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S1 Introducing a path-dependent derivative

This internet appendix studies a possibly path-dependent quadratic derivative, f(D) = D? — an -
bDP; — cD — eP; — f. In particular, we allow f (D) to depend on the underlying asset price P; (even

though f(D) is realized at t = 2), hence “path-dependent.”

Proposition S1. With f(D) = D? — aPl2 —bDP) —cD — eP; — f, there exists a unique equilibrium
at t = 1. The demand schedules for the underlying are
X1a(p,¢:5,2) = X[ (p35.2) + [(b = 2)p +c]Y1a(p, ¢ 5,2); and

Xi5(p,q) = X[“(p) + [(b - 2)p + c] Yi5(p, q).

The demand schedules for the general variance swap are
1 2 -1
Na(p.g;5.2) = 5 (q+ ((a+b —Dp~+(c+e)p +f)) - Gyq|; and
a

Yis(p.g) = %((w ((a+b=1p>+ (crerp+ 1)) —Gls).

The underlying’s market clears at P; = P™

%, the same as in the benchmark (Equation (6)).

The derivative’s market clears at Q| = Gl_1 —(a+b- 1)P12 — (c+e)P; — f. The conditional

precision {Gi4, Gi5, G1 } are the same as those defined in Proposition 1.
Proof. Consider a type-j investor. Her terminal wealth W5; is given by
(S1) Waj = Wo + (P1 = Po)Xo + (D — P1) X1 + (f(D) = Q1)Yij + (D = D)z;.

Lemma 1 ensures that she holds the same posterior distribution for D with or without the derivative.

In particular, D remains conditionally normal. Let z; = 0, z; = z, and W; = Wy + (p — Po)Xo.



Evaluating the expected utility (e.g., Lemma A.1 of Marin and Rahi (1999)) yields,
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1

o \/1 + 2avar;;[D]Y;; eXp[a(—Wl +Zj(D —p) - Ylj((l —a- b)PZ —(c+e)p—f- q))]
J J

-exp|—a(Xi1j+z; + ((2 = b)p — ©)Y1;)(E1;[D] - p) — a¥y;(Ey;[D] - p)?]

o a’varyj[D](Xyj +z; + Y1;(2E;[D] — bp — C))2
P 2(1 + 2avary;[D]Y1;) '

The first-order condition with respect to X ; yields

Ey;[D] -p
Xij = m —z;—((2-Db)p - o)j.
J
Plug this back to E;;[—e~%"2/] and evaluate the first-order condition with respect to Y;; to get:

1 1 1
" 2a\q+(a+b-1D)p2+(c+e)p+f var[D])

Yy

Finally, clearing the market yields the equilibrium prices p = P; and ¢ = Q; as stated in the
proposition. (The utility maximization problem is a strictly concave one. Hence, the above

solution implied by the first-order conditions is unique.) O

With the variance swap f(D) = D? — aPl2 — bDP; — c¢D — eP; — f, the two liquidity measures
can be found, following Proposition 2, as
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As can be seen, the possibly path-dependent derivative might change the result of A < A" from

A and

Corollary 1. This happens if and only if the coefficient b > 2, i.e., the loading on DP;. This
is because with such path-dependent derivatives, the built-in dependence of f(D) on P; creates

some “mechanical” delta-hedging needs for the investors. In the quadratic example above, the total

of

delta-hedging ratio is B, j [a_D] = 2Py — bP; — ¢, and we can see that the term —bP; contributes to it,



simply because of the built-in interaction between the actual terminal payoff D and the intermediate
price P;. In particular, when b > 2, the sign of the delta-hedging ratio above changes, mechanically
affecting the information-to-noise ratio in the underlying and, hence, also the price impact A.

On the other hand, the price reversal y is unaffected, because for both types of investors,
j € {d,s}, the above delta hedging ratio remains the same. Hence, the net delta-hedging trading
remains zero, as in the case of a path-independent variance swap in the paper, and there is no

additional price pressure, ensuring P; = P". As such, y remains unaffected.

Proposition S2. With f(D) = D? - aPl2 —bDP| —cD —ePy — f, the underlying’s t = 0 equilibrium

price remains the same as stated in Proposition 6.

Proof. The proof of Proposition S1 gives an investor’s expected utility at ¢t = 1, Ey; [—e“"WZf ],
taking p = P; and ¢ = Q; as given. Consider a demander (j = d) first. Expanding with

W =Wy + (P; — Py)Xp and E4[ D] with s and z gives

2
|G G1-Gig = _S1d (4 81d=% (_p)_
Eld[_e—aWZd] - _ Gld e G, X e—(x.(W0+(P1—P())X()+(P1—D)Z) e > (D+ Gra (s—=D) Pl)
1

where P; = P?d can be further written as a linear combination of s and z. Taking the expectation
of the above over {s, z} yields the “interim” utility Uy, of a demander; that is, the expected utility

after the type realizes but before the signal and the endowment shock are observed:

NI
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Note that condition azG(; ITZ_ I < 1 ensures Upq 1s well-defined; in particular, the term inside the

brackets is always positive. Similarly, the interim utility Uy, of liquidity suppliers can be derived as
Gis 9% g, Go Gis\’
Ups = — e ®1+ ———[1-
Gy Gis — Go Gi

aGis
2G}

2

5

where

WOSZW()+(D—PO)XO_ 0( X§+

2Gy
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At t = 0, investors choose X to maximize
mUpq + (1 = ) Ups.
The first-order condition, together with the market clearing condition X = X, leads to
- (D -p-aGy'X - aZX)M+ (1- 7[)(1_) -p- aGal)Z) =0,

where

G15s=Gid

M= ot [9u

a _2) 1+ 727
ZnoX ,
Grs eXp(z 2 \/1+A0(1 — 72 — a2/ (1,Go)

and Ag and A, are the same coeflicients as given in the proof of Propositions 5 and 1. (Note that

the second-order conditions are satisfied as well as both Uy, and Uy, are monotone transformations

of quadratic terms in Xy.) It can be seen that the above first-order condition is linear in the market

clearing price p, which then uniquely solves the equilibrium Py stated in the proposition.
Conditional on the realization of Py, in the no-derivative benchmark, following Vayanos and

Wang (2012), the liquidity demanders’ interim utility is

2 2 2
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Gi1a — Go Gy .7,] Gor,
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where WO"dd = Wyg. AsO < GG—lld <1, GG—ll”’ -e 291 1is a decreasing function of %—‘ld. Therefore,
G1=Gis

G1-G1d
Gig — d . . . o qe . G .
‘/G_ll -e 1 < land Uy > Ug;. Likewise, for the liquidity suppliers, ,/G—‘IS -e 1 1s an

G1-Gis
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Gis G Gis . , 5" nd
G, because oL > 1. Then Gle o < 1 and Uy, > Ups - O

increasing function of



As we have seen above, while the path-dependence of the derivative payoff affects an individual
investor’s delta hedging at t = 1, in aggregate, the net delta-hedging trade remains zero. As such,
intuitively, the path-dependent derivative does not create additional trading gains nor does it affect
the split of the “pie.” One step back to ¢t = 0, therefore, the evaluation of the underlying asset is

unaffected.

S2 Additional lemmas

Lemma S1

Lemma S1 (Decomposition of a call). Suppose the underlying price att = 1 is P;. Thet =2

payoff of an out-of-the-money call option with strike K > Py can be decomposed into
1 1
max{0,D = K} = 5|D = Pi| + 5 (1 = 2Lp <p<xy) (D = P1) + Lipsky (P1 = K);
and that of an in-the-money call with K < Py can be decomposed into

1 1
max{O,D - K} = §|D - P1| + 5(1 + Zﬂ{KsDSPl})(D - Pl) + ﬂ{D>K}(P1 - K)

Proof. Consider the out-of-the-money call with K > P;.
1 1 1 1
max{0,D - K} = ElD - K|+ E(D -K) = §|V —(K-P)|+ E(V - (K—-Py))

where V := D — P; as a shorthand notation. Compare |V — (K — P;)| to |V|:

K-P, if V<0
V- (K-P)|-|VI=y-2v+(K-P)), if0<V<K-P-
—(K—Pl), ifV>K-P

Therefore, |V = (K =P1)| = |V|+ 1y<op (K= P1) + Ljocv<k-p} (=2V+K = P1) = Liysk-p } (K= P1).

Substituting into the call’s payoff expression and simplifying gives the expression stated in the



lemma. The proof for the decomposition of the in-the-money call repeats the above steps and is

omitted. O

Lemma S2

Lemma S2 (Risk-neutral pricing). The equilibrium underlying price Py and the derivative

price Q1 must satisfy

(82) P =E[D] = /R D¢y ;(D)dD and Q; = Ey;[f(D)] = /R f(D)é1;(D)dD

where g51 (D) is a type-j investor’s risk-neutral density, defined as
h1;(D)

e With hy;(D) = e—a-(DX1j+f(D)Y1]—)—%D2+(GOD+(GU—G0)17)D‘
i h1;(D)dD

(S3)  ¢i;(D) =

5

Proof. The risk-neutral pricing formulas follow the first-order conditions

oUp —aWh Ui —aWy;
871; _ Elj [0( . (D —Pl)e G(WZJ] =0 and aTIJ] = Elj[a . (f(D) - Ql)e (ZWZJ] =0
which imply
2 BulDe ™) _ [ D gy (DMD o BulfD)e]_ f f(D)e g1, (D)dD
E[e~*Wa] /Re_“wszﬁlj(D)dD E[e~®W2i] /Re‘awzjgslj(D)dD

where ¢1;(D) is the type-j investor’s posterior density (conditional on the prices) of D. Letting

5 gy
$1;(D) := T e ™4,(D)D

remains to simplify the expression of g51 i(D). To do so, recall Wy; = W + (D — P1)X1; + (f(D) —

, one obtains the risk-neutral pricing formula given in the lemma. It

Q1)Yi; + (D — D)z;, where W; = Wy + (P; — Py) X and z; is a type-j investor’s endowment shock
(zq4 = zand z; = 0). In addition, by Lemma 1, ¢;4(D) is the normal density with mean GG—&D+ %s

and variance G]_dl; and ¢5(D) is the normal density with mean %D + G'é—for] (with p :=s — T%z)
and variance Gl‘sl. The simplified expression of cﬁl j(D) with hy;(D) follows by plugging these

expressions into q§ 1;(D) and offsetting common terms in the numerator and the denominator. O
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