracted up to the random arrival time of the macroshock and

the residual claim value. The former is indeed linear in f while the latter is proportional

to pj[φ(f)]1−η,1 and hence the convexity of the managers’ objective function in f solely

depends on that of the residual component. It is thus sufficient to analyze the convexity

1See for example equation (34) in the main paper where the last term is indeed corresponding to

such residual claim value.
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of the following function:

V (f) =


(1− fl)1−η, f ≤ 1/l

vj(1− f)1−η, 1/l < f ≤ 1

with vb = 0, vo > 0, vi > 0. The stylized plots of this function under j = b and j = o, i

are shown in Figure 1.

When the IRM is liquidation, the managers are fired during the crash and they

receive nothing thereafter. The continuation value is thus zero on f > 1/l which is a

convex function. The creates the possibility of a corner solution at f = 1 which we

have verified its optimality.

When the IRM is bailout or bail-in, the managers can freeride on the government

subsidy or the severance claim payment. This is reflected by the discontinuity of the

continuation value function at f = 1/l. In particular, the managers will strictly prefer

a marginally insolvent firm to a marginally solvent one. However, the free subsidy also

creates local concavity near f = 1. This risk aversion introduced deters the managers

from putting the entire bank at risk.

Complement to Proof of Proposition 2 and 4: bailout regime. We

provide further technical details to identify the maximizer of Ho(f) in the bailout

regime. Consider first the range f ≤ f̂o. We have:

H ′o(f) =
d

df
Go(l̂(f); f) = −µ− ρ

f 2
+
σ2η

f 3
− voλ

(1− f)η
≡ Γo(f)
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(a) The IRM is liquidation (b) The IRM is bailout/bail-in with

vo, vi > 0.

Figure 1: The illustration of the convexity of managers’ objective function.

Observe that Γo(0) =∞ and Γo(1) = −∞. Furthermore:

Γ′o(f) =
2(µ− ρ)

f 3
− 3σ2η

f 4
− voλη(1− f)−η−1

=
1

f 3

(
2(µ− ρ)− 3σ2η

f

)
− voλη(1− f)−η−1

≤ 1

f 3

(
2

(
σ2η

f
− κλf

)
− 3σ2η

f

)
− voλη(1− f)−η−1

= − 1

f 3

(
σ2η

f
+ 2κλf

)
− voλη(1− f)−η−1 < 0

where we have used the fact that µ+κλf−ρ
σ2η

≤ 1
f

over f ≤ f̂o. Then we conclude Γo(f) = 0

must have exactly one root f̃o ∈ (0, 1). We are going to show that the condition of

µ−ρ
σ2η

> 1 + vo
κ

will imply f̂o < f̃o such that Γo(f) > 0 for all f < f̂o. Hence Ho(f) is

strictly increasing over f ≤ f̂o. As a result, any maximum must be attained at some

f ≥ f̂o.
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Now consider the range of f̂o < f ≤ 1. We have:

H ′o(f) =
d

df
Go

(
µ+ κλf − ρ

σ2η
; f

)
=
κλ(µ+ κλf − ρ)

σ2η
− voλ

(1− f)η
≡ λκΘo(f)

If vo = 0, we have H ′o(f) > 0 and the maximum must be attained at f = 1. Otherwise,

check that Θo(1) = −∞, Θo(0) = µ−ρ
σ2η
− vo

κ
> 1 > 0, and we can compute:

Θ′′o(f) = −voλη(1 + η)(1− f)−η−2 < 0

Thus Θo is a strictly concave function starting with a positive value and ending with a

negative value, which must change sign from positive to negative exactly once at some

f = fo given by the solution to Θo(f) = 0. We are going to show that the condition

µ−ρ
σ2η

> 1 + vo
κ

will result in f̂o < fo. Hence Ho(f) must attain its maximum at some

interior point fo ∈ (f̂o, 1).

Recall that f̂o, fo and f̃o are defined as the solutions to:

ζo(f) ≡ µ+ κλf − ρ
σ2η

− 1

f
= 0

Θo(f) ≡ µ+ κλf − ρ
σ2η

− voλ

κ(1− f)η
= 0

Γo(f) ≡ −µ− ρ
f 2

+
σ2η

f 3
− voλ

(1− f)η
= 0

respectively. The final step of the proof is to verify that if µ−ρ
σ2η

> 1 + vo
κ

, then f̂o < f̃o

and f̂o < fo.

We first show that f̂o < f̃o. The equations ζo(f) = 0 and Γo(f) = 0 can be restated

as:

L1(f) ≡ κf =
σ2η

λ

(
1

f
− µ− ρ

σ2η

)
≡ χ1(f)

L2(f) ≡ vof
2

(1− f)η
=
σ2η

λ

(
1

f
− µ− ρ

σ2η

)
= χ1(f)
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Then:

L2

(
σ2η

µ− ρ

)
= vo

(
σ2η

µ− ρ

)2(
1− σ2η

µ− ρ

)−η
< vo

(
σ2η

µ− ρ

)2(
1− σ2η

µ− ρ

)−1
= vo

(
σ2η

µ− ρ

) σ2η
µ−ρ(

1− σ2η
µ−ρ

) < vo

(
σ2η

µ− ρ

)
(1 + vo/κ)−1

(1− (1 + vo/κ)−1)

= κ

(
σ2η

µ− ρ

)
= L1

(
σ2η

µ− ρ

)
where we have used the condition µ−ρ

σ2η
> 1 + vo

κ
and in turn σ2η

µ−ρ < (1 + vo/κ)−1.

It can be easily checked that L2 is an increasing convex function on f ∈ [0, 1).

Since L1(f) is linear, L1(0) = 0 = L2(0) and L1

(
σ2η
µ−ρ

)
> L2

(
σ2η
µ−ρ

)
, we must have

L1(f) > L2(f) for 0 < f < σ2η
µ−ρ . Moreover, since χ1

(
σ2η
µ−ρ

)
= 0, we must have f̃o <

σ2η
µ−ρ

and f̂o <
σ2η
µ−ρ .

We are going to establish f̂o < f̃o by argument of contradiction. Suppose instead

we have f̂o ≥ f̃o. Then:

χ1(f̂o) = L1(f̂o) > L2(f̂o) ≥ L2(f̃o) = χ1(f̃o)

but this contradicts the fact that χ1 is a decreasing function.

To show that f̂o < fo, we restate the equations ζo(f) = 0 and Θo(f) = 0 as:

L3(f) ≡ 1

f
=
µ+ κλf − ρ

σ2η
≡ χ2(f)

L4(f) ≡ vo
κ(1− f)η

=
µ+ κλf − ρ

σ2η
= χ2(f)

Since L4(f) is an increasing convex function with L4(0) = vo
κ
≤ 1 < µ−ρ

σ2η
= χ2(0)

and χ2(f) is linear, L4(f) and χ2(f) can cross only once where the crossing point gives
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the solution fo. Moreover:

L4

(
1

1 + vo/κ

)
=
vo
κ

(1− (1 + vo/κ)−1)−η <
vo
κ

(1− (1 + vo/κ)−1)−1

= 1 + vo/κ <
µ− ρ
σ2η

<
µ+ κλ(1 + vo/κ)−1 − ρ

σ2η
= χ2

(
1

1 + vo/κ

)
Hence 1

1+vo/κ
< fo and thus 1

fo
< 1 + vo

κ
< µ−ρ

σ2η
. On the other hand:

µ− ρ
σ2η

<
µ+ κλf̂o − ρ

σ2η
= χ2(f̂o) = L3(f̂o) =

1

f̂o

We obtain 1
fo
< µ−ρ

σ2η
< 1

f̂o
and in turn f̂o < fo.

Complement to Proof of Proposition 2 and 4: bail-in regime.

The goal here is almost identical to that for the bailout regime. Write f̂i, fi and f̃i

as the solutions to:

ζi(f) ≡ µ+ [κ− (1− τ)(1 + h)]λf + λh(1− τ)− ρ
σ2η

− 1

f
= 0

Θi(f) ≡ µ+ [κ− (1− τ)(1 + h)]λf + λh(1− τ)− ρ
σ2η

− viλ

[κ− (1− τ)(1 + h)](1− f)η
= 0

Γi(f) ≡ −µ− ρ+ λh(1− τ)

f 2
+
σ2η

f 3
− viλ

(1− f)η
= 0

respectively. We want to verify that if µ−ρ+λh(1−τ)
σ2η

> 1 + vi
κ−(1+h)(1−τ) and κ > (1 +

h)(1− τ), then f̂i < f̃i and f̂i < fi.

We first show that f̂i < f̃i. The equations ζi(f) = 0 and Γi(f) = 0 can be restated

as:

L1(f) ≡ [κ− (1− τ)(1 + h)]f =
σ2η

λ

(
1

f
− µ− ρ+ λh(1− τ)

σ2η

)
≡ χ1(f)

L2(f) ≡ vif
2

(1− f)η
=
σ2η

λ

(
1

f
− µ− ρ+ λh(1− τ)

σ2η

)
= χ1(f)
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Then:

L2

(
σ2η

µ− ρ+ λh(1− τ)

)
= vi

(
σ2η

µ− ρ+ λh(1− τ)

)2(
1− σ2η

µ− ρ+ λh(1− τ)

)−η
< vi

(
σ2η

µ− ρ+ λh(1− τ)

)2(
1− σ2η

µ− ρ+ λh(1− τ)

)−1
= vi

(
σ2η

µ− ρ+ λh(1− τ)

) σ2η
µ−ρ+λh(1−τ)(

1− σ2η
µ−ρ+λh(1−τ)

)
< vi

(
σ2η

µ− ρ+ λh(1− τ)

)
[1 + vi/(κ− (1 + h)(1− τ))]−1

(1− [1 + vi/(κ− (1 + h)(1− τ))]−1)

= [κ− (1− τ)(1 + h)]

(
σ2η

µ− ρ+ λh(1− τ)

)
= L1

(
σ2η

µ− ρ+ λh(1− τ)

)
where we have used the condition µ−ρ+λh(1−τ)

σ2η
> 1+ vi

κ−(1+h)(1−τ) and in turn σ2η
µ−ρ+λh(1−τ) <

[1 + vi/(κ− (1 + h)(1− τ))]−1.

One can verify that L2 is an increasing convex function on f ∈ [0, 1). Since L1(f)

is linear, L1(0) = 0 = L2(0) and L1

(
σ2η

µ−ρ+λh(1−τ)

)
> L2

(
σ2η

µ−ρ+λh(1−τ)

)
, we must have

L1(f) > L2(f) for 0 < f < σ2η
µ−ρ+λh(1−τ) . Moreover, since χ1

(
σ2η

µ−ρ+λh(1−τ)

)
= 0, we

must have f̃i <
σ2η

µ−ρ+λh(1−τ) and f̂i <
σ2η

µ−ρ+λh(1−τ) .

We can establish f̂i < f̃i by argument of contradiction. Suppose instead we have

f̂i ≥ f̃i. Then:

χ1(f̂i) = L1(f̂i) > L2(f̂i) ≥ L2(f̃i) = χ1(f̃i)

but this contradicts the fact that χ1 is a decreasing function.

To show that f̂i < fi, we restate the equations ζi(f) = 0 and Θi(f) = 0 as:

L3(f) ≡ 1

f
=
µ+ [κ− (1− τ)(1 + h)]λf − ρ+ λh(1− τ)

σ2η
≡ χ2(f)

L4(f) ≡ vi
[κ− (1− τ)(1 + h)](1− f)η

=
µ+ [κ− (1− τ)(1 + h)]λf − ρ+ λh(1− τ)

σ2η
= χ2(f)
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Write ω ≡ 1− vi
κ−(1−τ)(1+h)+vi ∈ (0, 1). Note that χ2 is a linear increasing function.

Then:

L3(f̂i) = χ2(f̂i) ≥ χ2(0) =
µ− ρ+ λh(1− τ)

σ2η
> 1 +

vi
κ− (1 + h)(1− τ)

=
1

ω
= L3(ω)

and hence we have ω > f̂i as L3 is a decreasing function. On the other hand:

L4(fi) = χ2(fi) ≥ χ2(0) =
µ− ρ+ λh(1− τ)

σ2η
> 1 +

vi
κ− (1 + h)(1− τ)

=
vi

[κ− (1− τ)(1 + h)](1− ω)
>

vi
[κ− (1− τ)(1 + h)](1− ω)η

= L4(ω)

and thus fi > ω since L4 is increasing. Then the result follows as fi > ω > f̂i.

Complement to Proof of Proposition 5. We complete the proof by estab-

lishing a useful identity. Suppose T1 is the arrival time of the first Poisson shock (such

that T1 has an Exp(λ) distribution) and recall that the net worth process under the

optimally chosen lj satisfies:

dNt

Nt

= {[µ+ κλfj − ρj(lj)]lj + ρj(lj)−mqj} dt+ σljdBt + (Φj − 1)dyt

≡ gjdt+ σljdBt + (Φj − 1)dyt

We are going to show that if δ + λ− gj > 0, then:

E
(
e−δT1NT1

)
=

Φjλ

δ + λ− gj
N0 (A.2)

To begin with, note that Nt yields a closed-form expression:

Nt = N0Φ
Yt
j exp

((
gj −

σ2l2j
2

)
t+ σljBt

)
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where Bt is a Brownian motion and Yt is a Poisson process. By construction, YT1 = 1

with probability one. Then:

E
(
e−δT1NT1

)
= N0ΦjE

[
exp

((
gj − δ −

σ2l2j
2

)
T1 + σljBT1

)]
= N0ΦjE

{
E

[
exp

((
gj − δ −

σ2l2j
2

)
T1 + σljBT1

)
|T1
]}

= N0ΦjE[e(gj−δ)T1 ] = N0Φj

∫ ∞
0

λe−λte(gj−δ)tdt =
Φjλ

δ + λ− gj
N0

For the sake of completeness, we also derive the expression of Wb the net value

created under the liquidation regime:

Wb = E

[∫ T1

0

e−δt(rt + dt)dt

]
−N0 = mqbE

[∫ T1

0

e−δtNtdt

]
−N0

= mqbN0E

[∫ ∞
0

e−δtI(T1 > t) exp

((
gb −

σ2l2b
2

)
t+ σlbBt

)
dt

]
−N0

= mqbN0

∫ ∞
0

{
e−δtE [I(T1 > t)]× E

[
exp

((
gb −

σ2l2b
2

)
t+ σlbBt

)]}
dt−N0

where we have used the independence of Bt and Yt. The second expectation term is

equal to exp(gbt), while the first term is:

E [I(T1 > t)] = E [I(Yt = 0)] = P (Yt = 0) = exp(−λt)

Hence:

Wb = mqbN0

∫ ∞
0

exp[−(λ+ δ − gb)t]dt−N0 =

(
mqb

λ+ δ − gb
− 1

)
N0

Finally, the corresponding expression of Wi (the net value created under the bail-in

regime) can be obtained in an identical fashion together with the help of (A.2).

2 Extensions and further analysis

This section presents extensions of the model.
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2.1 Leverage constraint

We incorporate a capital requirement by imposing that the gearing ratio l does not

exceed an exogenously given constant lmax. Proposition 4 in the main paper can be

easily modified to reflect the new solution structure.

Proposition 1 For the insolvency regime (i.e. κ ≥ κj), the optimal investment policy

(lcj) for the liquidation, bailout and bail-in regime in the presence of a leverage constraint

is the lower of the unconstrained gearing ratio and the maximum allowable regulatory

gearing, i.e. lcj = min (lj(fj) , l
max), where lj(fj) (for j = b, o, i) is the unconstrained

gearing level defined in Proposition 4 in the main paper. The optimal crash exposure

level is as described in Proposition 4 of the main paper for the unconstrained bank but

by replacing in equations (17) and (18) in the main paper the unconstrained gearing

level lj(fj) by the constrained level lcj(fj). Junior debt is always risky under bail-ins.

Introducing a capital requirement reduces the optimal investment and risk exposure

in a fairly trivial fashion. The ranking of the optimal policies is not affected by a

minimum capital requirement.

Proof. Recall that the underlying optimization problem is:

max
(l,f):l≤lmax

Gj(l, f) ≡ max
(l,f):l≤lmax

{
[µ+ κλf − ρj(l, f)]l − σ2η

2
l2 + ρj(l, f) +

λpj
1− η

[φj(l, f)]1−η
}

over each regime j ∈ {s, b, o, i}. An additional constraint fl ≤ 1 (fl > 1) is imposed

when j = s (j = b, o, i).

Asset sales regime

If lmax ≥ µ−ρ
ησ2 = ls then the unconstrained solution is feasible. Otherwise if lmax <

µ−ρ
ησ2 , the original optimal leverage level ls = µ−ρ

ησ2 is no longer feasible. Recall that the
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first order condition with respect to f is given by:

∂Gs

∂f
= λl

(
κ− 1

(1− fl)η

)
= 0

and it is easy to verify that ∂2Gs
∂f2

< 0 for any l > 0. Hence if the optimization problem is

unconstrained then the optimal solution (l, f) is expected to lie on the curve 1
(1−fl)η = κ.

Write f(l) = 1−κ−1/η

l
. To find the optimal l, we maximize Gs(l, f(l)). Differentiation

gives:

d

dl
Gs(l, f(l)) = µ+ κλf(l)− ρ− σ2ηl − κλf(l) = µ− ρ− σ2ηl

If lmax < µ−ρ
ησ2 then the candidate solution l = µ−ρ

ησ2 is not feasible. Since d
dl
Gs(l, f(l)) > 0

for l < µ−ρ
ησ2 , we should pick l to be as large as possible such that the optimal l must be

l = lmax. To summarize, the optimal (l, f) in presence of leverage constraint is given

by:

lcs = min

(
µ− ρ
ησ2

, lmax

)
= min(ls, l

max), f cs =
1− κ−1/η

lcs

Note that f cs l
c
s = 1− κ−1/η < 1.

In the rest of this section, we will assume lmax > µ−ρ
ησ2 such that the solution structure

under the asset sales regime will not be affected by the leverage constraint. If the value

of lmax is too low, insolvency may not arise at all ex-ante because managers are not

allowed to reasonably leverage the bank. Under this assumption, we have shown in the

main paper that the managerial claim value under the asset sale regime is related to

the constant:

Hs ≡ Gs(l
c
s, f

c
s ) =

(µ− ρ)2

2σ2η
+ κλ+ ρ+

λη

1− η
κ−

1−η
η

We are going to view Hs as a function of κ. As in the main paper, the existence of a

critical κ above which the managers will optimally switch from the asset sales regime
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to the insolvency regime can be established by verifying that Jj(κ) := Hj(κ) −Hs(κ)

is increasing in κ. Here Hj ≡ Gj(l
c
j , f

c
j ) is viewed as a function of κ for j ∈ {b, o, i}.

Liquidation regime

The first order condition of Gb with respect to f is:

∂Gb

∂f
= [κ− (1− τ)(1− cb)]λl > 0

and thus the optimal value of f is always f cb = 1 no matter there is leverage constraint

or not. To find the optimal l, we just need to solve:

max
l:1<l≤lmax

Gb(l, f = 1) = max
l:1<l≤lmax

[µ+ (κ− 1 + τ)λ− ρ]l − σ2η

2
l2 + ρ+ λ(1− τ)

where the optimal value of l is trivially given by:

lcb = min

(
µ+ (κ− (1− τ))λ− ρ

ησ2
, lmax

)
= min(lb, l

max)

The managerial claim value under this regime is linked to the constant:

Hb ≡ Gb(l
c
b, f

c
b ) =


(µ+(κ−1+τ)λ−ρ)2

2σ2η
+ ρ+ λ(1− τ), lb ≤ lmax

(µ+ (κ− 1 + τ)λ− ρ)lmax − σ2η
2

(lmax)2 + ρ+ λ(1− τ), lb > lmax

But it is clear that lb ≤ lmax ⇐⇒ κ ≤ K∗b where K∗b is some constant. Then:

J ′b(κ) =


λκ−

1
η + λ(lb − 1) > 0, κ ≤ K∗b

λκ−
1
η + λ(lmax − 1) > 0, κ > K∗b

Hence the conclusion that Jb(κ) being strictly increasing remains unchanged.

Bailout regime

If vo = 0, then the problem is similar to that of the liquidation regime where the

optimal jump exposure is f co = 1 and the optimal leverage level is simply:

lco = min

(
µ+ κλ− ρ

ησ2
, lmax

)
= min(lo, l

max)

13



We now consider the case of vo > 0. Suppose the optimal leverage and jump

exposure in the unconstrained case are given by lo and fo. Then it is clear that if

lmax ≥ lo the original solution (lo, fo) will remain feasible. We are interested in the case

where lmax < lo. The first two derivatives of Go with respect to l and f are:

∂Go

∂l
= µ+ κλf − ρ− σ2ηl,

∂2Go

∂l2
= −σ2η < 0

∂Go

∂f
= κλl − λvo(1− f)−η,

∂2Go

∂f 2
= −λv0η(1− f)−η−1 < 0

Hence for any fixed f , G0 is increasing (resp. decreasing) in l on the region l ≤

lo(f) ≡ µ+κλf−ρ
σ2η

(resp. l ≥ lo(f)). Likewise, for any fixed l, Go is increasing (resp.

decreasing) in f on the region f ≤ fo(l) ≡ 1−
(
vo
κl

)1/η ⇐⇒ l ≥ vo
κ(1−f)η ≡ Do(f) (resp.

f ≥ fo(l) ⇐⇒ l ≤ Do(f)). Note that the unconstrained optimal policy (lo, fo) is

given by the intersection point of the functions lo(f) and Do(f) on the (f, l) plane. A

simple graphical consideration can reveal that lo(f) > Do(f) for f < fo. Thus for any

l ≤ lmax < lo = lo(fo), we have:

Go(l, f) ≤ Go(l, fo(l)) ≤ Go(l
max, fo(l)) ≤ Go(l

max, fo(l
max))

i.e. lco = lmax and f co = 1−
(

vo
κlmax

)1/η
. Finally, using the same arguments as in Section

2 of this internet appendix, the condition lmax > µ−ρ
σ2η

> 1 + vo
κ

will ensure f co l
c
o > 1.

More generally, the optimal leverage ratio is given by lco = min(lo, l
max). Recall that

the unconstrained leverage ratio is given by lo = µ+κλfo−ρ
ησ2 where fo solves the equation:

µ+ κλf − ρ
ησ2

− vo
κ(1− f)η

= 0

It is easy to see that the solution fo is increasing in κ. Hence lo must be increasing in

κ. We can conclude there must exist K∗o such that lco = lo (lco = lmax) whenever κ ≤ K∗o

14



(κ ≥ K∗o ). Let Ho ≡ Go(l
c
o, f

c
o). Then:

Ho =


Go(lo(fo(κ);κ), fo(κ);κ), κ ≤ K∗o

Go(l
max, f co(κ), κ), κ ≥ K∗o

We have verified in the main paper that:

d

dκ
Go(lo(fo(κ);κ), fo(κ);κ) = λfolo

Similarly, using the fact that f co satisfies the first order condition, we have:

d

dκ
Go(l

max, f co(κ), κ) =
∂Go

∂f

∣∣∣
l=lmax,f=fco

× ∂f co
∂κ

+
∂Go

∂κ

∣∣∣
l=lo,f=fo

= 0 + λf co l
max

Hence for Jo ≡ Ho −Hs the conclusion

J ′o(κ) = λκ−
1
η + λ(f co l

c
o − 1) > 0

still holds.

Bail-in regime

The analysis is identical to that of the bailout case and is thus omitted. The only

additional consideration is that we need to verify the junior debt is indeed risky under

the condition lmax > µ−ρ
σ2η

> µ−ρ+λh(1−τ)
σ2η

> 1 + vi
κ−(1+h)(1−τ) , but this again could be

achieved by following the same arguments in Section 2 of this internet appendix.

2.2 Government commitment and randomized IRMs

In reality, the government has no obligation to commit to a particular IRM. Therefore,

the bank’s insiders and debtholders may not know ex ante which IRM will be adopted.

In what follows we assume they have a common prior belief over the probability πj that

a particular IRM j will be applied (with πb + πo + πi = 1 and πj ∈ [0, 1] for j = b, o, i).
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We first derive the cost of debt as a function of (l, f). Recall the notation intro-

duced in Table 1 of the main paper. What matters from the risk-neutral bondholders’

perspective is the expected recovery rate which is given by:

Ω̄ = πbΩb + πoΩo + πiΩi = (1− πo − πi)Ωb + πoΩo + πiΩi.

To simplify the exposition, we assume zero bankruptcy cost for the liquidation regime

such that cb = 0. The expected loss in default and the fair after-tax cost of debt are,

respectively:

1− Ω̄ = (1− πo − πi)(1− Ωb) + πo(1− Ωo) + πi(1− Ωi)

= (1− πo − πi)
fl − 1

l − 1
+ πi

(f + h− fh)l − 1

l − 1
and

ρ̄(l, f) = ρ+ λ(1− τ)

[
(1− πo − πi)

fl − 1

l − 1
+ πi

(f + h− fh)l − 1

l − 1

]
.

From the perspective of the risk averse inside equityholders, the uncertainty regarding

the IRM affects the net worth adjustment following a shock. Suppose the bank is

risky (i.e. fl > 1). Then, immediately after a shock, there is a probability πb that

the managers get nothing (when the bank is liquidated), a probability πo that the

managers receive a continuation value poM(φoN) (when the bank is bailed out) and

a probability πi that the managers receive a severance claim value piM(φiN) (when

the bank is bailed-in). The HJB equation associated with the managerial claim value

can be suitably modified. The modified version of Proposition 4 in the main text is as

follows.

Proposition 2 In the insolvency regime, the optimal investment policy (l̄) under a

random IRM is:

l̄ = l̄(f̄) =
µ− ρ
ησ2

+
λ
{
κf̄ − (1− πo − πi)(1− τ)f̄ − πi(1− τ)[f̄(1 + h)− h]

}
ησ2
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If πovo = πivi = 0, then managers adopt maximum crash risk exposure (f̄ = 1).

Otherwise, the optimal exposure level is given by some f̄ ∈ (0, 1) which is the unique

solution to the equation:

[κ− (1− τ)(1− πo − πi)− πi(1− τ)(1 + h)] l̄(f) − πovo
(1− f)η

− πivi
(1− f)η

= 0

The bank’s optimal investment and risk exposure policies are a weighted average of

the policies we previously derived for the case where the IRM is known ex ante. One

can recover our earlier solutions by setting πj equal to 1 for one of the probabilities.

Proof. Under randomized IRMs, the Hamilton-Jacobi-Bellman (HJB) equation of

the optimization problem becomes:

δM(Nt) = max
qt,lt,f

{
u(qtNt) −mqtNt

∂M(Nt)

∂Nt

+ [µ+ κλf − ρ̄(lt, f)]ltNt
∂M(Nt)

∂Nt

+
1

2
σ2l2tN

2
t

∂2M(Nt)

∂N2
t

+ ρ̄(lt, f)Nt
∂M(Nt)

∂Nt

+ λ
∑

j∈{b,o,i}

[πjpjM(φj(lt, f)Nt)−M(Nt)]

}
(A.3)

The form of the value function remains the same as M(N) = CN1−η

1−η for some constant

C. Then after substitution and slight rearrangement, the HJB equation becomes:

λ+ δ

1− η
= max

q>0,l,f

{
q1−η

C(1− η)
−mq + [µ+ κλf − ρ̄(l, f)]l − σ2η

2
l2

+ ρ̄(l, f) +
λπopo
1− η

[φo(l, f)]1−η +
λπipi
1− η

[φi(l, f)]1−η
}

(A.4)

The right-hand-side of (A.4) decouples into:

max
q>0

{
q1−η

Cj(1− η)
−mq

}
+ max

l,f
Ḡ(l, f)

where:

Ḡ(l, f) ≡
{

[µ+ κλf − ρ̄(l, f)]l − σ2η

2
l2 + ρ̄(l, f) +

λπopo
1− η

[φo(l, f)]1−η +
λπipi
1− η

[φi(l, f)]1−η
}
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Recall the notation vj ≡ pjξ
1−η
j . Using the expressions of ρ̄ and φj, the objective

function can be further written as:

Ḡ(l, f) = (µ+ κλf − ρ)l + ρ− λ(1− τ) [(1− πo − πi)(fl − 1) + πi((f + fh− h)l − 1)]

− σ2η

2
l2 +

λπovo
1− η

(1− f)1−η +
λπivi
1− η

(1− f)1−η

It is then straightforward to write down the first order conditions for l and f as:

µ− ρ+ λ {κf − (1− πo − πi)(1− τ)f − πi(1− τ)[f(1 + h)− h]} − σ2ηl = 0

and:

l [κ− (1− τ)(1− πo − πi)− πi(1− τ)(1 + h)]− πovo
(1− f)η

− πivi
(1− f)η

= 0

Then the optimal (l, f) can be characterized by the solutions to the above simultaneous

equations. The remaining technical gaps lie with checking: 1) the optimal solutions

indeed exist over the risky regime fl > 1, and 2) the first order conditions indeed yield

a global maximum. These can be achieved using the similar techniques considered in

the main paper. Note that if πovo = πivi = 0, then the left-hand-side of the first order

condition of f will be strictly positive. This implies the objective function is increasing

in f and thus the optimal jump exposure is automatically given by f = f̄ = 1.

2.3 Extension to asset sales with transaction costs

Our benchmark model assumes that asset sales can be performed in a frictionless

manner. In this section, we briefly discuss how the model can potentially be generalized

to incorporate transaction costs associated with asset rebalancing.

In presence of transaction costs, it is well known that a constant investment level

is not optimal but instead one should trade minimally to keep the allocation in the
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risky asset within a certain interval. This intuition is due to Magill and Constantinides

(1976), which later is verified rigorously by Davis and Norman (1990) and Shreve

and Soner (1994). No closed-form solution exists. The optimal policies have to be

identified as a part of the solution to a non-linear free boundary value problem. To

simplify analysis and facilitate comparison with our benchmark setup, we make the

following two assumptions.

First, transaction costs apply to asset balancing only during the arrival of an eco-

nomic downturn. This is a realistic assumption if we interpret transaction costs as

a liquidity premium. While trading loans is relatively inexpensive during good times

when rebalancing only involves small changes in the firm’s assets, risk appetite of mar-

ket participants goes down when the economy is experiencing distress (i.e. arrival of a

large negative shock). After a large negative macro-shock, financial institutions must

sell a significant fraction of their assets to rebalance and they may find it difficult to

find a counterparty unless the assets are sold at a discount. The discrepancy between

the asset book value and the actual executable price could be viewed as the transaction

cost.

Second, we impose that the bank must adopt a constant investment level l ≡ At/Nt.

A constant asset to net worth ratio is optimal in the absence of transaction costs, but

may be suboptimal from a theoretical point of view when there are transaction costs.

However, the restriction may originate from regulatory requirements that impose a cap

on the leverage ratio of the bank. We have shown in the main paper (see the example in

Section 3) that the bank’s leverage ratio could spike up drastically during a downturn.

Regulators may not allow the bank to wait and continue the operations based on such

a risky balance sheet, but instead a prompt deleveraging is required especially during
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a crisis.

Now, suppose the bank maintains a constant asset to net worth ratio l and its

balance sheet prior to a macro-shock consists of A units of asset and N units of equity.

A shock brings the bank’s asset and equity down to (1 − f)A and N − fA units

respectively. The bank remains solvent for as long as N − fA ≥ 0 or equivalently

A
N

= l ≤ l̂ ≡ 1
f
. In absence of transaction costs, the bank delevers by selling fA(l − 1)

units of asset and uses the proceeds to pay off debt to maintain the target asset to net

worth ratio of l. See panel A in Figure 1 of the main paper for a recap.

Consider now a proportional transaction cost c that has to be paid by the bank

when offloading the asset during a downturn. The amount of loan to be sold, ∆, should

now satisfy:

(1− f)A−∆

N − fA− c∆
= l

which gives ∆ = f(l−1)A
1−cl . The net worth after rebalancing is:

N − fA− c∆ =

[
1− (1− c)fl

1− cl

]
N

This quantity is non-negative if l ≤ 1
c+f−cf ≡ l̂c. Note that l̂c ≤ 1

f
= l̂.

Special care has to be taken when defining ‘insolvency’ in the presence of transaction

costs. If l ≤ l̂c, then the bank remains solvent after costly asset sales (rebalancing).

Consider the alternative scenario l̂c < l ≤ l̂. After the downturn, the bank is still

solvent because l ≤ l̂ and as such N − fA ≥ 0. However, the bank’s leverage level is

too high and its entire equity capital will be depleted if it engages in costly delevering.

The transaction costs would wipe out the remaining equity, making it impossible for the

bank to restore the desired asset to net worth ratio l. If a solvent bank must restore its
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target balance sheet structure during a downturn, then the transaction costs involved

could drive the bank into insolvency post-rebalancing.

We therefore assume that insolvency is triggered during a downturn whenever l > l̂c.

The jump size of net worth in the regime of asset sales is now given by φs(l) = 1− (1−c)fl
1−cl .

The first order conditions for the optimal investment level l and downturn exposure f

can be derived as:

µ+ κλf − ρ− ησ2l − λf(1− c)(
1− fl(1−c)

1−cl

)η
(1− cl)2

= 0 (A.5)

and

κ− 1− c
1− cl

[
1− (1− c)fl

1− cl

]−η
= 0 (A.6)

respectively.

Unlike the no-transaction cost case as in the main paper, we no longer have a closed-

form expression for the optimal exposure fs. Nonetheless, we can still infer the effect

of transaction cost on the investment level under a fixed f . In particular, note that

the left hand side of equation (A.5) is decreasing in c. This implies the solution ls(f)

is decreasing in c. Transaction costs thus reduce the bank’s investment and leverage

level when the exposure f to downturns is exogenously given.

2.4 Decreasing returns to scale feature of bank’s profitability

In our baseline model, the risk premium associated with the crash risk, κ, is assumed

to be an exogenously given constant. It is possible to endogenize this quantity by

assuming that the risk premium depends on the current leverage level given by:

κt ≡ κ0

(
At
Nt

)θ
= κ0l

θ
t
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where κ0 > 1 is a constant and 0 < θ < 1 is the Herfindahl index.

Since κ depends on the decision variable l explicitly, the general optimization prob-

lem under IRM j can be easily restated as:

max
l,f

Gj(l, f) ≡ max
l,f

{
[µ+ κ0λfl

θ − ρj(l, f)]l − σ2η

2
l2 + ρj(l, f) +

λpj
1− η

[φj(l, f)]1−η
}

It is still relatively straightforward to write down the first order conditions in l and f .

For example, in the case of liquidation (with zero bankruptcy cost cb = 0 to simplify

the exposition) the objective function becomes:

Gb(l, f) = (µ+ (κ0l
θ − 1 + τ)λf − ρ)l − σ2η

2
l2 + ρ+ λ(1− τ)

where the first order conditions in l and f are now given by:

∂Gb

∂l
= µ− ρ+ [κ0(θ + 1)lθ − (1− τ)]λf − σ2ηl,

∂Gb

∂f
= (κ0l

θ − 1 + τ)λl

With our standing assumption on the Merton ratio and κ0 > 1, we can show that the

first order condition in l can give an interior maximizer (there can be up to two roots

in l with the equation ∂Gb
∂l

= 0. The required maximizer is given by the larger root).

The same conditions also allow us to deduce ∂Gb
∂f
≥ 0 when evaluated along the optimal

choice of lb and hence fb = 1 is still optimal. We no longer have a simple analytical

solution of the optimal lb and as such numerical studies have to be considered. Similar

analysis can be done for the asset sales, bailout and bail-in regimes.

3 Numerical results of equity-conversion bail-in ver-

sus debt write-down bail-in

The optimal corporate policies under the equity-conversion bail-in and the debt write-

down bail-in are shown in Table 1 for different values of ξ ≡ ξi = ξd. Recall from
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Proposition 8 in the main paper that we have li < ld, fi < fd and qi < qd provided that

µ+[κ−(1−τ)]−ρ
σ2η

< l∗

ξ
≡ − 1

h
. Hence, we conjecture that an increase in ξ is more likely to

result in violations of these rankings.

We can see in Table 1 that the rankings of l, f and q hold for small values of

ξ up to 0.5. However, we start observing violations in the panel with ξ = 0.7 and

ξ = 0.9 where one can verify that the condition µ+[κ−(1−τ)]−ρ
σ2η

< l∗

ξ
is not satisfied.

For example, when ξ = 0.7 and λ = 0.1, we have fi = 96.30% > 96.19% = fd and

qi = 9.21% > 9.20% = qd. Some further numerical experiments (not reported here)

show that under our baseline parameters we require ξ to be at least 0.58 for the rankings

to be reversed.
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