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A Detailed calculations and a proof of the results
on the two-layer QG regime presented in §2.2.2
Below we use the following perturbative expansions of the PV’s:
L =1+l + €0 + 0(e) (A1)
with

I = (O (1) hanamo, T = (V1) RapanW+(-1) hapan T

(A2)
Al Calculations in the lowest-order approximation
Equations (2.7) and (2.4), (2.9), (2.11) give:
v +2Av? = vz 50 =0. (A3)
The corresponding initial conditions are
vil =@ =my (A4)
=0 t=0

There and below it is supposed that initial data have no dependence on ¢
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Hence, :
Q‘(O) i (—1)'+‘h,:+m‘°) = Hgl)(z,y; Tpge) (A5)

It is convenient to introduce the barotropic and the baroclinic components of
velocity in each order « of the perturbation theory:

v = ﬁ;via)-i-ﬁgvé“}
vieh = v, a=0,12,.. (A6)

In the lowest order we have:
v 13 Av(Y = yy@ (A7)
av +2AvY = —ypO (A8)
where P(*) denotes the barotropic pressure component
P = (™ 4 hyml®, (A9)

Accordingly, we obtain from (A5)

Go +0'% = mf-mh, (A10)
gf\ : F}.;Hl +hgl‘£§”,
where ’
G =2- VAV, (@ =3.vAv® a=0,1,2,.. (A11)

As follows from the second equation in (A3) and the second equation in (A10),
the barotropic relative vorticity is slow (¢ - independent). By rewriting (A8)
in the form of vorticity and divergence equations we see that the barotropic
velocity field is divergenceless and slow:

vi¥ =39 = 5 A VPO, (A12)
vZPO = Byt + R0l (A13)

The baroclinic component is split into fast and slow components denoted as
usual by tilde and over-bar, respectively:

@ = o0 14
79 = 70 4O
with
vic} =—ZA '{77'}{0}7 (A15)
V250 _ 50 _ _ (ngﬂ - n;”) (A16)
and
870 +2 A+ = VO, (A17)
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{9 457 =o. - (A18)

In order to get the initial conditions for both components consider (A16) at
t=0and (A5):

i+ VP = = (G, = Gy + ). (A19)

This allows to find 7" and, hence, the initial conditions for the slow baroclinic
component via

Vie) =~ AV, (A20)

Initial conditions for the fast baroclinic component readily follow

Vie =vir=var=vjo, A =ni—qf". (A21)

The system (A17), (A18) is equivalent to a single Klein - Gordon equation for
03,

aﬁﬁ(UJ

- 79 1 v250 = g (A22)

with initial conditions

0| =79 870 =v T (A23)
t=0 t=0

These initial conditions allow to determine 7(®) from (A22); if the initial condi-

tions are localized the fast field decays &s } at t — oo at a fixed spatial point

(we do not repeat here the details of the calculations which follow those of P1,

with obvious changes of notation).

Thus, as in the RSW case, in the zeroth order of the perturbation theory
the motion is split into the fast and the slow components defined in a unique
way starting from arbitrary initial conditions. Note that the procedure imposes
no ¢ priori limitations on the relative initial values of the fast and the slow
components. The fast part of the flow is completely resolved while the slow
part remains undetermined. Its evolution equation follows from the condition
of absence of secular growth of the next order solution.

A2 Calculations in the first-order approximation
The horizontal momentum equations give at this order

v +aavil) = —vaD L RO i=1,2, (A24)
where we define

RO = (RO, RO) = - (8, +v{* V). (A25)

The first-order PV equations are

I + 8,0 +v19 . yn® =9, i=1,2 (A26)
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and (cf. 2.10)
?rél) - 7r§” = n(l). (A27)
A consistency condition for having bounded in the fast time solutions of (A26)

is obtained by applying the fast-time averaging to (A26) and gives the standard
quasigeostrophic PV (QGPV) equations

(ah +v9. v) =g, i=1,2 (A28)
which may be rewritten in the form
8,0 + Y. n®) =0, (A29)
(J, as usual, denotes the Jacobian) using the fact that
7 = (1) R 90 + 910 = 5 A va, (A30)
Recalling that
I = V229 4 (—1)#1R,,, 7O (A31)

we see that (A29), (A31) reproduce the standard QG equations in the two-layer
model (cf. Pedlosky, 1982).
The first correction to the PV-fields obeys, thus, the following equation

&I ++® VI =, i=1,2 (A32)
and using the fact that _
90 = (1) Ry 7Y (A33)
and (A17) we get, by integrating (A32) in ¢ :
I = O +0? = (A34)
(=1 sy [T(Ho- < Ho >, 1) - 58, + o4 8,0V | + AP,
where
" i
iy = [ 7 (t') at' (A35)
a

and the angle brackets denote the fast-time averaging. Here and below, by
introducing Ho and < Hy > we follow literally P1.

In order to get an equation for n'*} we introduce the baroclinic and barotropic
components of the order-one velocity field (cf. (A6)) with the baroclinic one,

vil| obeying the following equation:

Ovie +EAvE) =V + RO, RO =RO-ROY.  (A36)

The equation for the baroclinic relative vorticity follows from (A34) and the
second equation in (A2) (cf. (3.33) in P1)

; (A37)

) ) i2 l2) )
Ot = 910
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where
RE =R =7 (Fo- < o > RY) +3- (+0AVRY)  (a39)
and : . .
R (2,951, ) = halI( + By ISV, (A39)
Splitting the first-order baroclinic velocity into slow and fast parts, where the

latter obeys the fast part of the equations (A36), and taking the fast part of
(A37) we get:

G+ = RO +7 (Fo- < Ho >, RY) - 5- (30 A VRY) = -RY.

(A40)
From this equation and equations of motion (A36) taken for the fast component
we obtain the equation for the first-order fast interface displacement:

7Y 4y, o2 627?‘20} 5000 _ A 5
~—g ~ T+ VP = -2 RO Dy 8,2 (A41)
where ~ B ~
Z = 0.R]) - 0,R), (A42)
D= a,ﬁgg{; 8,RQ. (A43)

The r-h.s. of (A4l) is, thus, a known finction of ¥\, 7(?) which are, in turn,
known from the previous approximation.
The slow baroclinic velocity equations have the form:

W =2 (Vi + R.v) . (A44)
The slow part of the baroclinic relative vorticity equation (A37) is
a2 + 7 = ~r{Dg® + 1P - 1P (Ads)
It follows from (A44) that
G =2 (Vavl) = -v% -V Ry, (A6)
and from this equation and (A45) one gets:

- + Vi) = YA - 1P + 0 - - R,,.. (A47)

Considering this equation at t = 0, recalling that v\'’ and n(*) are zero at the
initial moment and using (A37), (A38) we obtain

7+ = |-V R =R = T (< Ho > REY) + (51, 8. - e, 8, R, )|

(A48)

t=0
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The r.hs. of this equation is known. Therefore, (A48) determines n ) and,

hence, ﬁf,”, uniquely (if decaying at infinity boundary conditions are imposed)
as T-}“] = —ﬁ}l). The second initial condition for the equation (A41) follows

from (A36) and (A37):

= s 5(0)
B:TI“) - = - zi;:u = &R( =i’ (A49)

where
z=8,RY ~8,R0. (A50)
The r.h.s of (A49) may be expressed in terms of initial fields (cf. ({A42)) by
using, where necessary, the evolution equation for the slow component. Thus,
for i) we get a linear initial-value problem with a source term (cf. (A41). The
analysis showing that the source term is non-resonant is the same as in P1 and
is not repeated here.
The first correction to the barotropic component may be easily determined,
too. We write the evolution equation for the barotropic velocity field at this
order:

aviy +2avly =-vPO 1RO RO = RO+ R,RY  (A5)
and get the barotropic relative vortn:lty using (A2), (A34):

G = WIP+ RA s by [-nwm D+ (A52)
J(Ho— < Ho > R{U}_‘_ 2- (92 AVREY)],
(A53)
where we defined
Ry =m —mf. (A54)

The fast part of Céf] is:
& =k [-1ORE) + I(o- < o >, 1) - 1) +5- (%2 A VRY)].

(A55)

Taking curl and divergence of the fast part of the equations (A51) we get
B =V .50 = —a ) + 0.0 - 8,9, (as6)
V2P = -3,D%) + ¢ + 8,R® +8,RO. (A57)

The last equation, together with (A55) and (A56), allows to determine, by in-
version, the fast correction to the barotropic pressure and, via the fast part of
the equations (A51), the fast barotropic velocity field at this order. Together,
the fast barotropic and the fast baroclinic velocity fields allow to determine com-
pletely the fast velocity field in the model at the first order in Rossby number.
The slow components evolve according to the standard QG equations (A29),
(A31) at this order. It should be noticed that a fast correction to the slow
zeroth-order barotropic fields appear at this order and that initial conditions at
this order mix the lowest order fast and slow initial fields.
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A3 Calculations in the second-order approximation

We limit ourselves at this order by calculating corrections to the slow geostrophic
dynamics leaving apart the fast wave field. The PV equation (2.4) gives

oI + 8, + 8, + v . vI® + vV . v =0, i=1,2. (A58)
Taking the time-average of this equation we get:

BT + 8, I + 9. VI + 90 v + (%) vﬁm> =0, i=1,2
(A59)
It is easy to show, using (A34) (cf. the analogous demonstration in P1) that
¥ = O (1) ast = oo and, hence the two last terms in (A59) which represent
the fast-component drag vanish. Hence, as in the RSW case we get splitting
and the slow component of the flow evolves without being influenced by the fast
one at this order. We, thus have

(6u +91- V) TP+ (Bu +9P-V)mP =0, i=12  (A60)
with, cf. (A2)

08 = &+ (—1)H A (70 + 70mY). (A61)
i
Using the averaged equations (A24) and (A30) we find

7V = A vl - 5, VA - J(z(9, vz(¥) (A62)

and get _
¢ =v2zll _ oy (8*1}0)73;,7?50}) (AB3)

whence

1 = 022 - 27 (8,7",8,7%) + (=1) s (70 + 70mi). (a64)

By the same reasoning as in P1 we introduce a "full" slow pressure and interface
displacement fields 7; = :I'réu} + e?.:m. 7 =% + en() and get the "improved"

QGPV equations of the two-layer model:

% [V2%; + (=1)F hisr ) + e(=1)+ higs 7 (V2% + (=1)"* hisadl)  (A65)
— ViV (Vzﬁ{ —+ (—1)i+1f_1.;+17-}) — 2eJ (631%,-,83,1?.;)] =: 0
where "
D; s w V#; i
D_t][) =g (.“)-i-J(w,-—EL_;_,}._"”): i=1,2 (A66)

and fj = 7y — 7.
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B Detailed calculations and a proof of the results
on the QG regime in continuously stratified
fiuid presented in §3.2.1

B1 Calculations in the lowest-order approximation

For zero-order fields we get from (3.10):

v +iAvyY = -V, (B67)
V-v@ =0, 8.0 +p® = 0.
8,09 = N?w® = .

The PV equation (3.11) gives

PC) 0
8 [—a_.- (}ﬁ-) + ¢ ] =0 (B68)
whence it follows that
P (0) (0) ‘
—3. ﬁ F W =P ) (Bﬁg}

The horizontal momentum equations‘ in (B67) may be rewritten in terms of
vorticity ((®) and divergence D@ of v

8,¢@ + D@ = o, (B70)
BtD(U’ - C(O) £ vipiﬂ}

Excluding the divergence from (B70) we obtain the equation
—02(® = (O + Vi =0 (B71)

which gives

1
8%4. (Fazpm) +d. (}%@p(m) +V2p0 = 0O (r ¢, ). (B72)

The zero-order vertical velocity w(®! is zero at the vertical boundaries, as follows
from (3.2). Then from the density equation in (B67) it follows that density
variations at these boundaries are slow. The hydrostatic balance implies that:

8:p% = - %z, y.t1,...) , (B73)

z==1,0 z=—1,0

The initial conditions are:

CERCN) (B74)

i=
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Representing the pressure as p® = 5% (r,t;,...) + #%(r,t,t1,...) where p and
f are the slow and the fast parts, respectively, we get the following equation for
~(0).
P :

2 1 3 i &
828, ( —.8, f")) + 8. (E.—za:p“’)) + Vi = q, (B75)
with the boundary condition
8.5 =0. (B76)
z=-1,0
For #® we have the equation
L y —(0)
@(Fﬁm@)+ﬁﬂ“=manmL (B77)
with the boundary condition
8.5"% = —p® : (B78)
z=-—1,0 2==10

The velocity and density fields are split into the fast and the slow components,
too, with
\7}]0’ =z .l"\ﬁw}, @@ = 0, ﬁ(o) = -—3_-,}'3(0} (B?g) :

and +;

859 15 A% = ~v,p®, 8,59 + 50 =0, 8,50 - N26©® =0. (Bs0)

The fields ¥\, #(%, 5@, 5@ (), 5 may be easily found from (B79), (B8O)
once p@ and 7% are given.

Equation (B77) allows us to initialize the slow and the fast part of the motion
(cf. P1). We find that at the initial moment

1 = i \
5;(!\),2821)}0) 250 ng‘(r,tl,...)zgj—az(%) (B81)

and )
0:0;

5 = - pf'z:—l,f]‘ (BSE)

After finding ﬁf,o) one can determine the initial slow velocity and density fields
with the help of (B79)

v =2 AV, B = —8:55 . (B83)

Hence . i 4 5 4
(8,5 = (wr =&, v0r - 5", pr = ) (B84)

and the first initial condition for 5% readily follows

8:0%| _ = - (BSS5)
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The second initial condition for 5% is found from the first equation in (B70) by
using (B69) and the hydrostatic equation in (B67):

G

The problem (B75), (B85), and (B86) is solved by use of Founer~decomnosmon
in the eigenfunctions ¥, of the following eigenproblem

=Y. (B86)

t=0

b (%a:@m) +AL U =0; 8. ¥l ,=0;m=0,1,.., (B87)

where ., (z) and A, are the eigenfunctions and the eigenvalues, respectively.
As is well known, the eigenfunctions ¥,, form a complete orthogonal basis.
Thus, the fast pressure field is represented as

1z, p 25t t,..) = Y 50zt 1, ) U (2). (B8S)

m—l]

In order to decompose the initial condition (B85) we write it in the following
form: )
70 Lz = Ry (a:,y,z) + Fi(z,1), (B89)
where ' o
= [ ~(0 / dzzp dzFy =10 (B90)
-1

and F) is an arbitrary function. For each mode m # 0 we get the same Klein-
Gordon equation as in the RSW case with the only difference that the coefficient
in front of Laplacian is A,,-dependent:

3 - 1Y,
atpm v[-n v vhpn =0 (pm -;BPSE))t_U = (Fﬂm 1 "FDI",) . KBQI}
m = ™

For m = ( we have i ”
viss) =0, 5"

=K.
- 1 (B92)

The functions }7"0,“ D I.. are the coefficients of the corresponding Fourier-harmonics
in the chosen basis. In order to have a localized solution we have to impose
) =0e R =0
The solution of problem (B91) is conveniently written in the form of Fourier-
integral:
5O = f L ] (B93)

where the modal frequencies are

2 32\ 3
e (l—cﬂ;—}"“) (B94)
m
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and the Fourier-coefficients are

af =1 (pum (k) % Dfm_{kh)) , (BYS)

2 A2 W,

Here }7“0,,. , Dy, are the Fourier-transforms of Fy_, D I,., Tespectively.
In order to determine the horizontal velocity field we use the equation
FO) — 5.5 _ 5,500 i
C = axv - 63.‘1.{. b= 5; F (Bgﬁ)
simply following from (B69). We have from the first equation in (B70) and
(B96) that

DO = 5,50 45,50 = 5, (-Nl_;at -*0}) . (B97)
From (B96), (B97) and the hydrostatic equation we obtain the equation
VIO = (8 ~ 1) |6 ( 7550: ) | (85 + 8,59 B
h = =1 z F =z =P T Wyp ) ( 98)

for the complex velocity /(% = @(® 4+ 5. Once $ is known (cf. (B93) -
(B95)) we get for the coefficient "% of the expression for /(%) analogous to
(B88): d

49 = [ drn 8 en, ), (B99)
- 4 2 - 4
i ’L\{—f;(kl +iks) [(1 — wm)& et 4 (1+ um)e;;)e—mf] . (B100)

B2 The first-order solution

The second-order equations of motion are:

v +3aviV 4 v,pt) = -5, vV v 9y (B101)
V-v® = 0 804, =0,
B pV = N2t = g, pl@ — (0. gy

The first-order PV equation gives (cf. (3.13))
8. (N2 1Y - orp(o)z) + (a,., + v v) (Nmf‘”) =0  (B102)

whence by using the last equation in (B67) we have:

3 (o) . %
8. (]\.‘25‘1{1) _ Hgﬂx _ crpw)z + ?V_—za; (Nzg{o})) = —N2 [(85, + ‘—',LOJ _vh) (o) +‘}E:D)Q{O)}

(B103)
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where (cf. {3.12))
I = —8,498,09 + 8,u®8,p® + (g, (B104)
Averaging (B103) over the fast time gives
(at, +v{0. V,,j Q® =g (B105)

and, therefore,

1

i)
ot = N2

: . 5(0} _ - ~
[ngm + o (5 + 25500 — Lo, (Nzgf"?)] ~Un8: 2% -10:8,00+00(r, 1, ...).

o (B106)
Here Uy, Vo) are defined via

i t
Uos + iV = / dt (@'® + i5(®) - < [ dt (@ —:iﬁ(“’)> (B107)
0 i)

and the angle brackets denote fast-time averaging, as usual. It follows from
(B100) that the Fourier-transforms of Uy in the decomposition Up; = >om Vo, O,
are given by
- )\3,1 (kl -+ Takz) (+) i .
— m s _ Al ptwmt _ al=) —iwmt
Up,, = T [(1 wm)cm: e; (1+wm)é e } . (B108)
Splitting all the fields into the slow and the fast components gives for the former:

W = ia (T -20)

o (0)
oV = _Fo
N
5‘zﬁ{” o ,5{1) =4,
e pttl o
QU’ - 8; (H) = Q“’(r, i1, “.), (B].Og)

where

RO = (8, +90.V)p9, (B110)
and for the latter:
8V +2AvM £V, 50) = RO
apY - Mg = RO
05" + P =0

=(1]}
1 i 5(0)
g _ g, (;\r’?) = R”Y, (B111)
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where
RO = (8u+ (v +9 ).v)'}f’+~:r§f’-vx-r{°)+tal°}az (79 + %) B112)
) = (o (4+50)-7) o s, (00
faé‘” - }\%[ﬂgn_ ( 0 1+ 9505 (0))_%0_;5: (Nzg{m)_Nz ('['jm.vhn(ﬂ})}
and

a0 = (-8.% -8.6@) 8,5 (au + 8.4 )a,,ﬁ(‘”

-+

(€9 +¢©) 8.5 - 6,66, 5 + 6,508,5 + (5, AB113)
The initial conditions for (B101) are
(=0, pit =0. (B114)

Boundary conditions follow from the density equation in (B101):

(1) - © 4 0 . g, 0] _

op g=10 (6:”? FY Ve )Iz=—1,ok (B1E)

Since 59| __, , =0 (see (B76)), we hage from (B115)

(8.7 +v® - vup@)| =0, (B116)

511} - (Ugy - Vg% : B117

P z=—1,0 ( o B )zz—l,ﬂ ( J

The boundary conditions (B116) together with the PV equation (B105) and
known 5\ = 5% _o Cconstitute the complete problem for the lowest-order

slow component:

8 (Vhpm] + 8. (% 215{0))) +J( 50, V259 + 5, (i zpm)> =0,

(B118)

86113(014—J( (05,50 )

z==1,0

=(0)

P = 71 (B119)

ty=0

wherep is determined from the problem (B81, B82). From (B109) and (B111)
one can obtain a single equation for #(*) and a single equation for ) | respec-
tively:

viph 48, (%6;5‘”) = 0149, RO = 0V 427 (8.59,8,59) , (B120)
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(82 +1) 8. (N sz{l)) +Vip® = (2 + 1) RY -8,20 + v, - RO, (B121)

Here 20 = 3, R — 8,R”. Boundary conditions for (B121) follow from
(B117) and the hydrostatic equation in (B111):
A1) = = {0, . 50
3:';’ p j|z=—1,0 (UOA p )‘ ) {8122)

|;:—1,0 z=-1,0

In order to determine the initial conditions for (B121) we use (B120) at ¢t = 0:
vipt) + 5, (Nza_p, ) G Loy ( 2 733,;33“}) . (B123)

The function flfrl)is calculated from (B106), (B122):

=1} 2 __ 1 Ik - -
ol = = {ng;w( -(0) ?ﬂ;mpfrm) = 7%, (Nﬂn )}+Umjaxn§°1+vm,ayn}°’.
(B124)
Boundary conditions for (B123) follow from (B114), (B122):
(1) _(F. o0
a:pI ‘;:—1.0 (Um! vpf )::-[‘(} (Blzs)
Solution of (B123, B125) allows to fmd ‘(1 and, therefore,
Y = —p. (B126)

The second initial condition for (B121) is determined from (B111) and (B114).
From the momentum equation in (B111) we get the vorticity equation

6:(" + DY = 8RO — 5,RO (B127)
and, hence, {cf. (B114))

8"  =6,RO - 4,RO. (B128)

From the last two equations in (B111) one obtains
- 5 e -
8.{") + 8,0. (Fa;pm) =R (B129)
The second initial condition for 5!} follows from (B128, B129):
5(0) _ 3 (0) _ 5 7(0)
6,6 ( = 8.5 )m &R} LG (aRY -8.RO). (B130)

Thus we get for 51/ the closed problem (B121), (B122), (B126), and (B130).
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B3 The second-order PV equation

At the third order we analyze only the PV equation which has the form (see
(3.13)):

8 (N2 — ) — 209,0) + 5, (N20® O - oo™ + &, (M0©@) (B131)
+vi Vi (N0 - - 6p@") £ v0) . ¥ (¥20@) + %‘;’-ww’p(‘”’ = 0.
Averaging this equation over the fast time and using the last of the equations
(B67) and the the fact that the fast-fast contributions vanish due to the radiation
boundary conditions for the waves we get
8, (Nﬂﬁ“) ~ g aﬁ“’)’) +8, (N?Q*@’) + (B132)
o v, (NP0 - a1 B} + 9. v, (N?00) + 508, (N205) = 0.

We rewrite now this equation in terms of slow pressures 5%, 5(*). From (B109)
and (B110) we obtain the equation:

vV, (N20) = 7 (5, N°09) - [v, (3, 79) - i (V200 4 (P, 745) - v, (N200)]
G (B133)
which can be represented in the following form with the help of (B105):

‘.rﬁli} 5, (NQQ(D’) = (ﬁ(!) _ (Vﬁg(o))gaj\f_zn(o)) -8, [Vnﬁw) .V, (Nzﬂ(m)}

I (5. v5® v (v2a@)). (B134)

Analogously, using (B109), (B110), and (B105) we have

i 1 i ) .
B4, (Nzg(o)) = -4, (ﬁa:ﬁ“”@: (_;\,.29(0})) -7 (;‘J{O),%azﬁ(“-‘{;’: (Nzn(o,))
8.5
= of (—‘2%.2—,!\’290) ; (B135)
From (B109) and (B79) we obtain
A1) _ AL oY 2:0) 1, =(0) 5 (0}
A =0 -0, (L) = Vi +0, (8.9 —?,J(azp 8,7 )

(B136)
By virtue of (B79) TI{” can be rewritten as

=(0] 3 k1 = —ioh y —{0) 2 2 2
”go; = -8.9196,5% +6.09,50 + V250 5,59 = ~Vipl2 50+ (5'§;p{0}) +(8§z_ﬁw)) .
(B137)
i -,
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Substituting (B134), (B135), (B136), and (B137) into (B132) and combining the
resulting equation with (B105) we finally get a single "improved" QG equation
by introducing the "full" slow pressure field 5 = 7@ + (1)

D 1 o= TS _ _
o [a; (Tap) + VB - 27(0:5,6,8) + 55 (025VE5 - (82,9)" - (%,5)° (B13®)

- 6 (8:)° - Vnp-V {_N? (\7,2113—:6; (%3;&))})} = 0,

where 72 is the advective derivative corresponding to the "full" velocity field
(0 + vV given by
D

e B
B =5g1.“—!-.f(p— = V5- YFN;JT..,) (B139)

and we introduced a modified nabla Vy = (Vj, #28;)-



