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This Internet Appendix supplements the main paper in the following way. Section IA.1 
provides details of the modeling of the pension fund’s payout policy. Section IA.2 explains 
how we can reduce the dimensionality and solve an individual’s lifetime utility maximiza-

tion problem both with and without a mandatory pension scheme, and the numerical 
implementation of the solution is also described. Section IA.3 explains how we handle the 
optional features discussed in the main paper and provides detailed numerical results for 
welfare gains with a premature payout option. Finally, Section IA.4 considers the case 
with a cut in Social Security benefits and provides more detailed results for this case than 
in the main paper.

IA.1 Details of the model specification

In retirement, mt denotes the fraction of the pension account balance paid out to the 

member at the beginning of year t. In monetary units, the payout is mtAt. We fix 
mtM 

= 1 so when the individual turns tM years old, the fund pays out the remaining 
balance AtM 

. The payout pattern before tM is controlled by the so-called assumed interest 
rate schedule r̃tR 

, . . . , r̃tM−1. We define the payout rates recursively by

mt =
(

1 +m−1
t+1e

−r̃t(1 + dt)
−1
)−1

, t = tR, tR + 1, . . . , tM − 1, (IA.1)

which implies that

mt+1 = e−r̃t(1 + dt)
−1mt/(1−mt). (IA.2)
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The recursion is solved by

mt =
(

1 + e−r̃t(1 + dt)
−1 + e−(r̃t+r̃t+1)(1 + dt)

−1(1 + dt+1)−1 + . . .

+ e−(r̃t+r̃t+1+···+r̃tM−1)(1 + dt)
−1(1 + dt+1)−1 . . . (1 + dtM−1)−1

)−1
.

(IA.3)

Using αt = 0 for t ≥ tR, the pension balance dynamics in Eq. (5) simplifies to At+1 =

(1−mt)AtRAt(1 + dt), so

mt+1At+1 = e−r̃t(1 + dt)
−1 mt

1−mt
(1−mt)AtRAt(1 + dt) = mtAte

−r̃tRAt.

Therefore, the payout is increasing [decreasing] if the realized log after-tax return lnRAt

is greater [smaller] than the assumed interest rate r̃t at age t. We assume throughout the

paper that

r̃t = ln Et[RAt] ≡ ln
(
τA + (1− τA) exp{r + w(t)µS}

)
, (IA.4)

so that payouts are constant in expectation through retirement. By substituting (IA.4)

into (IA.2), we obtain the recursion (6) for m.

Expected payouts are increasing [decreasing] through retirement if r̃t is smaller [larger]

than ln Et[RAt]. We find that welfare gains are only marginally different with non-constant

expected payouts than with constant expected payouts (details are available upon request).

In addition, non-constant expected payouts complicate the plan design, whereas plan

simplicity facilitates transparency and, probably, public support. Hence, we stick to plans

with constant expected payouts.

IA.2 Solving the utility maximization problem

IA.2.1 The case with a mandatory pension scheme

The problem involves the three state variables Ft, Yt, and At, but is formulated so that

the dimensionality can be reduced by one. Different choices of scaling are possible, but

they are not equally convenient for the numerical solution approach, which involves a grid

for the scaled state variables. We define the scaled state variables

yt =
Ȳt

Ft + Āt
, at =

Āt
Ft + Āt

,
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where Ȳt = (1 − τY )Yt and Āt = (1 − τY )At. Here, we are using total (after-tax) savings

Ft+Āt as denominator, which is going to be relatively independent of the assumed pension

scheme since larger contribution rates that generate larger values of Ā tend to be partially

compensated by lower private savings and thus lower values of F . We are solving the

problem on a grid of points (t, y, a). Note that by definition a ∈ [0, 1] and y > 0, and we

impose a small lower bound y` > 0 and a suitable upper bound yu > y` on yt, and solve

the problem on a grid in the space [t1, tM ]× [y`, yu]× [0, 1]; see Appendix IA.2.3 for more

information on the numerical implementation.

An alternative would be to use disposable wealth Ft + Ȳt as the denominator and the

scaled state variables y′t = Ȳt/(Ft + Ȳt), a
′
t = Āt/(Ft + Ȳt). However, in this case the

denominator and the relevant range for a′ would depend heavily on the pension scheme

design, which complicates an appropriate definition of a grid for (y′, a′). Yet another

alternative would be to use Ft+Ȳt+Āt and the scaled state variables y′′t = Ȳt/(Ft+Ȳt+Āt),

a′′t = Āt/(Ft + Ȳt + Āt). However, in this case y′′ + a′′ ≤ 1, which hinders the use of a

square grid for (y′′, a′′).

Final year. Death is certain at the end of the period (ptM = 0). Since mtM
= 1, the

bequest is

BtM+1 = FtM+1 = (1− ctM )F̃tMRF,tM = (1− ctM )(FtM + ȲtM + ĀtM )RF,tM .

The certainty equivalent is

CEtM =
(

EtM

[
ξ

1−γ
ψ−1B1−γ

tM+1

]) 1
1−γ

= ξ
1

ψ−1
(
1− ctM

)
(FtM + ȲtM + ĀtM )

(
EtM

[
R1−γ
F,tM

]) 1
1−γ

= ξ
1

ψ−1 (1− ctM )(FtM + ĀtM )(1 + ytM )
(

EtM

[
R1−γ
F,tM

]) 1
1−γ

,

and the indirect utility is

JtM = max
ctM

,πtM

{(
ctM F̃tM

)1− 1
ψ

+ β CE
1− 1

ψ

tM

} 1

1− 1
ψ

= (FtM + ĀtM )(1 + ytM ) max
ctM

,πtM

c1− 1
ψ

tM
+ βξ

1
ψ
(
1− ctM

)1− 1
ψ

(
EtM

[
R1−γ
F,tM

]) 1− 1
ψ

1−γ


1

1− 1
ψ

.

Here, the optimal stock weight π∗tM is determined by maximizing
(

EtM

[
R1−γ
F,tM

])1/(1−γ)
,
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and then the optimal consumption rate and the indirect utility are given by

c∗tM =

(
1 + ξβψ

(
EtM

[
R1−γ
F,tM

])ψ−1
1−γ
)−1

, (IA.5)

JtM = (FtM + ĀtM )GtM (ytM , atM ), (IA.6)

where π∗tM is applied for generating the return and

GtM (ytM , atM ) = (1 + ytM )

(c∗tM )1− 1
ψ + βξ

1
ψ
(
1− c∗tM

)1− 1
ψ

(
EtM

[
R1−γ
F,tM

]) 1− 1
ψ

1−γ


1

1− 1
ψ

(IA.7)

which, in fact, does not depend on atM . Note that c∗tM ≈ 1/(1 + ξ) so the fraction of

disposable wealth not consumed, and thus used for bequest, is approximately ξ/(1 + ξ).

Hence, the bequest is approximately ξ times the amount consumed in the final year.

Non-final years, t = t1, . . . , tM − 1. The bequest next year is

Bt+1 = Ft+1 + (1− τY )(1− I)[(1−mt)At + αtYt]RAt = Ft+1 +
(1− I)Āt+1

1 + dt
.

For an induction argument, we assume that Jt+1 = (Ft+1 + Āt+1)Gt+1(yt+1, at+1) which

implies that the certainty equivalent is

CEt =
(
ptEt

[
(Ft+1 + Āt+1)1−γGt+1(yt+1, at+1)1−γ

]
+ (1− pt)Et

[
ξ

1−γ
ψ−1 (Ft+1 +

1− I
1 + dt

Āt+1)1−γ
]) 1

1−γ

= (Ft + Āt)

(
ptEt

[(
Ft+1+Āt+1

Ft+Āt

)1−γ
Gt+1(yt+1, at+1)1−γ

]
+ (1− pt)ξ

1−γ
ψ−1 Et

[(
Ft+1+ 1−I

1+dt
Āt+1

Ft+Āt

)1−γ ]) 1
1−γ

≡ (Ft + Āt)Ct(yt, at).

Here, the expectation is over the shock εSt to stock prices and (before retirement) the
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shock εY t to income, and we use that (for k = 1 or k = (1− I)/(1 + dt))

Ft+1 + kĀt+1

Ft + Āt
= (1− ct) (1 + (1− αt)yt − (1−mt)at)RFt + k ((1−mt)at + αtyt)RAt(1 + dt),

yt+1 =
ytRY t

(1− ct) (1 + (1− αt)yt − (1−mt)at)RFt + ((1−mt)at + αtyt)RAt(1 + dt)
,

at+1 =
((1−mt)at + αtyt)RAt(1 + dt)

(1− ct) (1 + (1− αt)yt − (1−mt)at)RFt + ((1−mt)at + αtyt)RAt(1 + dt)
.

The utility recursion (8) from the main paper implies that

Jt = max
ct,πt

{
c

1− 1
ψ

t

(
Ft + (1− αt)Ȳt +mtĀt

)1− 1
ψ + β

(
Ft + Āt

)1− 1
ψ Ct(yt, at)

1− 1
ψ

} 1

1− 1
ψ

=
(
Ft + Āt

)
max
ct,πt

{
c

1− 1
ψ

t (1 + (1− αt)yt − (1−mt)at)
1− 1

ψ + βCt(yt, at)
1− 1

ψ

} 1

1− 1
ψ

≡
(
Ft + Āt

)
Gt (yt, at) .

Since the expectation in Ct involves Gt+1, we get the recursion

Gt (yt, at) = max
ct,πt

{
c

1− 1
ψ

t (1 + (1− αt)yt − (1−mt)at)
1− 1

ψ

+ β

(
ptEt

[(
Ft+1+Āt+1

Ft+Āt

)1−γ
Gt+1(yt+1, at+1)1−γ

]

+ (1− pt)ξ
1−γ
ψ−1 Et

[(
Ft+1+ 1−I

1+dt
Āt+1

Ft+Āt

)1−γ ]) 1− 1
ψ

1−γ
} 1

1− 1
ψ

We solve this backwards starting with t = tM −1 in which case GtM is known from (IA.7).

IA.2.2 The case without a mandatory pension scheme

Suppose the individual spends a fraction η ∈ [0, 1] of his disposable wealth FtR−1 + ȲtR−1

on purchasing a life-long annuity which provides a payment at the beginning of each year

tR, tR + 1, . . . , tM conditional on being alive. The annuity stipulates an assumed interest

rate r̃ and a benchmark portfolio. As annuity payments are made, the value of the portfolio

is reduced correspondingly. Let Vt denote the value of the portfolio at the beginning of

year t, just before the annuity payment is made. We let mt denote the fraction of the
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portfolio value paid out, i.e. the annuity pays mtVt at the beginning of year t, where

mt =

(
tM∑
s=t

Pt,se
−r̃(s−t)

)−1

, t = tR, . . . , tM .

We assume that the amount η
(
FtR−1 + ȲtR−1

)
/(1 + k) is invested in the portfolio

immediately after the annuitization decision at the beginning of year tR − 1, where k ≥ 0

represents costs and profits of the issuer making the annuity less-than-fair for the indi-

vidual. The payment from the annuity is not taxed as it is financed by the savings of

after-tax labor income. The portfolio value at the beginning of year tR is then

VtR =
η

1 + k

(
FtR−1 + ȲtR−1

)
RV,tR−1p

−1
tR−1,

and the dynamics of the portfolio value are

Vt+1 = Vt(1−mt)RV tp
−1
t , t = tR + 1, . . . , tM ,

where RV t is the gross after-tax return on the portfolio, and the term p−1
t represents a

transfer of value from deceased customers in year t. We assume the same tax rate τF

applies to the returns on the annuity portfolio as the returns on non-annuitized private

investments so

RV t = 1 + (1− τF )

[
exp

{
r + wtµS −

1

2
w2
t σ

2
S + wtσSεSt

}
− 1

]
,

where wt is the annuity portfolio weight of the stock in year t. As explained in Section IA.1,

the payout is increasing [decreasing] if the realized log after-tax return lnRV t is greater

[smaller] than the assumed interest rate r̃. A fixed annuity is a special case where r̃ =

ln (τF + (1− τF )(er − 1)).

The dynamics of private, non-annuitized wealth are

Ft+1 =


(1− ct)

(
Ft + Ȳt +mtVt

)
RFt for t = tR, . . . , tM ,

(1− ct)(1− η)
(
Ft + Ȳt

)
RFt for t = tR − 1,

(1− ct)
(
Ft + Ȳt

)
RFt for t = t1, . . . , tR − 2.

Here Ȳt = (1 − τY )Yt and the dynamics of Y are given by Eqs. (1) and (2) in the main

paper.
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The state variables for this problem are Ft, Ȳt before retirement and Ft, Ȳt, Vt in re-

tirement. The problem set up allows us to reduce the dimensionality by one through a

scaling. We show below that the indirect utility has the form

Jt =

(Ft + Vt)Gt(yt, vt) for t = tR, . . . , tM ,

FtGt(yt), for t = t1, . . . , tR − 1,

where

yt =
Ȳt

Ft + Vt
, vt =

Vt
Ft + Vt

,

with Vt = vt = 0 for t = t1, . . . , tR − 1, and Gt and the optimal decisions are determined

by backward recursion.

Final year, t = tM . The individual is sure to die at the end of the period, leaving a

bequest of

BtM+1 = FtM+1 = (1− ctM )
(
FtM + ȲtM + VtM

)
RF,tM ,

where we have applied mtM
= 1. The certainty equivalent is therefore

CEtM =
(

EtM

[
ξ

1−γ
ψ−1B1−γ

tM+1

]) 1
1−γ

= ξ
1

ψ−1 (1−ctM )
(
FtM + VtM

)
(1+ytM )

(
EtM

[
R1−γ
F,tM

]) 1
1−γ

.

The indirect utility is

JtM = max
ctM

,πtM

{(
ctM [FtM + ȲtM + VtM ]

)1− 1
ψ + β CE

1− 1
ψ

tM

} 1

1− 1
ψ

=
(
FtM + VtM

)
GtM (ytM , vtM ),

where

GtM (ytM , vtM ) = (1 + ytM ) max
ctM

,πtM

{
c

1− 1
ψ

tM
+ βξ

1
ψ (1− ctM )

1− 1
ψ

(
EtM

[
R1−γ
F,tM

]) 1− 1
ψ

1−γ
} 1

1− 1
ψ ,

which in fact is independent of vtM . The optimal portfolio weight π∗tM is determined

numerically by maximizing
(

EtM

[
R1−γ
F,tM

]) 1
1−γ

. The optimal consumption rate is

c∗tM =

(
1 + ξβψ

(
EtM

[
R1−γ
F,tM

])ψ−1
1−γ
)−1

.
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In retirement, t = tR, tR + 1, . . . , tM − 1. The bequest if dying at the beginning of year

t+ 1 is Bt+1 = Ft+1. With Jt+1 = (Ft+1 + Vt+1)Gt+1(yt+1, vt+1), the certainty equivalent

is

CEt =
(
ptEt

[
(Ft+1 + Vt+1)1−γGt+1(yt+1, vt+1)1−γ

]
+ (1− pt)Et

[
ξ

1−γ
ψ−1F 1−γ

t+1

] ) 1
1−γ

= (Ft + Vt)

(
ptEt

[(
Ft+1+Vt+1

Ft+Vt

)1−γ
Gt+1(yt+1, vt+1)1−γ

]
+ (1− pt)ξ

1−γ
ψ−1 Et

[(
Ft+1

Ft+Vt

)1−γ
]) 1

1−γ

≡ (Ft + Vt)Ct(yt, vt).

Here, the expectation is over the shock εSt to stock prices, and we use that

Ft+1 + Vt+1

Ft + Vt
= (1− ct) (1 + yt − (1−mt)vt)RFt + (1−mt)vtRV tp

−1
t ,

Ft+1

Ft + Vt
= (1− ct) (1 + yt − (1−mt)vt)RFt,

yt+1 =
ytRY t

(1− ct) (1 + yt − (1−mt)vt)RFt + (1−mt)vtRV tp
−1
t

,

vt+1 =
(1−mt)vtRV tp

−1
t

(1− ct) (1 + yt − (1−mt)vt)RFt + (1−mt)vtRV tp
−1
t

with RY t = 1. The indirect utility is

Jt = max
ct,πt

{
c

1− 1
ψ

t (Ft + Ȳt +mtVt)
1− 1

ψ + β (Ft + Vt)
1− 1

ψ Ct(yt, vt)
1− 1

ψ

} 1

1− 1
ψ

= (Ft + Vt) max
ct,πt

{
c

1− 1
ψ

t (1 + yt − (1−mt)vt)
1− 1

ψ + βCt(yt, vt)
1− 1

ψ

} 1

1− 1
ψ

≡ (Ft + Vt)Gt(yt, vt).

Note that G satisfies the recursion

Gt (yt, vt) = max
ct,πt

{
c

1− 1
ψ

t (1 + yt − (1−mt)vt)
1− 1

ψ

+β

(
ptEt

[(
Ft+1+Vt+1

Ft+Vt

)1−γ
Gt+1(yt+1, vt+1)1−γ

]
+(1−pt)ξ

1−γ
ψ−1 Et

[(
Ft+1

Ft+Vt

)1−γ
]) 1− 1

ψ
1−γ
} 1

1− 1
ψ .

The optimal consumption rate c∗t and the optimal portfolio weight π∗t are determined

numerically.
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At retirement, t = tR−1. The bequest if dying just before year tR begins is BtR = FtR .

With JtR =
(
FtR + VtR

)
GtR(ytR , vtR), the certainty equivalent is

CEtR−1 =
(
ptR−1EtR−1

[
(FtR + VtR)1−γGtR(ytR , vtR)1−γ

]
+ (1− ptR−1)ξ

1−γ
ψ−1 EtR−1

[
F 1−γ
tR

] ) 1
1−γ

= FtR−1

(
ptR−1EtR−1

[(
FtR

+VtR
FtR−1

)1−γ
GtR(ytR , vtR)1−γ

]
+ (1− ptR−1)ξ

1−γ
ψ−1 EtR−1

[(
FtR
FtR−1

)1−γ
]) 1

1−γ

≡ FtR−1CtR−1(ytR−1).

Here, the expectation is over the shock εSt to stock prices, and we use that

FtR + VtR
FtR−1

= (1 + ytR−1)

[
(1− ctR−1)(1− η)RF,tR−1 +

η

1 + k
RV,tR−1p

−1
tR−1

]
,

FtR
FtR−1

= (1− ctR−1)(1− η)(1 + ytR−1)RF,tR−1,

ytR =
ζytR−1

(1 + ytR−1)
[
(1− ctR−1)(1− η)RF,tR−1 + η

1+kRV,tR−1p
−1
tR−1

] ,
vtR =

η
1+kRV,tR−1p

−1
tR−1

(1− ctR−1)(1− η)RF,tR−1 + η
1+kRV,tR−1p

−1
tR−1

.

The indirect utility is

JtR−1 = max
ctR−1,πtR−1,η

{
c

1− 1
ψ

tR−1(1− η)
1− 1

ψ (FtR−1 + ȲtR−1)
1− 1

ψ + βF
1− 1

ψ

tR−1CtR−1(ytR−1)
1− 1

ψ

} 1

1− 1
ψ

= FtR−1 max
ctR−1,πtR−1,η

{
c

1− 1
ψ

tR−1(1− η)
1− 1

ψ (1 + ytR−1)
1− 1

ψ + βCtR−1(ytR−1)
1− 1

ψ

} 1

1− 1
ψ

≡ FtR−1GtR−1(ytR−1).
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Note that G satisfies the recursion

GtR−1(ytR−1) = max
η,ctR−1
πtR−1

{
c

1− 1
ψ

tR−1(1− η)
1− 1

ψ (1 + ytR−1)
1− 1

ψ

+ β

(
ptR−1EtR−1

[(
FtR

+VtR
FtR−1

)1−γ
GtR(ytR , vtR)1−γ

]

+ (1− ptR−1)ξ
1−γ
ψ−1 EtR−1

[(
FtR
FtR−1

)1−γ
]) 1− 1

ψ
1−γ
} 1

1− 1
ψ

.

The optimal annuitization rate η∗, the optimal consumption rate c∗tR−1, and the optimal

portfolio weight π∗tR−1 are determined by numerical maximization.

Before retirement, t = t1, t1 + 1, . . . , tR − 2. The bequest if dying at the beginning of

year t+ 1 is Bt+1 = Ft+1. With Jt+1 = Ft+1Gt+1(yt+1), the certainty equivalent is

CEt =
(
ptEt

[
F 1−γ
t+1 Gt+1(yt+1)1−γ

]
+ (1− pt)Et

[
ξ

1−γ
ψ−1F 1−γ

t+1

] ) 1
1−γ

= Ft

(
ptEt

[(
Ft+1

Ft

)1−γ
Gt+1(yt+1)1−γ

]
+ (1− pt)ξ

1−γ
ψ−1 Et

[(
Ft+1

Ft

)1−γ
]) 1

1−γ

≡ FtCt(yt).

Here, the expectation is over the shock εSt to stock prices and the shock εY t to income,

and we use that

Ft+1

Ft
= (1− ct)(1 + yt)RFt, yt+1 =

ytRY t
(1− ct)(1 + yt)RFt

.

The indirect utility is

Jt = max
ct,πt

{
c

1− 1
ψ

t (Ft + Ȳt)
1− 1

ψ + βF
1− 1

ψ

t Ct(yt)
1− 1

ψ

} 1

1− 1
ψ

= Ft max
ct,πt

{
c

1− 1
ψ

t (1 + yt)
1− 1

ψ + βCt(yt)
1− 1

ψ

} 1

1− 1
ψ

≡ FtGt(yt).
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Note that G satisfies the recursion

Gt (yt) = max
ct,πt

{
c

1− 1
ψ

t (1 + yt)
1− 1

ψ + β

(
ptEt

[(
Ft+1

Ft

)1−γ
Gt+1(yt+1)1−γ

]

+ (1− pt)ξ
1−γ
ψ−1 Et

[(
Ft+1

Ft

)1−γ
]) 1− 1

ψ
1−γ
} 1

1− 1
ψ

The optimal consumption rate c∗t and the optimal portfolio weight π∗t are determined

numerically.

In the situation where the individual does not have access to annuitization at retire-

ment, then η = 0 in the above derivations and the state variable vt ≡ 0 drops out.

IA.2.3 The numerical solution approach

Both in the case with and the case without a mandatory pension plan, the scaled state

variable y is varying considerably over the working phase of life. With typical values

of parameters and initial conditions, y starts out very high as annual income tends to

be large relative to financial wealth for young individuals. As wealth accumulates over

life, the value of y typically drops considerably approaching retirement. Such variations

can be problematic when implementing the dynamic programming approach to utility

maximization on an equidistant and relatively sparse grid.1 Hence, we define

ŷt = yt exp{−ky(tR − 1− t)+ + kret
y (t− tR)+}/

(
1− (1− ζ)1{t≥tR}

)
and form the grid using ŷ instead of y. The scaled variable ŷ is more stable over life

than y with an appropriate choice of ky, which depends on the values of parameters,

initial conditions, the contribution rate and starting age, as well as the assumed degree of

financial sophistication. Denote the initial income-wealth ratio by y0, a “target” income-

wealth ratio at retirement by yR, and a “target” terminal income-wealth ratio by yM .

Then we let ky = − ln(yR/y0)/(tR − 1− t1) and kret
y = ln(yR/yM )/(tM − tR). Clearly, yM

should be decreasing in the bequest weight ξ and yM = 1/(0.1 + ξ) works well. Moreover,

yR should be higher for low savers and thus decreasing in γ and higher for procrastinators

than rational individuals.

After extensive experimentation, we have settled on a 21 × 21 grid which produces

robust and precise results with decent computation time. With our Matlab implementation

1
In retirement, both wealth and net income decrease, leaving less systematic variation in y.
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on a PC with an Intel Core i7-8550U 1.8GHz processor, the calculation of the optimal

private decisions and indirect utility for a given pension design takes about eight minutes.

The grid is an equidistant grid on (ŷ, a) ∈ [ŷmin, ŷmin + (ŷt1 − ŷmin)/0.7] × [0, 1], where

ŷmin = min{0.001, 0.1 × ŷt1}. We first solve backwards in time for optimal decisions and

the indirect utility on the grid, and then we simulate forward in time and make sure that

the scaled state variables along almost all paths stay nicely within the grid boundaries, if

not we vary yR and, possibly, the grid spacing.

The backward recursions for the function Gt involve an expectation of a function of one

or two standard normally distributed random variables. We approximate this expectation

by the use of Gauss-Hermite quadrature. The continuous distribution of each standard

normal random variable is approximated by a discrete distribution involving some number

n of possible values and associated weights. In the one-dimensional case, we would like to

calculate E[h(ε1)] where ε1 ∼ N(0, 1). Then the approximation is

E[h(ε1)] ≈ 1√
π

n∑
i=1

wih(
√

2xi),

where xi is node i, wi the associated weight, and π is the constant 3.14159.... The ratio

pi = wi/
√
π is effectively the probability assigned to zi =

√
2xi. In the two-dimensional

case, we would like to calculate E[h(ε1, ε2)] where ε1, ε2 ∼ N(0, 1) are independent. Then

the approximation is

E[h(ε1, ε2)] ≈ 1

π

n∑
i=1

n∑
j=1

wiwjh(
√

2xi,
√

2xj),

The nodes and weights can be calculated with the socalled Golub-Welsch method. We

use n = 9 nodes as, e.g., Blake, Wright, and Zhang (2014, App. A), and in this case the

numbers are:

12



i xi wi yi pi

1 -3.19099 3.96070×10−5 -4.51274 2.23459×10−5

2 -2.26658 0.00494362 -3.20543 0.00278914

3 -1.46855 0.0884745 -2.07684 0.0499164

4 -0.723551 0.432652 -1.02326 0.244098

5 0 0.720235 0 0.406349

6 0.723551 0.432652 1.02326 0.244098

7 1.46855 0.088475 2.07684 0.0499164

8 2.26658 0.00494362 3.20543 0.00278914

9 3.19099 3.96070×10−5 4.51274 2.23459×10−5

The values of the state variables corresponding to
√

2xi and
√

2xj do typically not

match points in the grid for the state variable. If outside the grid boundaries, we use the

value at the nearest boundary. If inside the grid boundaries, we use linear interpolation.

IA.3 Sweetening options

IA.3.1 Some tractable option features

Option to pay out fraction of pension savings without penalty. Suppose the

individual at a prespecified age t can choose to pay out a fraction ν ∈ [0, ν̄] of the pension

savings to the private, liquid account without paying a penalty. The payout is taxed at

the income tax rate, just as the regular retirement payouts are. Then

Jt−(Ft, Yt, At) = max
ν

Jt (Ft + ν[1− τY ]At, Yt, [1− ν]At)

= max
ν

(Ft + ν[1− τY ]At + [1− τY ][1− ν]At)Gt (yt, [1− ν]at)

= max
ν

(Ft + [1− τY ]At)Gt (yt, [1− ν]at)

= (Ft + [1− τY ]At) max
ν

Gt (yt, [1− ν]at)

= (Ft + [1− τY ]At)Gt
(
yt, [1− ν

∗(yt, at)]at
)

≡ (Ft + [1− τY ]At)Gt−(yt, at).

This option can be handled with a single “grid.”

Option to change contribution rate from a certain age. Suppose the individual

at a prespecified age t < tR − 1 has the option to change the fixed, original contribution

13



rate α to another value α′ from some set A of possible values. Then

Jt−(Ft, Yt, At) = max
α
′∈A

Jt(Ft, Yt, At;α
′)

= {(Ft + [1− τY ]At) max
α
′∈A

Gt(yt, at;α
′)

= {(Ft + [1− τY ]At)Gt
(
yt, at;α

∗(yt, at)
)

≡ (Ft + [1− τY ]At)Gt−(yt, at).

Since the optimally chosen contribution rate α∗ is depending only on yt and at, the sep-

aration is maintained. In an implementation, we need to calculate and store the values

Gt(y, a;α′) in all grid points (y, a) for all possible choices of α′ from time t and on. With

α′ = 0 being the only alternative, this option is a halt option, i.e., an option to terminate

contributions prematurely.

IA.3.2 Numerical results with sweetening options

Table 5 in the main paper shows that rational individuals with low RRA (and low-to-

modest EIS and bequest weight) dislike the plan with 10% contributions from age 30,

even if they can choose the full-stock strategy IP5 and their favorite solidarity factor.

Of course, they would prefer contributions at a lower rate or starting later or both, but

such a change would reduce the welfare gains for procrastinators and for more risk-averse

rational individuals. An alternative strategy is to maintain the 10%/30y plan but add

options that are valuable primarily to the low-RRA rational individuals and do not allow

procrastinators to reduce their savings substantially in the early part of the accumulation

phase. One option found in some mandatory pension plans is to shift between investment

policies throughout the contribution period. However, in our setting the RRA 2 individual

would hardly ever want to deviate from the IP5 policy, so this option has little value to

the critical type of participants given that they can already choose their preferred policy

at enrollment.

We consider introducing a “payout option” allowing the individual to pay out a fraction

of the pension account, up to some specified limit, at some specified age close to retirement.

The payout is taxed at the income tax rate, but there is no additional penalty for the

premature payout. As shown above, such an option respects the separation in Eq. (10)

in the main paper and is thus numerically tractable. Table IA.1 shows how individuals

with various preference parameters use and benefit from selected payout options. For a
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γ ψ ξ No option 10% at 60 10% at 66 12% at 55 19% at 60 30% at 66

Rational
4 1/4 2 2.06 2.26 (3.8) 2.10 (2.6) 2.25 (4.8) 2.41 (6.3) 2.15 (3.0)
6 1/4 2 2.50 2.63 (0.9) 2.58 (0.8) 2.61 (0.7) 2.70 (1.4) 2.58 (0.8)
2 1/4 2 -0.21 0.18 (6.8) -0.09 (2.3) 0.24 (9.7) 0.38 (12.0) -0.09 (2.7)
2 1/6 2 -0.53 -0.14 (7.4) -0.43 (5.5) -0.07 (10.4) 0.04 (13.1) -0.42 (10.8)
2 1/4 1/2 -0.72 -0.15 (8.2) -0.52 (3.5) -0.06 (11.1) 0.11 (14.9) -0.52 (3.9)
2 1/6 1/2 -1.35 -0.83 (8.7) -1.21 (6.4) -0.72 (11.6) -0.61 (15.9) -1.21 (8.3)

Procrastinator
4 1/4 2 30.34 31.10 (10.0) 30.45 (10.0) 31.03 (12.0) 31.18 (19.0) 29.24 (29.1)
6 1/4 2 45.69 46.37 (9.8) 45.38 (9.1) 45.98 (12.0) 45.85 (18.4) 43.36 (20.1)
2 1/4 2 12.32 12.88 (10.0) 12.39 (10.0) 12.81 (12.0) 13.02 (19.0) 11.98 (29.4)

Table IA.1: Welfare gains with a payout option. The table shows percentage welfare gains
when a payout option is added to the 10%/30y plan. The header ‘10% at 60’ means that the
individual can choose to pay out up to 10% of the pension wealth at age 60. Similarly for the other
headings. The number in parenthesis shows the percentage of pension wealth that the individual
would choose on average to pay out across the 10,000 simulated paths.

rational individual with the base case parameters (top row) we see that the option to

pay out up to 10% of pension savings at age 60 increases the welfare gain induced by the

mandatory plan from 2.06% to 2.26%. The individual exercises the option in states with

high at (high pension wealth relative to liquid wealth) or low yt (low income relative to

total wealth). On average across all states, the individual chooses to pay out 3.8% of the

pension balance. If the same option is available at age 66, it is less valuable with a gain

of only 2.10%.

The payout option is relatively more valuable to the risk-tolerant individuals who

dislike accumulating high wealth. With RRA 2 (and still EIS 1/4 and bequest weight 2),

the ‘10% at age 60’ option turns the welfare loss of 0.21% into a gain of 0.18% with an

average payout of 6.8% of wealth. The RRA 6 individual pays out 0.9% on average with

the welfare gain increasing marginally from 2.50% to 2.63%.

The rational individuals with RRA 2 choose the full-stock policy IP5 instead of the

default IP3, and this leads to a significantly larger pension wealth being build up: about

12% at age 55, 19% at age 60, and 30% at age 66, for example (using I = 1 both for IP3

and IP5). One idea is that the individuals choosing IP5 can be allowed to pay out the

excess pension savings. In fact, we see from Table IA.1 that the option to pay out up

to 19% at age 60 leads to a gain for the risk-tolerant, rational individuals, except for the

one with low EIS and low bequest weight who incurs a loss of 0.61% instead of the 1.35%
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without the option and who would need an option to pay out 35% at age 50, for example,

to reach a gain.

Procrastinators choose to pay out a larger fraction of the savings when possible. Given

the option to pay out up to 10% at age 60, we find that the procrastinator always pays

out 10% with RRA 2 or 4 and, on average, 9.8% with RRA 6. This premature payout

facilitates an even better consumption plan so that the welfare gain increases slightly,

for example from 30.34% to 31.10% for RRA 4. However, options allowing a significant

premature payout decrease the welfare gain of the pension plan as seen in Table IA.1 for

the ‘30% at 66’ option. Overall, an option to pay out 19% at age 60 seems valuable to a

broad range of individuals and particularly to the risk-tolerant rational individuals who

would lose from the mandatory plan without such an option.

Another option tractable in our setting is a “halt option” allowing the individual to

terminate contributions at some specified age before retirement. This is just as special case

of the option to change the contribution rate from a certain age that was shown to respect

the indirect utility separation in the previous subsection. As the payout option, individuals

would tend to exercise the halt option if their pension wealth is a large share of total wealth

or if income is low relative to total wealth. However, terminating contributions, say, at

age 60 reduces the accumulated savings at retirement rather modestly which results in

smaller welfare improvements than found for the payout option. For example, a rational

individual with RRA 2 (and EIS 1/4, bequest weight 2) would choose to halt contributions

at age 60 in 31% of the states, which reduces the loss from 0.21% to only 0.11%.

IA.4 Reduction in Social Security benefits

Our main analysis assumes Social Security retirement benefits at the current level. As

explained in the main paper, the Social Security system lacks funding and is further

stressed by the projected increased budget deficit and debt over the coming decades. To

avoid the need for direct government subsidies or substantial increases in the retirement

age or the pay-roll tax rate financing the system, benefits have to be cut to make the

system sustainable. The April 2020 report of the Social Security and Medicare Boards of

Trustees estimates that a 24% cut in benefits is necessary.2

In our model, the parameter ζ represents the level of Social Security benefits to pre-

2
Sources: http://www.crfb.org/papers/updated-budget-projections-show-fiscal-toll-covid-

19-pandemic and https://www.ssa.gov/OACT/TR/2020/index.html, accessed on August 7, 2020.

16

http://www.crfb.org/papers/updated-budget-projections-show-fiscal-toll-covid-19-pandemic
http://www.crfb.org/papers/updated-budget-projections-show-fiscal-toll-covid-19-pandemic
https://www.ssa.gov/OACT/TR/2020/index.html


retirement income. Hence, we consider the implications of a 24% reduction in ζ from 0.45

to 0.342 so that Social Security benefits are reduced from 45% to 34.2% of pre-retirement

income. We keep the retirement age and the tax rates unchanged, and repeat the analysis

from Section 4.1 with the new parameter values. Since we have modeled the possible out-

of-pocket medical expenses as fractions h = 0.03, H = 0.85 of Social Security benefits, we

multiply these parameters by 1/(1− 0.24) ≈ 1.316 to keep expenses fixed in dollar terms.

However, to avoid costs exceeding income, we cap H at 0.95, effectively assuming that a

positive net income is ensured through other welfare programs or support from family and

friends.

Table IA.2 shows the welfare implications selected pension plans with the reduced

Social Security benefits. When comparing with the base case in Table 3, we see that

individuals appreciate a given pension plan more when Social Security is cut. The optimal

contribution rate increases. Based on the weighted average gains, the best plans still have

contributions from age 30, but now contribution rates of 11% or 12% provide the largest

average gain of about 22.4% (or $193,000), whereas the largest average gain of around

20.3% ($175,000) in the base case was obtained with a contribution rate of 10% and 11%.

As in the base case, the lower contribution rate has the benefit of causing only marginal

losses for the most risk-tolerant rational individuals, losses that can be eliminated or

reduced by adding a payout option as discussed in Section 4.4. To sum up, with a 24%

cut in Social Security benefits, a well-designed mandatory pension scheme is even more

appreciated, and the optimal contribution rate increases from 10% to 11%.
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25-66y 30-66y 35-66y

8% 9% 10% 11% 10% 11% 12% 13% 13% 14% 15% 16%

Panel A: Rational
RRA 2
Default -2.52 -3.27 -4.07 -4.91 -1.31 -1.77 -2.27 -2.80 -0.80 -1.10 -1.43 -1.79
With IP/SF option -0.29 -0.80 -1.39 -2.05 0.20 -0.15 -0.56 -1.02 0.52 0.27 -0.01 -0.32
Best IP/SF 5/0.2 5/0.1 5/0.1 5/0.1 5/0.4 5/0.3 5/0.3 5/0.3 5/0.5 5/0.4 5/0.4 5/0.4

RRA 4
Default 1.53 1.22 0.77 0.19 2.35 2.30 2.13 1.86 2.47 2.50 2.45 2.34
With IP/SF option 1.58 1.37 1.01 0.53 2.35 2.31 2.22 2.04 2.47 2.50 2.48 2.44
Best IP/SF 3/0.9 3/0.9 3/0.9 3/0.9 3/1.0 3/0.9 3/0.9 3/0.9 3/1.0 3/1.0 3/0.9 3/0.9

RRA 6
Default 2.22 2.37 2.33 2.13 2.43 2.74 2.95 3.04 2.29 2.59 2.83 3.01
With IP/SF option 2.22 2.37 2.33 2.13 2.43 2.74 2.95 3.04 2.29 2.59 2.83 3.01
Best IP/SF 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0

Panel B: Procrastinator
RRA 2
Default 9.91 9.34 8.65 7.87 10.90 10.55 10.11 9.60 10.98 10.71 10.39 10.00
With IP/SF option 16.28 16.13 15.75 15.20 15.86 15.78 15.55 15.19 15.23 15.13 14.93 14.63
Best IP/SF 5/0.1 5/0.1 5/0.1 5/0.1 5/0.2 5/0.2 5/0.2 5/0.2 5/0.2 5/0.2 5/0.2 5/0.2

RRA 4
Default 32.64 32.65 32.33 31.76 33.34 33.49 33.39 33.09 32.79 32.89 32.81 32.58
With IP/SF option 32.64 32.65 32.33 31.76 33.34 33.49 33.39 33.09 32.79 32.89 32.81 32.58
Best IP/SF 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0

RRA 6
Default 47.43 48.73 49.36 49.50 46.80 48.07 48.81 49.13 45.03 46.03 46.67 47.00
With IP/SF option 47.43 48.73 49.36 49.50 46.80 48.07 48.81 49.13 45.03 46.03 46.67 47.00
Best IP/SF 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0 3/1.0

Panel C: Average gains
Equal weights
Default 15.20 15.17 14.89 14.42 15.75 15.90 15.85 15.65 15.46 15.60 15.62 15.52
All optimal IP/SF 16.64 16.74 16.57 16.18 16.83 17.04 17.06 16.91 16.39 16.57 16.62 16.56
Rational opt. IP/SF 15.58 15.61 15.38 14.96 16.00 16.17 16.15 15.98 15.68 15.83 15.86 15.79

Non-equal weights
Default 20.67 20.69 20.43 19.95 21.21 21.40 21.36 21.15 20.80 20.96 20.97 20.85
All optimal IP/SF 21.92 22.05 21.88 21.46 22.17 22.41 22.43 22.26 21.62 21.81 21.85 21.76
Rational opt. IP/SF 20.86 20.92 20.69 20.24 21.34 21.53 21.52 21.33 20.91 21.08 21.10 20.99

Table IA.2: Welfare implications of selected pension plans: Social Security cuts. Per-
centage welfare gains are shown for rational individuals in Panel A and procrastinators in Panel B, in each
case for RRA 2, 4, and 6. Gains are listed for plans with selected contribution rates from age 25, 30, or
35. The default is investment strategy IP3 and full solidarity (I = 1). For each individual and plan, we
report the optimal IP and I and the corresponding welfare gain. Panel C reports the average gain across
the six participant types, both an equally weighted average and an average assuming 2/3 procrastinators
and 1/3 rational and with 25% in each group having RRA 2, 50% RRA 4, and 25% RRA 6. Each average
is calculated assuming either that all individuals follow the default choice or that either all or only the
rational optimally choose the investment policy and the solidarity factor. Losses are written in red. The
maximum in each row is in blue. Social Security benefits are cut by 24% relative to the base case and
medical costs are adjusted accordingly. Except for these parameters and the RRA, the baseline parameter
values from Table 1 are used.
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