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Abstract

This internet appendix consists of four major parts. The first part provides sup-
plementary details about the model and the results. The second part contains
technical materials complementing the proofs in the main paper. The third part
covers miscellaneous extensions such as the inclusion of a leverage constraint,
randomized insolvency resolution mechanisms, and the incorporation of transac-
tion costs and decreasing returns to scale. Finally, the last part offers further

numerical results comparing equity-conversion bail-in and write-down bail-in.



1 Further discussion of the model

1.1 Definition of managers’ claim under bailout regime

We provide further justification behind the definition of managers’ claim under bailout
regime as introduced in Section 2.2. Recall that managers survive a bailout with some
probability p, € [0, 1] and their stake in the inside equity is diluted by a factor £,(< 1).
The effect of dismissal and stake dilution upon the arrival of a shock can be captured by
a random variable X which takes on value &, with probability p, or value 0 otherwise.
In the former case insiders still have a claim after the shock, albeit a reduced one as

reflected by the factor §, < 1. In the latter case insiders lose their claim entirely.

Let A, = Hi:1 X,, be the cumulative dismissal-adjusted dilution factor after k
shocks have arrived, where X,, ~ X are i.i.d random variables independent of the net
worth dynamics. Denote by T} is the random arrival time of the k' crash. Managers’

optimization problem under the bailout regime can be stated as:

atsle, f 0 ' /T

T1 o Tk+1
M,(N) =max E (/ e MU (g, N,)dt + Z/ 675tU(AthNt)dt‘No = N) (A1)

It is straightforward to verify that:
E (A7) = [BE ()] = [pts ™"

using the i.i.d. property of X, ~ X. Due to the power form of the utility function,

and X,, and NV, being independent, (A.1) can be expressed as:
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0 k=1



1.2 Convexity, corner solution and the role of “skin in the

game”

Proposition 4 in the main paper suggests that a corner solution f, = 1 is observed in
the liquidation regime while interior solutions are observed in the bailout and bail-in
regime provided that v, > 0,v; > 0. Such phenomena could be understood via the
convexity behaviors of the managers’ objective function. For simplicity of exposition,
suppose [ is fixed and we just focus on the optimal choice of f. For small value of f
such that f < 1/l the firm remains solvent when a crash arrives and the insiders’ net
worth recovery rate is ¢s(f) = 1 — fl (the dependence on [ is suppressed as we consider
[ fixed here). For large value of f where f > 1/I, the bank becomes insolvent during
a crash and the insiders’ net worth recovery rate is ¢;(f) under IRM j. The recovery

rate as a function of all values of f can be compactly written as:

1—fl, f<1/l
GL—f), 1< f<1

o(f) =

As explained in Section 2.2, the managers’ claim value is the sum of expected
utility of the payout extracted up to the random arrival time of the macroshock and
the residual claim value. The former is indeed linear in f while the latter is proportional
to pj[o(f)]*~",! and hence the convexity of the managers’ objective function in f solely

depends on that of the residual component. It is thus sufficient to analyze the convexity

1See for example equation (34) in the main paper where the last term is indeed corresponding to

such residual claim value.



of the following function:

(L—foi= f<1/l
V(f) =

vi(1= ) 1/l< f<1
with v, = 0, v, > 0, v; > 0. The stylized plots of this function under j = b and j = 0,1

are shown in Figure 1.

When the IRM is liquidation, the managers are fired during the crash and they
receive nothing thereafter. The continuation value is thus zero on f > 1/I which is a
convex function. The creates the possibility of a corner solution at f = 1 which we

have verified its optimality.

When the IRM is bailout or bail-in, the managers can freeride on the government
subsidy or the severance claim payment. This is reflected by the discontinuity of the
continuation value function at f = 1/I. In particular, the managers will strictly prefer
a marginally insolvent firm to a marginally solvent one. However, the free subsidy also
creates local concavity near f = 1. This risk aversion introduced deters the managers

from putting the entire bank at risk.

Complement to Proof of Proposition 2 and 4: bailout regime. We
provide further technical details to identify the maximizer of H,(f) in the bailout

regime. Consider first the range f < fo. We have:

d
df

. — 2 h)
Gl =Ly

H;(f) = 12 f3 (1—f)m

= Fo(f)



F=1/1 =17 f=1/1 =1

(a) The IRM is liquidation (b) The IRM is bailout/bail-in with

f

Vo,V > 0.

Figure 1: The illustration of the convexity of managers’ objective function.

Observe that I',(0) = oo and I',(1) = —oo. Furthermore:
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where we have used the fact that %’\g_p < % over f < f,. Then we conclude Lo(f)=0
must have exactly one root fo € (0,1). We are going to show that the condition of
22 > 1+ % will imply f, < f, such that T,(f) > 0 for all f < f,. Hence H,(f) is
strictly increasing over f < f,. As a result, any maximum must be attained at some

> fo



Now consider the range of fo < f < 1. We have:

d pArNf—p O\ EAp A+ EAf = p) VoA

Ht/)(f) = @ 0_277 )

If v, = 0, we have H!(f) > 0 and the maximum must be attained at f = 1. Otherwise,

check that ©,(1) = —o0, ©,(0) = ‘;T_T‘]’ —* > 1> 0, and we can compute:

0,(f) = —voAn(L+1m)(1 = f)7"* <0

Thus O, is a strictly concave function starting with a positive value and ending with a
negative value, which must change sign from positive to negative exactly once at some
f = fo, given by the solution to ©,(f) = 0. We are going to show that the condition

’;;5 > 1+ % will result in fo < fo. Hence H,(f) must attain its maximum at some

A

interior point f, € (fo, 1).

Recall that fo, f, and f, are defined as the solutions to:

(f)Eu+f<c)\f—p_1

“ a2 7Y

_ Lt RAf—p VoA
=" Tha-gp "
L=t p o v

f? [ @=
respectively. The final step of the proof is to verify that if ’;—;5 > 1+ %, then fo < f,

and fo < fo-

We first show that f, < f,. The equations C(f) =0and I',(f) = 0 can be restated

as:

Ll(f)EﬁfZUTQU<l—u_p> = xa(f)

_ _om (L p—p\ _
n =55 = (5 ) o)




Then:
2 2 2 2 - 2 2 2 -1
n(75) = () (=) e () (257)
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- () oy < () e

where we have used the condition Z5£ > 1+ 22 and in turn % < (1+wv,/k)7"

It can be easily checked that L, is an increasing convex function on f € [0, 1).
Since Li(f) is linear, L1(0) = 0 = L9(0) and L, <%> > Ly (%), we must have

Ly(f) > Lg(f) for0 < f <7 o L. Moreover, since x1 <u2’,70> = 0, we must have f, < %

and fo <

EJ

We are going to establish fo < fo by argument of contradiction. Suppose instead

we have fo > fo. Then:

Xi(fo) = Li(fo) > La(fo) > La(fo) = xa(fo)

but this contradicts the fact that y; is a decreasing function.

To show that f, < f,, we restate the equations ¢,(f) = 0 and ©,(f) = 0 as:

1 A
L(f)=1- —“*’;j; 2 = (f)
o )\ -
L) = s = =

Since L4(f) is an increasing convex function with L,(0) =

Yo
K

<1< 52 =x,(0)

and xo(f) is linear, Ly(f) and y2(f) can cross only once where the crossing point gives



the solution f,. Moreover:

Li (;) - %(1 — (L4 v,/r)") 7 < &<1 — (1 +w/r)7)7

14+ v,/k
p=p _pt Rt 0/R) = p 1
o’n o’n A 1+v,/k

=14uv,/k <

Hence < fo and thus 7 <14t < b5l p On the other hand:

1+v 1+vo/k

alfo) = La(fy) = —

o

p=p _ RN =
o?n o?n

We obtain % < % < é and in turn f, < f,. m

Complement to Proof of Proposition 2 and 4: bail-in regime.

The goal here is almost identical to that for the bailout regime. Write fi, f; and f;

as the solutions to:

Ci(f)z/L—i—[fi—(1—7)(1+h)])\f—|—)\h(1—7')—p_l:0
o’n f
@}(f):M—i—[/i—(1—7’)(1—|—h)])\f—|—)\h(1—7')—p_ v _ g
R o k=1 =7) I+ M1~ f)m
pw—p+A(l—7) o2n v
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respectively. We want to verify that if %}f—ﬂ > 14 g and £ > (1+

h)(1 —7), then f; < f; and f; < fi.

We first show that f; < f;. The equations G(f)=0and I';(f) = 0 can be restated
as:

2
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Then:
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where we have used the condition =2 t\;;(l#) > 1+
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and in turn AT <
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One can verify that Lo is an increasing convex function on f € [0,1). Since L;(f)

2

is linear, L;(0) = 0 = Ly(0) and L, (u—p:/\;:(l—ﬂ> > Lo (#}%—ﬂ)? we must have

o2 . o2
Ll(f) > Lg(f) for 0 < f < W:(l—ﬂ Moreover, sice X1 (W:(l—ﬂ) = 0, we
~ 0,2 S 0,2
must have fz < Wf?(l*ﬂ and fz < W;Z(l*ﬂ

We can establish ﬁ < f; by argument of contradiction. Suppose instead we have

f,- > fz Then:

xi(fi) = Li(fs) > La(f) = La(fi) = xa(fo)
but this contradicts the fact that y; is a decreasing function.

To show that f; < f;, we restate the equations G(f)=0and ©;(f) =0 as:

p+[k—=0=71)1+ RN —p+ (1l —7)

— 1 — —
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Write w =1 — ——mm € (0,1). Note that ys is a linear increasing function.

Then:

s 2 pw—p+Ah(l—1) v;
N\ — — 1
o1 e S

and hence we have w > f, as L3 is a decreasing function. On the other hand:

B | = pH+ A1 —T) v;
La(fi) = x2(fi) =2 x2(0) = o2 > 1+ k—(1+h)(1—71)
_ > = Ly(w)

k—1—-7)1+h)](l-w) [k—0—=7)(1+h)](1—-w)m

and thus f; > w since L, is increasing. Then the result follows as f; > w > f;. =

Complement to Proof of Proposition 5. We complete the proof by estab-
lishing a useful identity. Suppose T is the arrival time of the first Poisson shock (such
that 7} has an Exp()) distribution) and recall that the net worth process under the

optimally chosen [; satisfies:

dN;

N {4+ &Xf; = pi (1))l + pi(ly) — mg;} dt + ol;dBy + (®; — 1)dy,

= g]dt + O'ldet + (CI)] - 1>dyt
We are going to show that if § + A — g; > 0, then:

E (6_5T1NT1) _ D\

=_ 7 N, A2
S+r—yg; * (A4.2)

To begin with, note that N; yields a closed-form expression:

272

N, = Nyd¥' ] I,B
t = INo®;" eXp 9j 9 t+oliby



where B; is a Brownian motion and Y; is a Poisson process. By construction, Y, =1

with probability one. Then:

2l2
E (e"mNTl) = Ny®,E {exp ((gj —J— %) T, + UljBTl):|

o2
= NO(I)jE {E |:€Xp ((g] -0 — Tj) T1 + O'ljBTl) |T1:| }

e D\
= No®; E[el9~9T] = Ny, / Ae M=t gt = :

0 5"‘)\_9] 0

For the sake of completeness, we also derive the expression of W, the net value

created under the liquidation regime:
T1 Tl
Wb =F |:/ 6_&(7} + dt)dt:| — NO = mqu |:/ 6_&Ntdt:| — N()
0 0
RN 0215
= mquoE e [(Tl > t) exp gy — T t+olyB; ) dt| — Ny
0

oo 2l2
= mquo/ {G&E [[(Tl > t)] x F [exp ((gb - %) t+ Ulet)} } dt — NO
0

where we have used the independence of B; and Y;. The second expectation term is

equal to exp(gyt), while the first term is:
E[I(Ty > t)] = E[I(Y; = 0)] = P(Y; = 0) = exp(—Xt)
Hence:

- mdp
Wy, = mqy, N —A+d—g)t]dt — Ng= | ———— — 1| N,
b = MQp 0/0 exp[—(A + 6 — g)1] 0 (A—I—(S—gb ) 0

Finally, the corresponding expression of W; (the net value created under the bail-in

regime) can be obtained in an identical fashion together with the help of (A.2). =

2 Extensions and further analysis

This section presents extensions of the model.

10



2.1 Leverage constraint

We incorporate a capital requirement by imposing that the gearing ratio [ does not
exceed an exogenously given constant [™%”. Proposition 4 in the main paper can be

easily modified to reflect the new solution structure.

Proposition 1 For the insolvency regime (i.e. k > k;), the optimal investment policy
(1) for the liquidation, bailout and bail-in regime in the presence of a leverage constraint
15 the lower of the unconstrained gearing ratio and the maximum allowable requlatory
gearing, i.e. 1§ = min (I;(f;), ™), where l;(f;) (for j = b,0,i) is the unconstrained
gearing level defined in Proposition 4 in the main paper. The optimal crash exposure
level is as described in Proposition 4 of the main paper for the unconstrained bank but
by replacing in equations (17) and (18) in the main paper the unconstrained gearing

level I5(f;) by the constrained level I5(f;). Junior debt is always risky under bail-ins.

Introducing a capital requirement reduces the optimal investment and risk exposure
in a fairly trivial fashion. The ranking of the optimal policies is not affected by a

minimum capital requirement.

Proof. Recall that the underlying optimization problem is:

_ e Ap; 1
e G0 = e L wd = o000 S04 500+ T2 o

over each regime j € {s,b,0,i}. An additional constraint fI < 1 (fI > 1) is imposed

when j =5 (j = b,0,1).
Asset sales regime

If [max > % = [, then the unconstrained solution is feasible. Otherwise if [™?* <

p—p
no?

, the original optimal leverage level [, = ’;;,f is no longer feasible. Recall that the

11



first order condition with respect to f is given by:

G, N
o =M (H_ (1—fl)’7> =0

and it is easy to verify that anGZS < 0 for any [ > 0. Hence if the optimization problem is

unconstrained then the optimal solution (I, f) is expected to lie on the curve ﬁ = K.

Write f(I) = 1_”;1/’7. To find the optimal I, we maximize G(I, f(1)). Differentiation

gives:
d
TG TW) = p+ R () —p ="l = kM) = = p— o™yl
If e < £28 then the candidate solution I = £27 is not feasible. Since £G,(L, f(1)) >
for [ < —’3 we should pick [ to be as large as possible such that the optimal [ must be

[ = ™ To summarize, the optimal (I, f) in presence of leverage constraint is given

T (“ —r zmax) —min(l, I70), f =
Note that fel¢=1— =" < 1.

In the rest of this section, we will assume [™?* > % such that the solution structure
under the asset sales regime will not be affected by the leverage constraint. If the value
of ™™ is too low, insolvency may not arise at all ex-ante because managers are not
allowed to reasonably leverage the bank. Under this assumption, we have shown in the
main paper that the managerial claim value under the asset sale regime is related to

the constant:

2
C C M_p
H.s = Gs(ls’fs) = %

We are going to view H, as a function of k. As in the main paper, the existence of a

critical k above which the managers will optimally switch from the asset sales regime

12



to the insolvency regime can be established by verifying that J;(x) := H;(k) — Hs(k)

is increasing in x. Here H; = G;(l5, ff) is viewed as a function of « for j € {b,0,1}.
Liquidation regime

The first order condition of G, with respect to f is:

oG
G_fb =k—0=7)(1—=c)]AN >0
and thus the optimal value of f is always f; = 1 no matter there is leverage constraint

or not. To find the optimal [, we just need to solve:

2
max Gp(l,f=1)= max [,U,—f-(li—l—f—T))\—p]l—%7712+p+/\(1—7')

1<l max 1<l [max

where the optimal value of [ is trivially given by:

—(1 =7\ —
lg — min (M + (’i ( 7—)) p, lmax) — min(lb7 lma:p)

no?

The managerial claim value under this regime is linked to the constant:

(H+(H—2§2‘;)>\—P)2 +p+ )\(1 _ T), [, < [maz

jib = Gb( gv be)
2
(u+ (k=14 7))\ = p)lm* — —‘72"(lm‘”‘)2 +p+N1=71), [>0m*

But it is clear that [, <™ <= k < K where K is some constant. Then:

AT+ Al —1) >0,  k<K;
Jy(k) =
AT AP 1) >0, k> K}

Hence the conclusion that J,(k) being strictly increasing remains unchanged.
Bailout regime

If v, = 0, then the problem is similar to that of the liquidation regime where the

optimal jump exposure is f$ = 1 and the optimal leverage level is simply:

l; = min (HK—H, lmaX> = min(l,, ["™*")

o 770_2

13



We now consider the case of v, > 0. Suppose the optimal leverage and jump
exposure in the unconstrained case are given by [, and f,. Then it is clear that if
[™@* >, the original solution (l,, f,) will remain feasible. We are interested in the case

where [™** < [,. The first two derivatives of G, with respect to [ and f are:

G, 0*G, 9
BJ =+ KNf —p—onl, ETE =—0mn<0
0G, 0*G,

=Rk — Av,(1— )77, —Xvgn(1— f)™"1 <0

of of* ~
Hence for any fixed f, Gy is increasing (resp. decreasing) in [ on the region [ <
lo(f) = ’”’Zf’\f;_p (resp. | > l,(f)). Likewise, for any fixed [, G, is increasing (resp.
decreasing) in f on the region f < f,(I) =1— (% )1/77 = 2 = D,(f) (resp.
f > fo(l) < 1 < D,(f)). Note that the unconstrained optimal policy (l,, f,) is
given by the intersection point of the functions [,(f) and D,(f) on the (f,l) plane. A
simple graphical consideration can reveal that [,(f) > D,(f) for f < f,. Thus for any

I <imw <1, =1,(f,), we have:

Goll, ) < Goll, fo(D)) < Go(I™™, fo(1)) < Go(I™, fo(I™))

ie. [f=1"""and fS=1— ( o ,.)1/77. Finally, using the same arguments as in Section

rlmaz

2 of this internet appendix, the condition ["™** > £5£ > 1 + % will ensure fglg > 1.

More generally, the optimal leverage ratio is given by ¢ = min([,, ["*"). Recall that

the unconstrained leverage ratio is given by [, = % where f, solves the equation:

P+ KA —p Vo

o?  RA—f)

It is easy to see that the solution f, is increasing in x. Hence [, must be increasing in

k. We can conclude there must exist K such that & = [, (I5 = ") whenever k < K

14



(k > K}). Let H, = G,(I¢, f¢). Then:

oo Gollo(fo(K); k), fo(K); K), K < K
Go(I™, f5(K), k), r> K]

We have verified in the main paper that:

S Gollo o)1), o) ) = Mo

Similarly, using the fact that f¢ satisfies the first order condition, we have:

d 0G, afs — 0G,
= X +

i o lm(l(lf7 C , — — A clmam
e U HOROE = RIS bt e ANIRE Y

Hence for J, = H, — H, the conclusion
J(K) = AT+ A(fIE— 1) > 0
still holds.
Bail-in regime

The analysis is identical to that of the bailout case and is thus omitted. The only
additional consideration is that we need to verify the junior debt is indeed risky under
the condition [me® > £op - H=pA(=T)
a?n o

> 14 K but this again could be

/{7(1+1;Li)(177

achieved by following the same arguments in Section 2 of this internet appendix. m

2.2 Government commitment and randomized IRMs

In reality, the government has no obligation to commit to a particular IRM. Therefore,
the bank’s insiders and debtholders may not know ex ante which IRM will be adopted.
In what follows we assume they have a common prior belief over the probability 7; that

a particular IRM j will be applied (with m, + 7, +m = 1 and 7; € [0, 1] for j = b, 0,1).

15



We first derive the cost of debt as a function of (I, f). Recall the notation intro-
duced in Table 1 of the main paper. What matters from the risk-neutral bondholders’

perspective is the expected recovery rate which is given by:

Q= mQp + 1 + 1 = (1 — mo — 1) + 70 + i

To simplify the exposition, we assume zero bankruptcy cost for the liquidation regime
such that ¢, = 0. The expected loss in default and the fair after-tax cost of debt are,

respectively:

1—Q=(1—m—m)(1 =) +m(1 = Q) + (1 — Q)
fl—1+ (f+h—fh)l-1

—1 T 1—1 and

p(l,f)=p+A1—-1) (1_7T0_7Ti)fl—1 (f+h—fh)l—1

-1 -1

=(1—-m—m)

From the perspective of the risk averse inside equityholders, the uncertainty regarding
the IRM affects the net worth adjustment following a shock. Suppose the bank is
risky (i.e. fl > 1). Then, immediately after a shock, there is a probability m, that
the managers get nothing (when the bank is liquidated), a probability 7, that the
managers receive a continuation value p,M(¢,NN) (when the bank is bailed out) and
a probability m; that the managers receive a severance claim value p; M (¢;N) (when
the bank is bailed-in). The HJB equation associated with the managerial claim value
can be suitably modified. The modified version of Proposition 4 in the main text is as

follows.

Proposition 2 In the insolvency regime, the optimal investment policy (1) under a

random IRM 1is:

[ = 1) = un;Qp N )\{/ﬁf—(1—7?0—7@-)(1—77'7)(7]?2—71'1-(1—7')[f(1+h)—h]}

16



If Tv, = mv; = 0, then managers adopt mazimum crash risk exposure (f = 1).
Otherwise, the optimal exposure level is given by some f € (0,1) which is the unique
solution to the equation:

T ToUo ;U

k—1=7)1—=7m—m)—m(1—=7)14+h)If) — (1—f)”_ (1— f)n

=0

The bank’s optimal investment and risk exposure policies are a weighted average of
the policies we previously derived for the case where the IRM is known ex ante. One

can recover our earlier solutions by setting m; equal to 1 for one of the probabilities.

Proof. Under randomized IRMs, the Hamilton-Jacobi-Bellman (HJB) equation of

the optimization problem becomes:

_ OM (Ny) _ OM (Ny)
OM(Ny) = ;{};}?JE{U(%NO — mq Ny N, + [+ wAf = p(le, f)]1:N AN,
1 22 a2 P M(N) OM (Ny)
oo Ny g ol N5
+ A Z (70 M (¢ (li, f)Ne) — M(Nt)]} (A.3)
je{b,0,i}

CN”

- for some constant

The form of the value function remains the same as M (N) =

C. Then after substitution and slight rearrangement, the HJB equation becomes:

A+0 gt - o?n ,
ATO 4 A — p(l, )l — =1
= qr;l(?Z(f{C(l— 7 mg + [u+ wAf = p(, Il = =

>\OO
+a(l )+ T2

1-n AT 1-n
2foult. N1+ 7264, 1) } (A1)

The right-hand-side of (A.4) decouples into:

where:

610,11 = {lu+ s = gDl = S04 50 + 57210, 0, P+ 37 o0,

17



Recall the notation v; = pjf;*". Using the expressions of p and ¢;, the objective

function can be further written as:

Gl f) = (u+rMf —p)l+p =M1 =7)[(1 = 7 — m)(fl = 1) + mi((f + fh— R)l = 1)]

o’n AT,U
gy oo o pylem g 20

It is then straightforward to write down the first order conditions for [ and f as:
p—ptMef—(1—m—m)1—7)f —m(l—7)[f(1+h) =]} —o®nl =0

and:

Hr = (=71 =7 —m) = m(l = 7)(1 + h)] - (17T—OU})" - (17EU}>" -

Then the optimal ([, f) can be characterized by the solutions to the above simultaneous

equations. The remaining technical gaps lie with checking: 1) the optimal solutions
indeed exist over the risky regime fI > 1, and 2) the first order conditions indeed yield
a global maximum. These can be achieved using the similar techniques considered in
the main paper. Note that if 7,v, = m;v; = 0, then the left-hand-side of the first order
condition of f will be strictly positive. This implies the objective function is increasing

in f and thus the optimal jump exposure is automatically given by f = f=1. =

2.3 Extension to asset sales with transaction costs

Our benchmark model assumes that asset sales can be performed in a frictionless
manner. In this section, we briefly discuss how the model can potentially be generalized

to incorporate transaction costs associated with asset rebalancing.

In presence of transaction costs, it is well known that a constant investment level

is not optimal but instead one should trade minimally to keep the allocation in the
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risky asset within a certain interval. This intuition is due to Magill and Constantinides
(1976), which later is verified rigorously by Davis and Norman (1990) and Shreve
and Soner (1994). No closed-form solution exists. The optimal policies have to be
identified as a part of the solution to a non-linear free boundary value problem. To
simplify analysis and facilitate comparison with our benchmark setup, we make the

following two assumptions.

First, transaction costs apply to asset balancing only during the arrival of an eco-
nomic downturn. This is a realistic assumption if we interpret transaction costs as
a liquidity premium. While trading loans is relatively inexpensive during good times
when rebalancing only involves small changes in the firm’s assets, risk appetite of mar-
ket participants goes down when the economy is experiencing distress (i.e. arrival of a
large negative shock). After a large negative macro-shock, financial institutions must
sell a significant fraction of their assets to rebalance and they may find it difficult to
find a counterparty unless the assets are sold at a discount. The discrepancy between
the asset book value and the actual executable price could be viewed as the transaction

cost.

Second, we impose that the bank must adopt a constant investment level [ = A;/N;.
A constant asset to net worth ratio is optimal in the absence of transaction costs, but
may be suboptimal from a theoretical point of view when there are transaction costs.
However, the restriction may originate from regulatory requirements that impose a cap
on the leverage ratio of the bank. We have shown in the main paper (see the example in
Section 3) that the bank’s leverage ratio could spike up drastically during a downturn.
Regulators may not allow the bank to wait and continue the operations based on such

a risky balance sheet, but instead a prompt deleveraging is required especially during
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a crisis.

Now, suppose the bank maintains a constant asset to net worth ratio [ and its
balance sheet prior to a macro-shock consists of A units of asset and N units of equity.
A shock brings the bank’s asset and equity down to (1 — f)A and N — fA units
respectively. The bank remains solvent for as long as N — fA > 0 or equivalently

:lgfz

2l

%. In absence of transaction costs, the bank delevers by selling fA(l — 1)
units of asset and uses the proceeds to pay off debt to maintain the target asset to net

worth ratio of [. See panel A in Figure 1 of the main paper for a recap.

Consider now a proportional transaction cost ¢ that has to be paid by the bank
when offloading the asset during a downturn. The amount of loan to be sold, A, should

now satisfy:

1-HA-A

N—fA—cA_l

which gives A = %. The net worth after rebalancing is:

1—c)fl
N fA—en—|1- 0=
1—cl
This quantity is non-negative if [ < c+flfcf = [,. Note that [, < % =1.

Special care has to be taken when defining ‘insolvency’ in the presence of transaction
costs. If [ < I, then the bank remains solvent after costly asset sales (rebalancing).
Consider the alternative scenario I, < | < [. After the downturn, the bank is still
solvent because | < [ and as such N — fA > 0. However, the bank’s leverage level is
too high and its entire equity capital will be depleted if it engages in costly delevering.
The transaction costs would wipe out the remaining equity, making it impossible for the

bank to restore the desired asset to net worth ratio [. If a solvent bank must restore its
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target balance sheet structure during a downturn, then the transaction costs involved

could drive the bank into insolvency post-rebalancing.

We therefore assume that insolvency is triggered during a downturn whenever [ > L.

. . . . . . _ (lfc)fl
The jump size of net worth in the regime of asset sales is now given by ¢4(l) = 1—5—-.

The first order conditions for the optimal investment level [ and downturn exposure f

can be derived as:

Af(1—
[+ KN — p— 1ol — ﬂ(f_() nc) —0 (A.5)
and
1—c (1—c)fi1™"
S b I S O = A.
" l—cl{ 1—¢l } 0 (4.6)
respectively.

Unlike the no-transaction cost case as in the main paper, we no longer have a closed-
form expression for the optimal exposure f,. Nonetheless, we can still infer the effect
of transaction cost on the investment level under a fixed f. In particular, note that
the left hand side of equation (A.5) is decreasing in ¢. This implies the solution /s(f)
is decreasing in c. Transaction costs thus reduce the bank’s investment and leverage

level when the exposure f to downturns is exogenously given.

2.4 Decreasing returns to scale feature of bank’s profitability

In our baseline model, the risk premium associated with the crash risk, k, is assumed
to be an exogenously given constant. It is possible to endogenize this quantity by

assuming that the risk premium depends on the current leverage level given by:

A 9
Kt = Ko (ﬁt) = /iolf
t
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where ko > 1 is a constant and 0 < 6 < 1 is the Herfindahl index.

Since k depends on the decision variable [ explicitly, the general optimization prob-

lem under IRM j can be easily restated as:

2 A\
i G(1.1) = o { -+ ko1 0D = G 4 (114 2 o0}

It is still relatively straightforward to write down the first order conditions in [ and f.
For example, in the case of liquidation (with zero bankruptcy cost ¢, = 0 to simplify

the exposition) the objective function becomes:
0 o1
Go(l, f) = (u+ (Kol” =1L+ T)Af — p)l — TZ o+ A1—-7)

where the first order conditions in [ and f are now given by:

6G, =p—p+ k(0 + 1)1 — (1 = D)Nf — o, %—(J;f’

— 0 _
al = (Kol 1+ T)/\l

With our standing assumption on the Merton ratio and k¢ > 1, we can show that the

first order condition in [ can give an interior maximizer (there can be up to two roots

in [ with the equation % = 0. The required maximizer is given by the larger root).
The same conditions also allow us to deduce 68—(5} > 0 when evaluated along the optimal

choice of [, and hence f, = 1 is still optimal. We no longer have a simple analytical
solution of the optimal [, and as such numerical studies have to be considered. Similar

analysis can be done for the asset sales, bailout and bail-in regimes.

3 Numerical results of equity-conversion bail-in ver-

sus debt write-down bail-in

The optimal corporate policies under the equity-conversion bail-in and the debt write-

down bail-in are shown in Table 1 for different values of & = & = &;. Recall from

22



Proposition 8 in the main paper that we have [; < Iy, f; < f; and ¢; < gq provided that

pls=(=n—p I — _

e F = % Hence, we conjecture that an increase in £ is more likely to

result in violations of these rankings.

We can see in Table 1 that the rankings of [, f and ¢ hold for small values of
¢ up to 0.5. However, we start observing violations in the panel with ¢ = 0.7 and

pt[r—(1-7)

¢ = 0.9 where one can verify that the condition prlr=(=7)]=p I
on

T 1s not satisfied.
For example, when £ = 0.7 and A = 0.1, we have f; = 96.30% > 96.19% = f; and
¢ = 9.21% > 9.20% = qq. Some further numerical experiments (not reported here)
show that under our baseline parameters we require £ to be at least 0.58 for the rankings

to be reversed.
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