Fig.7a. Coefficients Aij for steady state at Re =2471 and Y
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Fig.7b. Coefficients A;; for steady state at Re =2132 and ¥
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Appendix I

Projection of linear and bilinear terms
L 1. Projection of linear terms

The projection of the Laplacian operator of velocity on the bases V, and W can be

divided into four inner products: (AVU,V ) (AVU,W ) (L\WU,V > and <AW”,WPCJ,>.

Using (31) and (32) these inner products may be expressed as

4
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In a similar way one can express projections of the Laplacian of the temperature:
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that the azimuthal wavenumber is included only as even powers of k. and for =k there are two
complex conjugate eigenvalues iw. In the case V' = 0 the azimuthal wave can propagate with
or opposite to the direction of 7. Thus, for each azimuthal wavenumber +k or -k there exists

only one eigenvalue +iw or -iw.

To denote the Galerkin projections of the bilinear terms <(V]3 b 'V)/ED‘VE r’)>+

such that the indices / and j correspond (o

((VzD ‘V)’EDaVZBD> we will use symbols mepq

» . P . . . 2
a series of V13D ,indices n and m correspond to the series of axisymmetric steady state vl

and indices p and g correspond to the series of the projection vector VfD (according 1o series

(24)). The symbols B;; will be divided into eight parts to denote real and imaginary parts

ijnmpq
of the bilinear terms, and projections on two different basis systems (31) and (32). Thus.

similarly to (I.1)-(1.2),

All h12 p21 22 B2 2l 20 |
B;jnmpq = I_B:jnmpq + Bgnmpq + Bynmpq + Bgnmpq} I‘_Brmmpq + B;mmpq + B;’;’;qu + B ynmpy (1.29)

The six-indices symbols are defined as scalar products (¥, represents the n m-term in the series

(37), €, is the unit vector in the azimuthal direction):

81 mm = (5 Vo + @ Wy V) B = (65 Vmeq + Camep Wy V) 0130
52 () W + O Wy W) B = (0 Vi + Come Wi Wy )31
B = OV W + U W5V ) Bobg = (O Vo + Came - WiV ) (132

B‘?’%mpq <(‘V‘J -)J”m *t (Unm )WU' ) Bzfﬁmpq <(Wy ')/nmecp & Q/Hme(p P ubiTE “ﬁoq) (1.33)

Substitution of (30)-(32) and (37) into (1.30)-(1.33) gives:
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2} 2m

In the case Q(r,z) = 0, additional linear terms have to be added to the final Galerkin

system. These terms can be expressed for 7,0 = 1,2 , using (38) and (I.35) as

;gq_ E 2 Q”m[z 2 I'ECPT] 1+Enp+1} 2 2 ‘?11 ;EE m, q+r]

n=0m=0 =0n=0

4 4 4
: ""tp ; ™
+2 ECIECPTTQHE_,H,;JH] E 2 d‘?"']}j’*wmﬁi*‘"]]
£=0n=0 E=0n=0

(1.74)

The convective terms in the energy equation (16) can be expressed in a similar way. W

denote the projection of the convective terms of eq. (16) on the basis defined in (36) as £ :
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In the case §2(r,z) =0 additional linear terms have to be added to the final Galerkin
system corresponding to the energy equation in a manner similar to (1.74). These terms can be

expressed, using (38) and (1.75), as

qu E 2 ﬂmz Eofgcm ka?P”] 2 Eaf‘a R,'h.mqﬂ] (1.86)

n=0m=0 E=0n E=0n=0
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Appendix II

Test calculations
II.1. Validation of linear terms

To validate the Galerkin projections of the linear terms of equations (1)-(5) we consider the
problem of the stability of the quiescent state in a vertical cylinder that rotates with an angular
velocity @ and is heated from below (Rayleigh-Benard instability in a rotating cylinder). bor
constant temperatures on the top and the bottom of the cylinder, the initial no-flow state is a linear

distribution of temperature along the axis and a solid-body rotation of the whole system:

O=1-z =RT§e¢, U=W=0 (11.1)

v
where the temperature is scaled as © = @* - ®o1d )(@hm - ©0ld ) The linearized stability
problem for infinitely small perturbations of the velocity, the temperature, and the pressure. in the

coordinate system rotating with the angular velocity Q, is defined by:

ov

oY = .8 2
T Taey x v = =Vp + Av + Rabe, (I1.2)

a0 "
Pr§+w—A9 (11.3)
V-v=0 (1.4

where Ra =§5(§hor _gcofd F3/v_x is the Rayleigh number and 7a =2§E2/v is the Taylor
number. Since equations (II.2)-( I[.4) are linear, the solution of this problem is a good test for the
validation of the Galerkin approximations of the linear terms of equations (1)-(5).

We consider two sets of the boundary conditions for the system (I1.2)-( 11.4). The first one
(no-slip and no perturbation of temperature at all boundaries) corresponds to the calculations of

Hardin et al. (1990) for 7a = 0:

u=v=w=0 06=0 at z=0yand at r=1 (I11.5)

The second one (stress-free top and bottom with no perturbation of temperature, no-slip sidewall
with no perturbation of heat flux) corresponds to the analytical solution of Jones & Moore (1979)

(see also Goldstein et al. 1993) for 7a = O:
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(VV)V)JS'VV)VW'S f(

2
—vx[va:n -vd%:fV[vT vd =
. . (11.7)

=.£(v. VV—QI—ﬁV-v]d3=f(\*-n)£dF 0

2 2 2
r
which holds for incompressible flow (V-v=0) with no-throughflow (v-n = 0) on the boundaries.

I

The corresponding relation for the energy equation is

d?s=fv-(v8—2)-e—v

) 2
o

2

<(V'V)9'B>=f("'vb‘9d3=fV'V[%
3 R

v|d3= f(v 0 (11.8)

Similar relations exist for each pair of basis functions of velocity or a pair of basis functions of
velocity and temperature. The Galerkin projection of the integrals (I1.7) and (I1.8) can be extracted

from the dynamical system (39) and written as

N,2.2,2 =0 (11.9)

for each vector Z (summation over repeated indices is assumed). Here N is a matrix containing

ik
projections of all bilinear terms of (1)-(5). A particular case when Z ;=1 for all / leads to the

relation
Z:NW=O (1.10)
i

which can be used as a test for calculated values of f{r’jjk . This relation was used in Gelfgat et al.

1996 for the validation of bilinear terms of the axisymmetric part of the problem.
The relation (I1.10) cannot be used directly in the present case when only axisymmetry-

breaking bifurcations are the object of the study. There are two reasons for this. First. we do not

need the whole matrix Nfgk , but only its part corresponding to the linearized system of equations

(20)-(24). The second reason is the complex form of the basis functions (31). (32) and (36) which

leads to the following definition of the scalar product:

2my 1
<u,v)=fu-v d%:f}fu-v*rdrdzdcp (1L11)
3 000

where the overbar means complex conjugation. The presence of a complex conjugate in (II.11) does

not allow a direct use of (I1.7) and (11.8) for the validation of bilinear terms.
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ZRealﬁ\Iy;) ZRealﬁ\Ig;) (11.19)
ij

A similar relation may be obtained for that part of the matrix N, in (I1.9), which corresponds 1o the

energy equation. Denoting by © the axisymmetric solution, 6 the three-dimensional perturbation.

and 0=0+0 , We obtain:

=<([V+e]vj@+éb+éj=((V-Vb,@)+<(€r-vﬁ.é>+
+<(v-vb,é>+<(o-v)§,e>+
+<(V-vﬁ.@>+<(v-v)§.é>+
+<(¢-v}9,@)+<(€r-vb.é>

(I11.20)

According to (I1.8):
((V-V)E),@)=<(€r-VA,E}>=O (a121)
and due to orthogonality, as in (I1.14) :

<(v-vﬁ,®>=((v-vb,é>=(({>-V)a,@>=0 (11.22)
Two parts of the matrix Ny; in (IL.9), which correspond to the energy equation, are defined as
NO = ((,-vh.6), ND- <G -V)ﬂj.,@,) (11.23)

We can rewrite (I1.20) as

22Real (D +ND <(V-V",é>+<(¢-v)9,é>= (11.24)
7
- _<(‘~, v, @) = ~2Real((y-V p.©)

If we define a new matrix N(3)
3 -
ND = ((v;-v).0)) (11.25)
then the test relation for the real parts of NL];) and Nfﬁ,) is
0, N® (3
Y Real N} +Njj )= -y Real(\lg‘} 5 (11.26)
ijk ijl

The imaginary part of the matrix N;; in (I1.9) is not zero if the azimuthal component of the
basic axisymmetric flow is not zero. To validate the imaginary part of N, we consider the following

integral relation (¥ is the azimuthal component of the axisymmetric basic state V):
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Now, using equation(lS),%v=—(%+%+%—j) and
P4 R FLA R S U By iy N -
I_Ikéf‘l@l +M +|w{ J+£V{uar uar udz waz+rw er}d«s (11.32)

it follows from (29)-(32),(37),(38) that

(”EV)=_<E"’V): <“%%,V>"—<ug—v V> <w%,l/>= —<W%,V> (11.33)
and
=fkf‘f"@z”’]ﬂz+Mz}3-4f{%VﬁV]d3 (11.34)
3 3
Finally, for the imaginary part of N;;, which is defined as
ifmﬁ\]ﬁf):(ﬁ/few'v)’j’vf)*((";'V)”f%a"r> (11.35)

we obtain the following relation:

3 i )= 3 m@y) (11.36)

il il

fmﬁ“y!)-fm[< ( VJ)V> <msz>} (11.37)

where

Relations similar to (1.29)-(1.73) are obtained for the calculation of N j and ij). For the

validation of the bilinear terms we require that the relations (I1.19), (I1.26) and (I11.36) be satisticd
analytically for any number of the basis functions N,x/N. and for each azimuthal wavenumber & . For
example, if N,xN,= 10, the relations (I1.19), (I1.26) and (I1.36) request an analytical equality of
sums of 10° numbers, which is a rather strong requirement. Note that the relations (11.19). (I1.26)
and (I1.36) can be used for validation of the conservative properties of other numerical methods as

well.
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