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A. Derivation of internal pressure gradients due to non-uniform EOF
The bulk electroosmotic flow (EOF) in a channel, UEOF, is equal to the axial-average

electroosmotic (EO) slip. If we account for differences in EO mobility between the LE and

TE (due to differences in pH and/or ionic strength), then we find
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Here L1z is the length of the TE zone, L is the total channel length, u,, . and ;. are the EO

mobilities in the TE and LE, and E7r and E.r are the electric field values in the TE and LE.
The superscripts “TE” and “LE” indicate the zone in which the EO mobility is evaluated. We
assume that non-uniform EOF results in locally-uniform pressure gradients sufficiently far
from the ITP boundary. Azimuthally-uniform flow within a circular channel gives the well-

known Poiseuille flow result,

u, (r)z%a—p P+ A ln(r)+ B,. (A.2)
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Here u; is the axial fluid velocity, n is the fluid dynamic viscosity, p is the pressure, and A4;
and B; are constants of integration. We require that (A.2) satisfy the EO slip velocity at the

channel walls and we also require the solution to remain finite at the channel centerline,

u;(r = R)= pyorE,, (A3)

u,(r=0) bounded.

In formulating these boundary conditions we make the assumption that the difference in
hydrodynamic pressure between both channel reservoirs is negligible, so that there is no
external pressure driven flow in the channel. We then impose these boundary conditions
and find

19 ,.
u(r)= %a—fzi(r2 ~ R*)+ WoorE,

(A4)




We integrate «,(r) in  and 6, which allows us to express the pressure gradient in each

zone as a function of the flow rate, Q,
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The flow rate is defined as Q = 7R°U,,, , where U, is given in (A.1). We note that the ITP
condition requires the electric fields in the LE and TE to be related by a ratio of

electrophoretic mobilities, E,, = (,, / ;) E,, . Simplifying (A.5) with these results we find
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where y = urg/ure. The difference in magnitude between the LE and TE pressure gradients

is then:
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For the constant applied current considered here, Ei £ is a constant, and so this difference in

pressure gradient is constant in time.

B. Scaling and perturbation analysis for electroneutrality approximation
We consider a sample species focusing in peak mode ITP with leading (LE), trailing (TE),

counterion (CI), and sample (A) ions.

Gauss’ law in differential form is

=FY zc,. (B.1)

where ¢ is the permittivity, E is the electric field, F is the Faraday constant, and z; and c; are
the valence and concentration of species i, respectively. Assuming a constant permittivity

and one-dimensional domain for simplicity, then
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We scale the dependent variables (electric field and species concentrations) as follows:
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Here Eir and Ete are the uniform electric fields in the LE and TE regions, respectively, § is

the width of the ITP interface, and ¢, is the initial LE concentration.

Applying (B.3) and (B.4) to equation (B.2), for ITP with monovalent species we find
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We identify the smallness parameter in (B.5) as the ratio of the electric (Debye) length-

scale (/ ) to the length-scale associated with the ITP interface (7, ),
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In evaluating the smallness parameter, we assume typical parameter values for ITP buffers
and experiments (see Table S2 in Appendix D for values corresponding to experiments
done in this study). We use the result derived by Maclnnes & Longsworth (1932) for the

characteristic width of the boundary between two ITP zones, 6, see (F.1).

We expand all dependent variables with respect to this parameter

E=E"+EEV +&EY + .. (B.7)
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and substitute equations (B.7) and (B.8) in equation (B.5) to find the zeroth and first order

equations
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FIGURE S1. Schematic of computational domain for numerical simulations of ITP with non-uniform

I
variable grid spacing

electroosmotic flow. (a) The computational domain consists of an isolated portion of the
microchannel moving in the frame of reference of the focused sample. Arrows denote the direction
of ITP migration and EOF, with arrow lengths showing the relative strength of EO slip in the LE and
TE zones. The boundary numbering corresponds to boundary conditions listed in Table S1. The
dashed line on boundary 4 denotes the axis of symmetry. (b) Schematic of the domain discretization
scheme. We use a uniform discretization in the radial dimension. In the axial dimension, we
concentrate grid elements in the region occupied by the focused sample and the LE-TE interface,
with an average grid element size of 0.5 pm. Away from this interface and towards boundaries 1

and 2 the average grid element size is approximately 5 um on average.
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Evidently the zeroth order equation is simply the electroneutrality approximation

C(LOE),—] + C(T(;z),—l - C(COI),+1 + ci\o‘)_] =0. (B.10)

In peak mode ITP we have the additional constraint that ¢, < ¢,. In this case, we can

express the eletroneutrality approximation for peak mode ITP as

C(L(Q,—l + C(T(I)E),—l - C(COI),H =0.
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C. Boundary conditions and discretization of numerical domain

Figure S1 shows a schematic of the computational domain for our numerical simulations.
Only a portion of the full microchannel, shown in figure S1(a) is modeled and discretized in
numerical simulations. Far from the LE-TE interface, we assume that the LE and TE zones
reach a steady state that can be modeled using constant concentration boundary
conditions. Boundaries 1 and 2 represent the ends of the modeled domain, boundary 3 is
the channel wall, and boundary 4 is the channel centerline (axis of symmetry). The
boundary conditions are summarized in table S1. We use a computationally-efficient
domain discretization, shown in figure S1(b), in which we discretize the domain uniformly
in the radial dimension while concentrating elements near the ITP interface in the axial
dimension. Again, we stress that this discretization only holds under the assumption that

the domain reaches a steady state far from the LE-TE boundary.

TABLE S1 Summary of the boundary conditions used in our numerical simulations. We assume

constant applied current. The velocity of the frame of reference (relative to the laboratory frame) is

U,.=Uppt leOF. The electromigration flux and species flux are denoted ], and Js. The constants

one
¢}, and cj, denote the initial LE and TE zone concentrations, respectively. Boundary numbering

corresponds to the schematic of the computational domain shown in figure S1(a).

Boundary | Velocity/pressure Current/potential Concentration
1 velocity: const. potential: const. concentration:
u(r)=uTE(r)_Uzune ¢(r)=0 CLE (}"):0, CTE (r):C;)‘EJ
c,(r)=0
2 const. pressure: const. current const. concentration:
p(r)=0 density: cp(r)=cly, e (r)=0,
J (}") = J(tpplietl CA (r) = 0
3 EO slip: insulation: zero net flux:
”(Z):IUEOF(Z)E(Z’R) n"]¢7 =0 n-J;=0
4 Axisymmetric: Axisymmetric: Axisymmetric:
a_uzo,a_vzo n-J,=0 n-J,=0
or or




D. Simulation parameters

The parameter values used in our simulations are summarized in Table S2. We express all
electrolyte properties in terms of effective mobilities and total concentrations. The local
mobility of partially-ionized weak electrolytes in the problem (here TE and CI) are a
function of local pH. We model this pH dependence of TE ion and CI ion mobility by

interpolating based on the total LE and TE ion concentrations

W e+ ey, (D.1)
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Here, the subscript i denotes the ion of interest (TE or CI). This function only approximates

the detailed physics governing pH dependence, but does capture the correct trend: the

effective mobility of analyte i approaches u'”in the TE zone and u* in the LE zone. As

shown in table S2, the latter two values for the TE ions are respectively 18.22 and

15.71 x 109 m2V-1s-1,

We use the same interpolation as in (D.1) to estimate the variation of electroomostic slip
between LE and TE zones. pH-dependence of the LE ion and Alexa Fluor 488 was not
accounted for, as we used a strong acid (HCI) as our LE ion and chose the pH of our buffer
chemistry to be far from the pKa of Alexa Fluor 488. The effective mobilities of Alexa Fluor

488 and Fluorescein are listed in Table S2 and discussed in the main text.

TABLE S2. Parameter values used in numerical simulations of ITP with non-uniform EOF

Description Symbol | Value(s) used in Comments
simulations

LE ion total concentration Crp 100 mM Chloride ions; 100 mM Tris-HCI buffer

- LE zone

TE total concentration - Crp 66.1 mM MES ions; adjusted Tris-MES buffer;

TE zone determined by KRF (Kohlrausch
1897)

CI total concentration - LE Cep 200 mM CI concentration in TE adjusts

zone according to KRF (Kohlrausch 1897)

LE effective mobility U -68.5E-9m2V-1s1 Chloride ions in LE buffer; HCl is a
strong acid, and its mobility is
assumed constant throughout the
domain

TE effective mobility - TE /J;E -18.22 m2 V-1g1 MES ions in adjusted TE buffer

zone

TE effective mobility - LE ,Llﬁg -15.7x109m2 V-1 s1 MES ions in LE buffer




zone
CI effective mobility - TE /J?IE 6.60x10°m2V-1s1 Tris ions in adjusted TE buffer
zone
CI effective mobility - LE /.léf 8.99x10°mzVist Tris ions in LE buffer
zone
Analyte effective mobility | u, -29.5x 109 m2 V-1s1 --
(AF488),
-189x 109 m2V-1s1
(Fluorescein)
EO mobility (LE) ,U%F ~19x 109 m2V-1gl Varies +10% by experiment
EO mobility (TE) ;UEZF ~19x10°m2V1st Varies +10% by experiment
Relative permittivity £, 75 Estimated for LE and TE buffers based
on relative permittivity of water and
dilute HCl solutions

E. Simulating optical diffraction effects with a three-dimensional point spread
function

In order to aid in the comparison of experimental and simulation data, we consider the
effects of optical diffraction introduced into experimental data by the microscope objective.
Objectives have a specific three-dimensional point spread function (PSF) that describes the
response of the objective to a point stimulus. For simplicity, we approximate a microscope
objective as a single Gaussian lens with finite aperture; under this assumption the PSF is
described analytically by Lommel functions (Born & Wolf 1964). The shape of the PSF
depends only on the following properties: the wavelength of light being imaged (4), the
index of refraction of the medium (n), and the objective’s numerical aperture (NA), working

distance (WD), and magnification (M).

Born and Wolf (1964) show that the light intensity associated with a converging spherical

wave emitted from a finite aperture is given by

(E.1)

1) = (%jz[Uf )+ U2 @)1y,

where,
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Here a is the aperture radius, fis the axial distance from the objective to the image plane, A
is wavelength of the fluorescence emission, z is the distance from the focal plane in the
direction towards or away from the objective, r is the radial dimension, 4 is an arbitrary
scaling constant, u and v are dimensionless coordinates in the image plane, and Jx denotes
the Bessel function of order k. We calculate the theoretical aperture radius, a, using the thin

lens approximation NA=na/ f.

Figure S2(a) shows the centerline log-intensity of the PSF corresponding to a 20x objective
with 0.5 numerical aperture (NA) and 2.1 mm working distance (WD) and found using this
method. These are the characteristics of the objective used in ITP experiments focusing
Alexa Fluor 488 presented in the main text (see §5). Convolution of this PSF with numerical
data approximates the diffraction effect of this objective in experiments. In order to
perform the convolution, we first construct a three-dimensional scalar field from the two-
dimensional axisymmetric numerical simulation data. Then, based on the z discretization of
our data (here 0.2 um), we determine the two-dimensional PSF corresponding to each
plane (here a fixed value of u). We then convolve each x-y plane of our three-dimensional
scalar data with the corresponding x-y plane of the three-dimensional PSF. Finally, we
perform a line-of-sight integration to produce images which can be compared to

experimental visualizations.



FIGURE S2. Effect of optical diffraction on numerical data. (a) Log-intensity image of the theoretical
three-dimensional PSF of an Olympus UPlanFl 20x objective with 0.5 NA and 2.1 mm WD modeled
as a thin Gaussian lens. The extents of the image correspond to -150 <v < 150 and the full diameter
(40 um) of the capillary in the u dimension. (b) Comparison of line-of-sight-averaged numerical
data without post-processing (“original”) and after convolution (“convolved”) with the PSF shown

in (a). The convolution step results in a significant decrease in signal intensity.

Figure S2(b) shows a comparison of original and optically-adjusted simulation images.
Here the “original” is a simple line-of-sight (along z-axis) integration of the axisymmetric
scalar from the computation. The image labeled “convolved” in addition has a convolution
with the three-dimensional PSF function performed before the line-of-sight integration.
This latter image approximates the optical effects of the objective. While the shape of the
plug is not significantly altered by the convolution, we do see a significant decrease in
maximum intensity, in particular near the channel centerline. As expected, the convolution
also results in some scalar intensity outside the channel boundaries, thereby slightly

increasing the vertical (along y-axis) height of the original scalar. In this convolution (and



all optically-adjusted images presented in this study) we assume that the focal plane
coincides with the central capillary plane. Because the PSF for this objective is narrowest
within a 3 um region around the focal plane, we expect the central plane to be emphasized
in the convolved images. Indeed, this is the reason we see much clearer near-wall sample

accumulation in the convolved image in figure S2(b) than in the original.

F. Prefactor for ITP boundary width

The width of the LE-TE interface was first studied analytically by Maclnnes & Longsworth

(1932), who found that this width, &, scales inversely with current density,

4o,.kT  pyp (F.1)

ej Hig = Mg '
Here o;r is the conductivity of the leading electrolyte, k; is the Boltzmann constant, T is the

o=

temperature, e is the electron charge, urr is the mobility of the trailing ion, and p. is the
mobility of the leading ion. We use this result in our approximations of the ITP electric field
at the LE-TE interface. These approximations (presented in §4) can be interpreted as first-
order Taylor series expansions of the electric field in the three regions shown in figure S3:
the LE zone (region A), the TE zone (region C), and the LE-TE interface (region B). In
regions A and C the ion concentration and zone conductivity are uniform. These regions

therefore have uniform electric field determined by the local conductivity, E, = j/o,. In

region B, we model the electric field as linear and do not account for dispersion. In this
region, the electric field varies monotonically from its value in the TE to its value in the LE.
We hypothesize that the maximum gradient scales inversely with the non-dispersed

interface width () as follows:

VE Z[ET —ij_ (F.2)
max a6
Here VE__ is the maximum gradient in electric field, E1ris the electric field in the LE, E7¢ is

the electric field in the TE, and a is an unknown prefactor. This maximum gradient

corresponds to the electric field’s point of inflection. In our model, we choose VE__ as the

slope of the linear field region. Figure S3 presents this approximation against the ITP

electric field distribution from a one-dimensional numerical simulation (described below).
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FIGURE S3. Comparison of numerical prediction of electric field (solid) versus analytical model
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approximations used here (dashed). We use a one-dimensional steady-state numerical simulation

of ITP to find the electric field in the LE zone, LE-TE interface region, and TE zone. We denote these

as regions C, B, and A, respectively. We model the electric field as uniform in regions A and C and

linearly varying in region B.

Using (F.2) we can solve for the prefactor,

E —-FE

TE LE

VE &

(F.3)

In this relation, the LE and TE electric fields and the interface width scaling are known

analytically. The interface length scale ¢ is taken from the Maclnnes model, as in (F.1). The

only unknown quantity in this relation is the maximum electric field gradient.
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FIGURE S4 Maximum value of the electric field gradient, VE .. over a range of applied current
densities calculated using a one-dimensional simulation. These simulations show that the electric
field gradient is proportional to the square of the applied current density, as predicted by the
interface width relation derived by Maclnnes & Longsworth (1932). The inset shows the value of
the prefactor, a, determined from each of the data points shown in the main plot. The value of the
prefactor is uniform across a wide range of current density, which suggests that the maximum

electric field gradient also follows the Maclnnes relation. The value of this prefactor, a, is

approximately 1.58.

We develop a one-dimensional numerical simulation to determine the value of the
maximum electric field gradient. We follow a method similar to that presented by Khurana
et al. (2008) to numerically model (non-dispersed) peak mode ITP. The conservation
equation governing the problem of one-dimensional electromigration and diffusion in a
cylindrical channel written in the frame of reference of the moving ITP zone (Uirp) and

neglecting bulk flow is

12
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Here c; is the concentration of ion species i, Uirp is the velocity of the ITP zone, y; is the

electrophoretic velocity of species i, and E is the electric field.

We use current conservation to solve for electric field,

j F de, (F.5)
E=——-— D, — |.
o G(Z’Zl ’ axj

We solve these equations numerically in MATLAB using the parabolic partial differential
equation (PDE) solver (the “pdepe” function) using constant concentration boundary
conditions. For the TE boundary concentration we use the value predicted by the
Kohlrausch regulating function (Kohlrausch 1897). For a steady-state solution, the PDEs

were allowed to evolve in time until convergence.

Figure S4 shows calculated values of VE__ over a range of applied current densities. From

equation (F.1) we see that the interface width scales inversely with applied current density,
6 « 1/j. Note also that far from the LE-TE interface, the electric field is determined only by
current density and conductivity. The difference between the LE and TE electric fields is

therefore linearly proportional to current density,

' ‘ F.6
AE=—L T o (F-6)
O-TE O-LE

Together, this suggests that the electric field gradient grows with the square of the current

density:

VEmax o< % o< j2 - (F.7)

The numerical data in figure S4 agrees with this theoretical prediction.

The inset to figure S4 shows the calculated value of the prefactor, g, using (F.3) for a range
of applied current densities. Note that the value of this prefactor (a # 1.58) is independent

of applied current density in the range of interest.
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FIGURE S5. Effect of including the body force on simulation predictions and their comparison with
experimental observations for relatively low (left, j/jr = 3.13) and high (right, j/jr = 6.26) current
densities. The first three rows show numerical results and the fourth row is experimental data. All
image intensities are normalized by the intensity volume integral, and colorbar scalings are then
chosen to maximize dynamic range of the collection. For clarity of presentation, colorbar
normalization differs between (a) and (b) (the intensities of the data in (b) are slightly lower). For
all experiments, we used a 20X objective with 0.5 numerical aperture and 10 ms exposure time in a
40 pm inner diameter capillary. (a) Line-of-sight-averaged numerical results for simulations with
and without the body force term in the momentum equation. Inclusion of body force has negligible
effect at low current density. At high current density, including body force results in stronger radial
redistribution of analyte (particularly near centerline accumulation near the LE boundary). (b)
Comparison of simulations including body force with experiments. We adjusted the raw numerical
results accounting for the body force by convolving with a 3D point response function to account
for optical diffraction, as described in Appendix E. The only significant disagreement between
experiments and numerics occurs for the Lrz/L = 0.8 observation in the high current density case.
Simulations predict strong near-centerline sample accumulation while experiments show a uniform
distribution more comparable to simulations neglecting body force. We believe this discrepancy

may be due to flow instabilities not captured by our axisymmetric numerical model.

G. Inclusion of the electric body force in numerical simulations
In our simulations, we included the electric body force in the momentum equations.
Sounart & Baygents (2007) developed a lubrication theory applicable to electrokinetic flow

with axial conductivity gradients that includes the effects of electrohydrodynamic body
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forces. However, to our knowledge ours is the first study to include body forces in
simulations of ITP. Schonfeld et al. (2009) argued that the axial pressure gradients
produced by the body force acting on charge stored at the ITP interface is negligible when
compared to the internal pressure gradients generated by non-uniform EOF. While this
may be true, their formulation does not consider the magnitude of the radial body force

when compared to radial pressure forces acting at the ITP interface.

We find that inclusion of the electric force can lead to a significant effect on simulation
predictions for the case of relatively high applied current density. Figure S5 shows
simulations with and without the electric body force. At high current densities (j/jr greater
than about 5.3), including the body force leads to strong central sample accumulation in the
Lrg/L > 0.5 region (images for Lrg/L =0.8 are shown in Figure S5), while simulations
without the body force predict a more uniform radial distribution. In contrast, the body
force seems to have very little effect for current densities below about 0.7 A cm? (near

J/jr = 4.5) which are more typical of ITP assays.

Experimental observations do not corroborate this dramatic central accumulation
predicted by simulations with body forces at high current density. In fact, exclusion of the
body force leads to better qualitative agreement for high current density. The reasons for
this discrepancy are not clear. However, we do note that experimentally we observe flow
instabilities in the ITP interface for current densities above 0.8 A cm2 (roughly j/jr greater
than about 5.3). Such flow instabilities were observed experimentally by Persat & Santiago
(2009) and modeled by Santos & Storey (2008) in their numerical work on electrokinetic
instabilities due to streamwise conductivity gradients. Beginning at current densities of
about 0.8 A cm2, we observe steady azimuthal asymmetries in experiments. Above 2 A cm
we sometimes observe strong temporal fluctuations in the scalar fields. We hypothesize
that the onset of flow instabilities at higher current densities may account for the
discrepancies between predictions and experimental observations. Our simulations are
axisymmetric, and so our model cannot capture azimuthal variations. We recommend that
investigations of high electric field cases use fully three-dimensional, unsteady simulations,
and that they include the electric body force term. Such an approach may help resolve the

effects of electric body forces at high currents.
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