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Appendix D: Some properties of the nonlinear coefficients Λµν ν1 2
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which is used in (2.6), together with (I.3.4) and integration over θ  and Z , to obtain
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where the notation δ0 1=  and δ l = 0  if l ≠ 0 is used.  It is apparent that Λµν ν
1 2

 is real, as stated

in the main text.  Using (I.A.1), (I.A.5) for the modal eigenfunctions, and the Bessel

differential equation to rewrite the second derivative of J
n
 in terms of J

n
 and ′J

n
, (D.2) and

(D.3) can be used to express Λµν ν1 2
 as a sum of integrals of triple products of the Bessel

function and its derivative (including powers of r  in the case of non-axisymmetric,

geostrophic modes).

Taking the complex conjugate of (2.6) and using the fact that Λµν ν1 2
 is real gives

Λ Λ
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= − . (D.4)

Applying the divergence theorem, (I.3.2), and the boundary conditions on u
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,
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In the two cases ν µ1 = *, ν ν
2

=  and ν ν1 = , ν µ2 = *, (D.5) gives
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and hence

2Λ Λ Λµµ ν ν µ µ νµµ* * * *= − = (D.7)

a result which will be used in appendix E and in which the second equality follows from

(D.4).  Finally, (2.8) follows from (2.7) and n nν ν* = −  when nµ ≠ 0, and otherwise from (D.4)

(with ν ν ν1 2= =* ), the fact that modes with n m= = 0 are real (µ µ* = ) and symmetry of

Λµν ν1 2
 with respect to its last two indices.

Appendix E: Calculation of Λσµ µ+ +
, Λµ µ σ+ +

 and G

Throughout this appendix, µ+  is axisymmetric and σ  geostrophic.  If σ  is non-axisymmetric,

(2.7) implies that Λ Λσµ µ µ µ σ+ + + +
= = 0 so we take nσ = 0 in the remainder of this appendix.

The modes encountered are then all axisymmetric.  For convenience sake we reproduce some

properties of axisymmetric modes from [I].  (I.A.1) or (I.A.5) gives

χ ωµ µ µ µ µ
r N k J k r
b g b g b g b g b ge j= ′0 (E.1)
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if mµ = 0, where the normalisation constant N
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From (I.A.2), the transverse wavenumber k
µb g

 in the above expressions is a positive root of

′ =J k0 0b g , while the modal frequency ω µb g
 is zero for geostrophic modes (mµ = 0) and given

by (I.A.3) as
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if mµ ≠ 0, where the choice of signs leads to two conjugate modes having the same k
µb g

.

A variety of integrals of products of Bessel functions arise in the course of the analysis and we

give their values here.  Let k1 and k2  be any two positive zeros of the Bessel function ′J0 .  The

simplest type of integral we will encounter is given by
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while the other integrals have integrands which are triple products of Bessel functions and can

be expressed in terms of

I J k r J k r dr= ′ ′z 0
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E.1 Calculation of Λσµ µ+ +
 and Λµ µ σ+ +

The integrand in (D.2) is expressed using (D.3), (E.1)-(E.5) and the Bessel differential

equation and the resulting integrals of triple products of Bessel functions rewritten in terms of

I J k r J k r drσ
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using (E.8)-(E.11) with k k1 = +µb g
 and k k2 = σb g

.  Thus, we obtain
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and (A.3), while (E.11) with k k1 = +µb g
 and k k2 = σb g

 can be used to derive an alternative form

of (E.13), namely (A.2).

E.2 Calculation of G

The quantity G  is given by (3.6), which can be rewritten using (3.5) as
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−
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The first term in brackets can be reexpressed using 2Λ Λ
µ µ λ λµ µ

+ + + +
=* , which follows from

(D.7).  The condition (2.7) implies that only the families n mλ λ= = 0 and nλ = 0, m mλ = +2

contribute to the sum.  If λ ∈ M , the second term in brackets has an apparent division by zero,

indicating that it should be dropped according to the discussion following equation (3.2).

Thus, we obtain
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where M2  denotes the modal family n = 0, m m= +2 .  To determine the contribution to G

from the first sum in (E.15), we first note that (E.7) implies that the set of functions ′J k r
0

σa fd i,
σ ∈M  are orthogonal on 0 1< <r  with weighting function r .  This set of functions is also
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in 0 1< <r .  This expansion is introduced into the integral of (A.2) and (E.7) employed to
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Squaring (E.16), multiplying by r , integrating over the interval 0 1< <r  and using (E.7) and

(E.17), the result gives the first sum in (E.15) and hence the corresponding contribution to G
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Turning attention to the remainder of G , namely the second sum in (E.15), we evaluate the

Λ 's using (D.2), (D.3), (E.1)-(E.6), the Bessel differential equation and (E.8)-(E.11) with

k k1 = +µb g
 and k k2 = λb g

.  Thus, we find that
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I J k r J k r drλ
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These results are used in the second sum in (E.15).  Recognising that modes λ ∈ M2  divide

into positive and negative frequencies and that both classes have wavenumbers k
λb g

 which

coincide with the k
σb g

 from before, the second contribution to G  is found to be

8

0 0

4

2

0

2

ω

π µ

σ

σ
σ

+

∈
+
∑

h J k

I

J kM
b g b ge j e j . (E.23)

This sum of squares may be evaluated in much the same way as was the first sum in (E.15).

The function r J k r− ′ +1

0

2 µb ge j is expanded using the same basis set as before and the coefficients

determined using (E.7) and (E.12).  In this way, (E.23) is reexpressed as
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Combining the two components, (E.18) and (E.24),
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which leads to (A.1) when the Bessel-function identity
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is used.  Numerical evaluation of the integral in (A.1) for successive positive zeroes, k
µ+b g

, of

′J0  shows that the first few values of h G0 / ω+  are 2.686, 7.932, 15.221 and 24.254, staying

positive for the first 132 zeroes of ′J0 , but becoming negative thereafter.

Appendix F: Derivation of equation (B.2) and calculation of Γσ
1b g  and Γσ

Throughout this appendix, µ+  is axisymmetric and σ  geostrophic.

F.1 Derivation of (B.2)

Evaluation of the surface integral in (B.2) involves boundary-layer analysis to obtain the

normal derivative of u  at the end walls.  The flow outside the boundary layers is given

correct to O εb g  by the first two terms in (2.3).  Taking the fast-time average of (2.4) and (3.2),
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nonzero contributions to the average arise from terms with zero frequency.  Thus, Bµ
1

0=

from (2.4), while averaging (3.2) gives

u u= ∑ε µ
µ

µ

c
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at leading order, outside the boundary layers, where

cµ µ=A (F.2)

if mµ = 0,
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2 2
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if nµ = 0 and m mµ = +2  ((F.3) comes from the ν ν1 2= *  terms in the sum of (3.2)), and cµ = 0

for all other modes.  (F.1) will provide matching conditions for the boundary-layer analysis to

come and indicates that the mean flow is O εb g .  It is interesting to note that, although ur

µa f
 and

uZ

µa f
 are nonzero for the family nµ = 0, m mµ = +2 , they cancel out in conjugate pairs when the

sum in (F.1) is taken.  In consequence, the leading-order mean flow is purely azimuthal.

Whereas the geostrophic contribution to the mean flow, represented by (F.2), is independent

of Z , the other has cos /2 0m Z h+πb g dependence.

Turning attention to the boundary layers on Z = 0, h0 , we first derive a leading-order,

boundary-layer equation for u  from (I.2.17) and (I.2.18).  Equation (I.2.17) can be rewritten

as

∂

∂ξ
ξu

Re= − ∇
−
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1 2/

.u (F.4)

where Re
−1 2/

ξ  is distance from the end wall, scaled appropriately for the boundary layer, uξ  is

the ξ -component of u, and ∇⊥  is the projection of the gradient operator perpendicular to the

cylinder axis (i.e. parallel to the wall).  Since uξ = 0 at the wall, integration of (F.4) with

respect to ξ  shows that uξ  is O Re O
−

=
1 2/e j b gε  smaller than u⊥  within the layer, i.e. u is

dominantly parallel to the wall, as usual in boundary-layer theory.  More precisely, since

u = O ε1 2/c h, u⊥ = O ε1 2/c h and u Oξ ε= 3 2/c h .  Similar reasoning based on U = o εb g, ∇ =.U 0

and Uξ = 0 at the wall shows that U⊥ = o εb g  and U oξ ε= 2c h within the boundary layer, while

applying the same argument to the fast-time averaged version of (F.4) and using u = O εb g
gives u⊥ = O εb g  and u Oξ ε= 2c h .
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Rewriting (I.2.18) using V U u= +  as
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and examining the right-hand side with the above orders of magnitude in mind and the aim of

dropping terms which are smaller than O εb g , the first term has the negligible magnitude

O ε5 2/c h  due to the O εb g  piston amplitude and u Oξ ε= 3 2/c h .  The second (viscous) term can be

approximated by replacing Re
−1 by Re

−1

, neglecting uZ  compared with u⊥  and dropping the

X  and Y -derivatives compared with the Z -derivatives in the operator D  (given by (I.2.12))

on the grounds that the boundary layer is thin.  Thus, the viscous term becomes 
∂

∂ξ

2u⊥

2
.  The

third and fourth terms are negligible because u = O ε1 2/c h, u.∇ = O ε1 2/c h, U = o εb g and

U.∇ = o εb g, while we neglect uZ  compared with u⊥  in the fifth term.  Finally, u is replaced

by its dominant component, u⊥ , on the left-hand side to obtain
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correct to O εb g .  The component of (F.6) normal to the wall implies that λ  is independent of

ξ  and hence imposed from outside the layer, as usual for the pressure in boundary-layer

theory.  The other components yield
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correct to O εb g .

Taking the fast-time average of (F.7), the time derivative can be expressed as
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using reasoning similar to that employed in deriving (3.9).  Since u⊥ = O εb g , (F.8) is O ε2c h
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u⊥  is evaluated using the leading-order, boundary-layer expression
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is the Ekman-layer profile of mode µ  (recall equation (I.B.3)), u
µb g

 is evaluated at the wall,

and γ µ
±

b g
 are given by (I.B.4).  The normal velocity uξ  in (F.10) is expressed using (F.4), (F.11)

and the boundary condition uξ = 0 at ξ = 0 as
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and Re denotes the real part.  Thus, (F.9) yields the leading-order, mean-flow, boundary-layer

equation
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in which λ  is independent of ξ  and imposed from outside the layer, while the other term on

the right represents mean-flow forcing by nonlinear interactions of the primary modes within

the boundary-layer.

Equation (F.17) is to be solved for u⊥  subject to the wall boundary condition u⊥ = 0  at

ξ = 0 and the matching condition that

u u⊥ → ∑ε µ
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c
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(F.18)

as ξ → ∞, where u
µb g

 is to be evaluated at the wall.  The viscous term in (F.17) is negligible

outside the layer, allowing the determination of ∇⊥ λ , independent of ξ , by taking the

ξ → ∞ limit  and using (F.18).  Substituting the result into (F.17), we have
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with the boundary conditions on u⊥  given above.  Recalling that the non-zero cµ  are given

by either (F.2) or (F.3), the solution of the above problem can be shown to be
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V|
W|∑ ∑ + +ε ε

ω
µ

µ

µ

µµ µ

µ

µ

µ

A b g
b g

b g

M Mg

A
2

2
2

Λ *

(F.20)

where, as before, M g  denotes all geostrophic modes and M2  the modal family n = 0, m m= +2

and W  is determined from

e W
W

f fZ × − = − ∞
∂

∂ξ
ξ

2

2
b g b g (F.21)

with the boundary conditions W → 0 as ξ → ∞ and

W u= + +

∈

∑2
2

Λ
µµ µ

µ

µ

µ ω

*

b g
b g

M

(F.22)

at ξ = 0.

The surface integral in (B.2) is evaluated using

10



u . n. u u .
uσ σ

ξ

∂

∂ξ
b g b gc h* / *

∇ = − ⊥

=

Re
1 2

0

(F.23)

and (F.20).  Each term of the geostrophic sum in (F.20) contributes − − −
ε σµ µ

1 1 2

Re D
/

A  to (B.2),

where Dσµ  is given by equation (I.B.5).  However, as noted in appendix I.B, Dσµ = 0 for

geostrophic modes σ µ≠ , so the only term in the sum which is nonzero is µ σ= .  The first

sum inside the brackets of (F.20) is independent of ξ  and so does not contribute to (F.23).

Thus, we obtain (B.2) with

Γσ
σ

ξ

∂

∂ξ
1

0

2

0 0

b g b g
=

==

z u .
W

X
*

,

d
Z h

(F.24)

Note that W  is a sum of axisymmetric modes according to (F.22), hence the r , θ  and Z

components of 
∂

∂ξ

W
 are independent of θ , whereas those of u

σb g*
 have e

in− σθ  dependence.

Integrating over θ , Γσ
1

0
b g =  unless nσ = 0.  For this reason, we restrict attention to σ ∈ M  in

the remainder of this appendix (this, among other things, makes u
σb g

 real).

It is perhaps worth noting that (F.20)-(F.22) describe the response of the mean-flow boundary

layer to three forcing mechanisms: a) the geostrophic component, (F.1) with (F.2), of the mean

flow outside the layer, represented by the first term in (F.20), b) the forced component, (F.1)

with (F.3), of the mean flow outside the layer, corresponding to the first term in brackets in

(F.20) and the right-hand side of (F.22), and c) mean nonlinear forcing within the layer,

expressed by the right-hand side of (F.21).  Of these, as we have seen, the first leads to the

damping term in (B.2), while (b) and (c) both contribute to the nonlinear term in (B.2) via

(F.24).  Whereas (b) expresses effects of nonlinearity outside the layer, effects which are

responsible for generating the forced component of the mean flow there, (c) arises from

nonlinearity within the boundary layer.  Both types force the geostrophic flow via the mean

viscous stress on the end walls.

F.2 Calculation of Γσ
1a f

 and Γσ

The quantity

v u e u= + ×− − −−

e Z

2 1 2 1 21 2

2 2
/

cos sin/ /ξ σ σξ ξb g b gc h c ho t (F.25)

can be shown to satisfy

e v
v

Z × + =
∂

∂ξ

2

2
0 (F.26)

11



We scalar multiply (F.21) by v  and integrate from ξ = 0 to ξ = ∞  by parts using (F.26).  The

values of W , v  and 
∂

∂ξ

v
 at ξ = 0 which arise are evaluated using (F.22) and (F.25), leading to

u .
W

u . e u u f f .v
σ

ξ

λµ µ

λ

λ σ σ

λ

∂

∂ξ ω
ξ ξb g

b g
b g b g b ge j b g b gc h

= ∈

∞

= × − + − ∞+ +∑ z
0

1 2

0
2

2

/
*Λ

Z

M

d (F.27)

for the integrand in (F.24), where u
λb g

 and u
σa f

 are to be evaluated at the wall.  The two terms

on the right of (F.27) imply two components of Γσ
1b g

, corresponding to the two forcing

mechanisms (b) and  (c) described above and which we examine separately in the remainder

of this appendix.

The terms in the sum of (F.27) can be expressed using (I.3.4) for u
λb g

 and u
σb g

 and (E.1)-(E.6),

the resulting contributions to the integral in (F.24) being evaluated using (E.7).  Only the two

terms with k k
λ σb g b g

=  yield nonzero contributions, leading to

Γ Λσ λ λµ µω

1 1
5 2

0

2,
/

*

b g
b g= −

+ +h
(F.28)

where λ ∈ M2  is such that k k
λ σb g b g

= .  Using (E.13), (E.20) and I Iλ σ= , this result can be

rewritten as

Γ Λσ

σ µ

µ σµ µ

ω

1 1

1 2
2 2

0

2

2 4
,

/

b g
b g b g

b g

e j
=

− +

+
+ +

+

k k

h k
(F.29)

for the contribution to Γσ
1b g

 arising from the sum in (F.27).

The integral in (F.27) is more complicated to calculate.  Using (I.3.4) with (E.1)-(E.6) in

(F.12), we find

w F⊥
++ + + +=

F
HG

I
KJ ′

µ µ µ µπ
ξb g b g b g b gb g e jk N

m Z

h
J k rcos

0

0 (F.30)

where Z = 0 or Z h= 0 , depending on which end wall is considered, and the components of F

are given by (A.7), (A.8) and FZ = 0.  Using (F.30) on the right-hand side of (F.14), the Bessel

differential equation and integration with respect to ξ  yield

12



w k N
m Z

h
J k r

µ µ µ µπ
ξ+ + + +=

F
HG

I
KJ

+b g b g b g b gb g e j2

0

0cos F (F.31)

where F ξb g  is given by (A.9).  Employing (F.30) and (F.31) in (F.16) and evaluating the

second derivatives of Bessel functions which arise using the Bessel differential equation, we

find

f k N k
dF

d
F J k r J k r F F

J k r

r
r

r
r r= −

F
HG

I
KJ ′ − +

′R
S|
T|

U
V|
W|

+ + + + +

+

2
2 2 2

0 0

2 2 0

2

µ µ µ µ µ
θ

µ

ξ
b g b g b g b g b g

b g
e j e j e j e j

Re F *

(F.32)

f k N
dF

d
F F J k r J k rrθ

µ µ θ
θ

µ µ

ξ
= −

RST
UVW

′+ + + +2
3 2

0 0

b g b g b g b ge j e jRe *F * , (F.33)

where Re denotes the real part.  (F.32) and (F.33) are used in the integral of (F.27), with v

expressed via (F.25).  The result is, in turn, introduced into (F.24) and the integrals over r

evaluated in terms of Λσµ µ+ +
 using (A.2), (E.12) and (E.13) to obtain the second component of

Γσ
1b g

, which is added to (F.29), (G.16) and (H.7) to derive the final expression, (A.4), for Γσ .

Since, as shown in the corresponding appendices, each of the components Γσ
1b g

, Γσ
2a f

 and Γσ
3a f

are zero if nσ ≠ 0 , the same is true of Γσ , as stated in appendix B.

Appendix G: Derivation of (B.7), (B.10) and calculation of Γσ
2b g

Throughout this appendix, µ+  is axisymmetric and σ  geostrophic.

G.1 Derivation of (B.7)

The sum in (B.6) has three components which are expressed using (2.4) and (3.2):

Λ Λσλ λ λ λ
λ λ

σν ν ν ν

ω ω

ν ν µ µ

ν ν

1 2 1 2

1 2

1 2 1 2

1 2

1 2

1 1
B B A A e

i t

, , , *

∑ ∑=
− +

= + +

b g b ge j
(G.1)

Λ Λσλ λ λ λ
λ λ

σνλ ν λ

ω ω

λ
ν µ µ

ν λ

1 2 1 2

1 2

1 2
B B A e

i t

,

, *

∑ ∑=
− +

= + +

A
b g b ge j

+
− −

− + +

=

+ +

∑
Λ Λσν λ λν ν ν ν ν

λ ν ν

ω ω ω

λ
ν ν ν

µ µ

ω ω ω

ν ν ν

1 2 3 1 2 3

2 3

1 2 3

1 2 3

A A A
e

i t

b g b g b g
e jb g b g b g

, ,

, *

(G.2)
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Λ Λσλ λ λ λ
λ λ

σλ λ λ λ

ω ω

λ λ

λ λ

1 2 1 2

1 2

1 2 1 2

1 2

1 2

2 2
B B e

i t

, ,

∑ ∑=
− +

A A
b g b ge j

+
− −

− + +

= + +

∑2 1 2 1 1 2 1 2 2

1 1 2

1 2 2

1 2

1 2

Λ Λσλ λ λ ν ν ν ν λ

λ ν ν

ω ω ω

λ λ
ν ν µ µ

ω ω ω

ν ν λA A
e

i tA
b g b g b g

e jb g b g b g

,

, , *

+
− − − −

− + + +

=

+ +

∑
Λ Λ Λσλ λ λ ν ν λ ν ν ν ν ν ν

λ ν ν λ ν ν

ω ω ω ω

λ λ
ν ν ν ν

µ µ

ω ω ω ω ω ω

ν ν ν ν

1 2 1 1 2 2 3 4 1 2 3 4

1 1 2 2 3 4

1 2 3 4

1 2

1 2 3 4

A A A A
e

i t

b g b g b g b g b g b g
e j

e je j
b g b g b g b g

,
, , ,

, *

(G.3)

The time average in the sum of (G.1) is zero unless ν ν1 2= * , but in that case Λσν ν1 2
0=  from

(2.8), making (G.1) zero.  Likewise, the time average in the first sum of (G.2) is nonzero when

λ ν= *, but then Λσνλ = 0, while the frequency of the exponential in the second sum of (G.2)

takes one of the non-zero values ± +ω  or ± +3ω , so its time average is zero.  We conclude that

neither (G.1) nor (G.2) contributes to (B.6).

Turning attention to (G.3), the time average in the first sum is nonzero if both λ1 and λ2  are

geostrophic, yielding the right-hand side of (B.7).  It is also nonzero if λ λ1 2= * , but then

Λσλ λ1 2
0= .  The second sum has a nonzero average when ν ν1 2= *  and mλ2

0= .  In that case,

the condition (2.7) for nonzero Λσλ λ1 2
 implies mλ1

0= , so Λλ ν ν1 1 2
0=  from (2.8).  Applying

condition (2.7) to the third sum, it is zero unless nσ = 0 , implying σ σ* = .  The average in the

third sum is nonzero if ν1, ν2, ν3 and ν4 consist of some permutation of µ+ , µ+ , µ+
*  and µ+

* .

Using (D.4) and σ σ* = , such terms are antisymmetric under conjugation of λ1, λ2 , ν1, ν2, ν3

and ν4, so they sum to zero.

G.2 Derivation of (B.10)

In what follows, we will need order of magnitude estimates for both %u  and $u  both inside and

outside the boundary layers.  From its definition, (B.4), %u  is O ε1 2/c h everywhere. On the other

hand, $u  is O ε3 2/c h  outside the layers because we have already subtracted out the first two

orders in the definition $ %u u u= − .  However, within the layers the sum of a large number of

high-order modes acting in concert causes $u  to rise to O ε1 2/c h.  This is so because $u , rather

than %u , contains the layers, and hence must increase from O ε3 2/c h  outside the layers to express

the velocity variations across the layer.

Examining the second integral on the right of (B.5), the contribution from the side-wall

boundary layer can be shown to be negligible as follows.  As usual in boundary layers, the

component of velocity normal to the wall is asymptotically smaller than the tangential

component, O ε1 2/c h.  In particular, both %ur  and $ur  are O ε3 2/c h  in the side-wall layer.  Writing

the integrand using cylindrical coordinates and recalling that u
σb g

= 0  at the side wall (so

u
σ εa f a f= O  within the layer), the integrand is O ε2c h  and thus the contribution of the side-wall

14



layer to the integral is only O ε3c h, negligible to the order we are working.  In consequence,

modes with large k O
λ εa f c h= −1 , needed to represent the side-wall layer, are unimportant here.

Given the orders of magnitude of $u  inside and outside the boundary layers, the leading-order

expression % ~ /

, *

u uε ν
ω ν

ν µ µ

ν
1 2

A e
i t−

= + +

∑
b g b g

 is sufficiently accurate for the evaluation of the second

integral on the right of (B.5), leading to (B.8).  As we saw above, the contribution of high-

order λ , making up the side-wall boundary layers, is negligible.  Furthermore, according to

(2.7), only modes with m mλ = +  contribute to the sum in (B.8), excluding high-order ones with

m h Oλπ ε/ 0

1= −c h which form the end-wall boundary layers.  We conclude that high-order

modes are negligible and hence $Bλ  can be replaced by ε λ
3 2 3/

B  in (B.8), leading to (B.9), with

Bλ
3

 from (B.1).

Using ω ω ε
0

2= ++ ∆  and equation (B.1) in the sum on the right-hand side of (B.9),

Λ Λσνλ ν λ
ω

λ
ν µ µ

σνλ ν λ

ω ω

λ
ν µ µ

ν
ν λ

A B e A ei t i t3 −

=

− +

=+ + + +

∑ ∑=
b g b g b ge j

, ,* *

B

−
−

− −

RST
+

+

− + −

=

+

+ +

∑ Λ ∆
σν λ λν ν ν

ν

ν λ

ω ω ω

λ
ν ν µ µ

ω ω

ω ω ω

ν ν

2 1 1 2

1

1

1 2

1 2

2

2

2

C A A e ei T i t
b g

b g b g
e jb g b g

, , *

+
+

− +

UVW|
+

+

− − + + +ω ω

ω ω ω

ν

ν λ

ω ω ω
ν ν1

1

1 22

2

2
b g

b g a f
e jb g b g

e e
i T

i t∆

−
−

∑
− − − +

= + +

i Re
D

A A e
i t

ε
ω ω

σν λ λν

ν λ ν ν

ω ω

λ
ν ν µ µ

ν ν
1 1 2

2 1

1 1 2

1 2

1 2

/

, , *

Λ
b g b g

e jb g b g

−
+ −

− + +

= + +

∑2 2 2 2 1 1

1 1 2 1 2 1

1 2 1

1 2

1 2

Λ Λσν λ λ ν λ

ν λ λ ν ν λ

ω ω ω

λ λ
ν ν µ µ

ω ω ω

ν ν λ

b g b g b g
e jb g b g b g

A A e
i t

A
,

, , *

−
+ + −

− + + +

=

+ +

∑
1

2

4 1 2 3

1 2 3 1 2 3 4

1 2 3 4

1 2 3 4

Λσν λ λν ν ν

ν ν ν λ ν ν ν ν

ω ω ω ω

λ
ν ν ν ν

µ µ

ω ω ω ω

ν ν ν νF
A A A A e

i t

b g b g b g b g
e jb g b g b g b g

, , ,

, *

. (G.4)

The sums on the right of (G.4) are treated as follows:

i) The time average in the first sum is nonzero when λ ν= *, but then Λσνλ = 0  from (2.8).

ii) In the second sum, the time averages are both zero unless ν ν
1 2

= , while Cλν
1

0≠  requires

λ ν=
1
 or λ ν= 1

* (recall properties i and iii following (I.3.10)).  The case λ ν ν= =1 2

* *  gives

zero Λσν λ
2

 by (2.8), so we focus on λ ν ν= =
1 2

.  Of the two time averages, the first is nonzero

if λ ν ν µ= = = +1 2
 and the second if λ ν ν µ= = = +1 2

* .  Using C C Cµ µ µ µ+ + + +

= = −* *  (which
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follows from (I.A.10) and the definition, C C C= =
+ + + +µ µ µ µ* * , of the coefficient C ), the

corresponding terms in the second sum of (G.4) are evaluated to obtain

1

2

2 2
C A e A ei T i TΛ Λ∆ ∆

σµ µ σµ µ+ + + +
+ +

−+ * *

*e j (G.5)

as the piston-motion contribution to (G.4).

iii) The time average in the third sum of (G.4) is nonzero if either ν ν µ1 2= = +
*  or

ν ν µ1 2= = +
* * , leading to

− − −

+

1

2

1 1 2 2 2
i Re Aε σ

/

Γ
b g

(G.6)

for the viscous contribution to (G.4), where

Γ
Λ Λ

σ

σµ λ λµ

λ
λ µ

σµ λ λµ

λ
λ µω ω ω ω

2
2

b g
b g b g=

−
−

+

R
S|
T|

U
V|
W|

+ +

+

+ +

++≠ +≠

∑ ∑
* *

*

D D
(G.7)

in which terms with a division by zero have been excluded from the sums, in keeping with the

remark following equation (B.1).

iv) The time average in the fourth sum of (G.4) is nonzero if ν ν1 2= *  and λ
1
 is geostrophic.

Thus, the contribution to (G.4) is

1

2

2

A
M g

+
∈

∑Ξσλ λ
λ

A (G.8)

where

Ξ
Λ Λ Λ Λ

σλ

σµ µ µµ λ

µ
µ µ

σµ µ µµ λ

µ
µ µω ω ω ω

=
+

−
−

R
S|
T|

U
V|
W|

+ +

+

+ +

++≠ +≠

∑ ∑4
*

*

*

b g b g (G.9)

and, once again, terms with a division by zero have been dropped.  Note that Ξσλ  is only

defined for geostrophic σ  and λ .

v)  Using (2.7) and (3.5) for the fifth sum, Fλν ν ν
1 2 3

0=  unless nλ = 0 , but then Λσν λ
4

0≠

requires nσ = 0 , implying σ σ* = .  The time average in the fifth sum is nonzero if ν1, ν2, ν3

and ν4 consist of some permutation of µ+ , µ+ , µ+
*  and µ+

* .  Using (D.4), (3.5) and σ σ* = ,

such terms are antisymmetric under conjugation of λ , ν1, ν2, ν3 and ν4, so they sum to zero.
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Finally, the sum of the contributions (G.5), (G.6) and (G.8) gives (B.10).

G.3 Some properties of Ξσλ

Changing summation index from µ  to µ * in the second sum of (G.9),

Ξ
Λ Λ Λ Λ

σλ

σµ µ µµ λ σµ µ µ µ λ

µ
µ µ ω ω

=
−

+

+ + + +

+ +≠

∑4
* * * *

*
b g . (G.10)

From (2.7), it follows that all terms in (G.10) are zero unless n nσ λ= .  Thus, Ξσλ = 0  unless

n nσ λ= , i.e. Ξσλ  only couples modes of the same n .  If nσ = 0  or nλ = 0 , we deduce that

n nσ λ= = 0 , otherwise Ξσλ = 0 .  Given n nσ λ= = 0 , both modes are real and (D.4) implies

Λ Λ Λ Λσµ µ µµ λ σµ µ µ µ λ+ + + +

=* * * * , hence Ξσλ = 0  from (G.10).   We conclude that Ξσλ = 0  if either

nσ = 0  or nλ = 0 , as stated in appendix B.

G.4 Calculation of Γσ
2b g

Since Dλµ = 0  if n nλ µ≠ , only terms with nλ = 0  contribute to (G.7).  From (2.7) it follows

that Γσ
2

0
a f =  if nσ ≠ 0, hence we specialise to axisymmetric σ  in the remainder of this

appendix.

Changing the summation index from λ  to λ * in the first sum of (G.7) and using σ σ* = ,

Γ
Λ Λ

σ

σ µ λ λ µ σµ λ λµ

λ
λ µ ω ω

2
2

b g
b g=

−

+
+ + + +

+ +≠

∑
* * * * *

*

D D
(G.11)

Employing (D.4) and the identity D Dµν µ ν

*
* *=  (which follows from the complex conjugates of

(I.B.4), (I.B.5)),

Γ
Λ

σ

σµ λ λµ

λ
λ µ ω ω

2
4= −

+

+ +

+ +≠

∑
D

r
*

*
b g (G.12)

where Dr

λµ+
*  denotes the real part of D

λµ+
* .  According to (2.7), we may restrict the sum in

(G.12) to λ  in the modal family nλ = 0, m mλ = + .  The quantity Dr

λµ+
*  is determined for that

modal family from (I.B.5) using (I.3.4) and (E.1)-(E.7).  We find that

D
r

λµ

λ λω ω ω ω
+

= − − −
F
HG

I
KJ+ +* sgn

/

b g b ge j c he j1

2
1 12

2
1 2

(G.13)

for λ µ≠ +  and
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D
h

r

µ µ
ω ω ω ω

+ +

= − + + − −
RST

UVW
−

+ + + +*

/ / / /2 1
1

1 11 2 2

0

1 2 1 2 1 2c h b g b ge j (G.14)

when λ µ= + .  The coefficients Λσµ λ+
 in (G.12) are calculated from (D.2), (D.3) and (E.1)-

(E.6) as

Λσµ λ

λ

µ λ σ

µ λ σ σ σω ω

π
+ +

+= −
+

′ ′ ′ +
F
HG

I
KJ

+ z
b g

b g b g b g
b g b g b g b g b g

b g e j e j e j e j e j e j e j
h J k J k J k

J k r J k r J k r k rJ k r dr

0

1 2

0 0 0

0 0 0 0
0

1 1

2/

(G.15)

Using (G.13) and (G.15) in (G.12), it is apparent that the terms in the sum arising from mode

λ  and its conjugate (which have the same k
λb g

, but opposite signs for ω λb g
) cancel unless

λ µ= +  or µ+
* .  The integral in (G.15) is evaluated in terms of Λσµ µ+ +

 for λ µ= +  and µ+
*  using

(E.8) and (E.10) with k k1 = +µb g
, k k2 = σb g

, together with (E.12) and (E.13).  Employing the

results in (G.12), as well as (G.13) and (G.14), we obtain

Γ Λσ σµ µω ω ω ω ω2 1 2 1 2 1 2

0

1 2 1 2
2 1

1
1 1

b g c h b g b ge j= − − + + −
RST

UVW+
−

+ + + ++ +

/ / / /

h
(G.16)

Appendix H: Derivation of (B.11) and calculation of Γσ
3b g

Throughout this appendix, µ+  is axisymmetric and σ  geostrophic.

H.1 Derivation of (B.11)

Since, as discussed at the beginning of appendix G, $ /u = O ε3 2c h outside the boundary layers,

the contribution to the third integral on the right of (B.5) from that region is negligible, as is

the side-wall layer contribution following reasoning similar to that used in the second

paragraph of section F.2.  Thus, the integral is dominated by the end-wall boundary layers.

At leading order, (F.11) and (F.12) (with u
µb g

 evaluated at the wall, as it is throughout this

appendix) give the velocity in the boundary layer, whereas

%
/

, *

u u= −

= + +

∑ε ν
ω ν

ν µ µ

ν
1 2

A e
i t

b g b g
(H.1)

(also at leading order).  Subtraction of (H.1) from (F.11) gives
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$ % ~ /

, *

u u u w u= − −−
⊥

= + +

∑ε ν
ω ν ν

ν µ µ

ν
1 2

A e
i t

b g b g b ge j . (H.2)

Since u
σa f

 is geostrophic, it is independent of Z , leading to

$ $ $ $ ~
* *

u. u. u u. u. u∇ = ∇⊥b g b gb g b gσ σ

ε ν ν

ω ω ν ν ν ν σ

ν ν
µ µ

ν ν

A A e
i t

1 2

1 2

1 1 2 2

1 2

− +

⊥ ⊥ ⊥

=

− − ∇

+ +

∑
b g b ge j b g b g b g b g b ge j e je jw u . w u . u

*

,

, *

. (H.3)

Taking the time average, only the terms with ν ν1 2= *  contribute, hence

$ $ ~
* *

u. u. u w u . w u . u∇ − − ∇+ ⊥ ⊥ ⊥
+ + + +b g e j e je j{a f b g b g b g b g a fσ µ µ µ µ σε A

2

+ − − ∇⊥ ⊥ ⊥
+ + + +

w u . w u . u
µ µ µ µ σb g b g b g b g a fe j e je j }*

(H.4)

whose volume integral yields (B.11) with

Γσ
µ µ µ µ σ3

0
0 0

b g b g b g b g b g b ge j e je j{= − − ∇⊥ ⊥ ⊥

∞

=

+ + + +zz w u . w u . u
*

,Z h

+ − − ∇⊥ ⊥ ⊥
+ + + +

w u . w u . u X
µ µ µ µ σ ξ
b g b g b g b g a fe j e je j }*

d d
2 (H.5)

H.2 Calculation of Γσ
3b g

Expressing (H.5) in cylindrical coordinates, axisymmetry of mode µ+  and e
in− σθ

 dependence of

the components of u
σa f*

 imply e
in− σθ

 dependence of the integrand.  Thus, taking the integral

over θ , Γσ
3

0
a f =  unless nσ = 0, hence we specialise to axisymmetric σ  in the remainder of

this appendix.

Since u
σa f

 is then real, (H.5) yields

Γσ
µ µ µ µ σ ξ3 2

0
0

2

0

b g b g b g b g b g b ge j e j= − − ∇FH IK
R
S|
T|

U
V|
W|

⊥ ⊥

∞

=

+ + + +zzRe
*

,

w u . w u . u Xd d
Z h

(H.6)

where we have used the identity w w⊥ ⊥=µ µ* *b g b g
 (which can be derived from (F.12)).  Expressing

w⊥
+µb g

 in (H.6) using (F.12), the integral over ξ  is carried out and the resulting surface integrals

evaluated using (I.3.4) for u
σb g

 and u
µ+b g

 (evaluated at the end-walls) and (E.1)-(E.6).  The

integrals over r  which arise are determined from (E.8) and (E.10) with k k1 = +µb g
 and k k2 = σb g

and written in terms of Λσµ µ+ +
 using (E.13).  Thus, we obtain
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+

+ + +
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h

(H.7)
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