Motion of red blood cells near microvessel walls: effects of a porous wall layer

DANIEL S. HARIPRASAD¹ AND TIMOTHY W. SECOMB^{1,2}†

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

1. Supplementary material

MovieKappa=0.avi: Movie showing motion and deformation of a cell initially placed at 0.9 μ m from the centre-line, as in Figures 2 and 3, with no layer ($\bar{\kappa} = 0$). In each frame, time in ms, velocity in mm/s, overall cell length and width and coordinates of centre of mass in μ m are indicated. The frame of reference moves with the cell centre of mass; the cumulative shift in μ m is indicated at upper left.

MovieKappa=10.avi: Movie showing motion and deformation of a cell initially placed at 0.9 μ m from the centre-line, as in Figures 2 and 3, with a layer with low hydraulic resistivity $\kappa = 10^{10} \text{ N} \cdot \text{s/m}^4$ ($\bar{\kappa} = 10$). In each frame, time in ms, velocity in mm/s, overall cell length and width and coordinates of centre of mass in μ m are indicated. The frame of reference moves with the cell centre of mass; the cumulative shift in μ m is indicated at upper left.

MovieKappa=100.avi: Movie showing motion and deformation of a cell initially placed at 0.9 μ m from the centre-line, as in Figures 2 and 3, with a layer with high hydraulic resistivity $\kappa = 10^{11} \text{ N} \cdot \text{s/m}^4$ ($\bar{\kappa} = 100$). In each frame, time in ms, velocity in mm/s, overall cell length and width and coordinates of centre of mass in μ m are indicated. The frame of reference moves with the cell centre of mass; the cumulative shift in μ m is indicated at upper left.

MovieKappa=inf.avi: Movie showing motion and deformation of a cell initially placed at 0.9 μ m from the centre-line, as in Figures 2 and 3, with an impermeable layer, equivalent to a channel of width 8 μ m with no layer ($\bar{\kappa} \rightarrow \infty$). In each frame, time in ms, velocity in mm/s, overall cell length and width and coordinates of centre of mass in μ m are indicated. The frame of reference moves with the cell centre of mass; the cumulative shift in μ m is indicated at upper left.

 \dagger Email address for correspondence: secomb@u.arizona.edu