
Supporting Information

1 Meshing Scheme for Simulations

For simulating the evolution of filament shapes (Eqs. 1.2, 1.5 in paper, with
results shown in Fig. 1, 2 of the paper) a dynamical remeshing scheme was
used. The total number of grid points along each filament is N = 800. This
number does not change from one time step to another. However, the points
are dynamically moved to the parts of the filament where higher resolution is
required (determined by considering the inter-filament separation distance and
the curvature), mainly the tip. Below, we plot the filaments using just the gird
points without any interpolation at the last time step of our simulation. As
evident, the points are not equally spaced, in fact they are closely bunched at
the tip. We define quantity ds as the separation distance of two neighboring
gird points. ds is plotted below for each of the 800 points, for the same time-
steps as Fig. 1 of the paper. The separation distance at the tip (N = 400) has
decreased by five orders of magnitude. This equals the change in the minimum
separation distance of the two filaments and the increase in the curvature at the
tip. As time advances, the separation distance of more grid points matches the
minimum separation distance. Towards the last time steps, roughly 200 of the
points, or 25% of our numerical resolution is bunched at the tip, an infinitesimal
length along the filament, to properly resolve the singularity.

2 Solving the Similarity ODE under Local Ap-
proximation

2.1 Self-Similar Form

The vortex filament i is described by ri(si, t), where ri is the filament position
parametrized by arc length parameter si and time t. We assume that close to
the singularity, a similarity solution exists of the form,

ri(s, t) = li(t)G(s/li(t)), (1)

where the only relevant length scale is li(t) =
√
|Γi|(t∗ − t).
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Figure 1: Left: Curves in Fig. 1 of the paper but with the points used in the
last time step (1 − t∗/t = 1.2 × 10−10) explicitly shown. The points are closer
together near the tip where a higher resolution is required. The separation dis-
tance between points at the tip keeps up with the vanishing separation distance
between the filaments to ensure numerical accuracy. Right: Separation distance
for the grid points used in numerically approximating curves of Fig. 1 of the
paper as a function of point number for different time steps. Many more points
are pushed towards the tip (where the separation distance is least) to maintain
the required numerical resolution.

2.2 PDE of Motion

Under local approximation the velocity induced at point R by a vortex filament
is

vext(R) = − Γ

2π

(R− r(s))× r′(s)
|R− r(s)|2

, (2)

where r(s) is the closest point on the filament to point R. For well-behaved
geometries, this is equivalent to

d|R− r(s)|
ds

= 0. (3)

The self-induced velocity is given by,

vself (r) = − Γ

4π
κ ln

(rc
σ

)
b, (4)

where κ is the curvature, rc radius of curvature, σ diameter of the filament, and
b the binormal vector.

2.3 Delayed ODE for Similarity Solution

Consider the self-similar time-independent form of two vortex filaments.
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We use arc length parameter η to move along the two filaments. We define
two other arc length parameters η1 and η2 to designate the nearest point on the
other filament. This means on filament 1, G1(η) is closest to G2(η2); and on
filament 2, G2(η) is closest to G1(η1). Equivalently,

d

dη2
|
√
|Γ2|G2(η2)−

√
|Γ1|G1(η)|2 = 0. (5)

For well behaved geometries (and fixed η), this is equivalent to,√
|Γ2|G′2(η2) · (

√
|Γ2|G2(η2)−

√
|Γ1|G1(η)) = 0. (6)

The line connecting a point on filament 1 to the nearest point on filament
2 should be perpendicular to the tangential component of filament 2 at that
point. η2 is clearly a function of η. Its differential dependence on η is given by,

dη2
dη

=

√
|Γ1|G′2(η2) ·G′1(η)

G′′2(η2) ·
(√
|Γ2|G2(η2)−

√
|Γ1|G1(η)

)
+
√
|Γ2||G′2(η2)|2

(7)

Similarly η1 is related to η,

dη1
dη

=

√
|Γ2|G′1(η1) ·G′2(η)

G′′1(η1) ·
(√
|Γ1|G1(η1)−

√
|Γ2|G2(η)

)
+
√
|Γ1||G′1(η1)|2

(8)

We define αi = 1
2π ln

(
ric
σi

)
.

The equation of motion for filament 1 becomes,

G1(η)−ηG′1(η) = α
Γ1

|Γ1|
G′1(η)×G′′1(η)+

Γ2

π
√
|Γ1|

(√
|Γ1|G1(η)−

√
|Γ2|G2(η2)

)
×G′2(η2)

|
√
|Γ1|G1(η)−

√
|Γ2|G2(η2)|2

.

(9)
Crossing the above expression with G′ and using the fact that G′×G′×G′′ =

G′(G′.G′′)−G′′(G′.G′) = −G′′ –since G′ is normalized, yields,

G′′1(η) = − |Γ1|
α1Γ1

G′1(η)×

G1(η)− Γ2

π
√
|Γ1|

(√
|Γ1|G1(η)−

√
|Γ2|G2(η2)

)
×G′2(η2)

|
√
|Γ1|G1(η)−

√
|Γ2|G2(η2)|2

 .

(10)
Equations 7 and 8 require G′′ to evaluate the nearest point on the opposing

filament. Hence, to have a closed set of ordinary differential equations, we need
to go one order higher. G′′ will then become an input which is used to evaluate
G′′′. This also adds two new vectors (G′′1 and G′′2 at the start point) to the
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initial conditions. Differentiating the last equation with respect to η gives,

G′′′1 (η) = − |Γ1|
α1Γ1

G′′1(η)×

G1(η)− Γ2

π
√
|Γ1|

(√
|Γ1|G1(η)−

√
|Γ2|G2(η2)

)
×G′2(η2)

|
√
|Γ1|G1(η)−

√
|Γ2|G2(η2)|2


− |Γ1|
α1Γ1

G′1(η)×

G′1(η)− Γ2

π
√
|Γ1|

(√
|Γ1|G′1(η)−

√
|Γ2|G′2(η2)dη2dη

)
×G′2(η2)

|
√
|Γ1|G1(η)−

√
|Γ2|G2(η2)|2

− Γ2

π
√
|Γ1|

(√
|Γ1|G1(η)−

√
|Γ2|G2(η2)

)
×G′′2(η2)dη2dη

|
√
|Γ1|G1(η)−

√
|Γ2|G2(η2)|2

+
Γ2

π
√
|Γ1|

(√
|Γ1|G1(η)−

√
|Γ2|G2(η2)

)
×G′2(η2)

|
√
|Γ1|G1(η)−

√
|Γ2|G2(η2)|4(√

|Γ1|G′1(η)−
√
|Γ2|G′2(η2)

dη2
dη

)
·
(√
|Γ1|G1(η)−

√
|Γ2|G2(η2)

))
(11)

Similarly, for filament 2 we have,

G′′2(η) = − |Γ2|
α2Γ2

G′2(η)×

G2(η)− Γ1

π
√
|Γ2|

(√
|Γ2|G2(η)−

√
|Γ1|G1(η1)

)
×G′1(η1)

|
√
|Γ2|G2(η)−

√
|Γ1|G1(η1)|2

 .

(12)
And in higher order,

G′′′2 (η) = − |Γ2|
α2Γ2

G′′2(η)×

G2(η)− Γ1

π
√
|Γ2|

(√
|Γ2|G2(η)−

√
|Γ1|G1(η1)

)
×G′1(η1)

|
√
|Γ2|G2(η)−

√
|Γ1|G1(η1)|2


− |Γ2|
α2Γ2

G′2(η)×

G′2(η)− Γ1

π
√
|Γ2|

(√
|Γ2|G′2(η)−

√
|Γ1|G′1(η1)dη1dη

)
×G′1(η1)

|
√
|Γ2|G2(η)−

√
|Γ1|G1(η1)|2

− Γ1

π
√
|Γ2|

(√
|Γ2|G2(η)−

√
|Γ1|G1(η1)

)
×G′′1(η1)dη1dη

|
√
|Γ2|G2(η)−

√
|Γ1|G1(η1)|2

+
Γ1

π
√
|Γ2|

(√
|Γ2|G2(η)−

√
|Γ1|G1(η1)

)
×G′1(η1)

|
√
|Γ2|G2(η)−

√
|Γ1|G1(η1)|4(√

|Γ2|G′2(η)−
√
|Γ1|G′1(η1)

dη1
dη

)
·
(√
|Γ2|G2(η)−

√
|Γ1|G1(η1)

))
(13)

The four boxed equations above are a set of coupled ODEs in 20 variables.
The initial conditions specify at the start point G1, G2, G′1, G′2, from which G′′1 ,
and G′′2 are computed; in addition, η1(0) = 0 and η2(0) = 0. The equations are
then solved numerically.
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Figure 2: Non-universality of the similarity solutions. Here the G′ vectors of
the two filaments (part of the initial conditions in similarity space) are skewed
by 2χ = 60 degrees. The separation distance between the two filaments in the
similarity space A is varied for each plot. The shapes are characterized by four
angles of the ‘tent’. Clearly, the ‘tent’ geometry is not universal, but dependent
on the initial conditions.

3 Non-universality of Similarity Solutions

To demonstrate that the solutions to the similarity ODE are non-universal,
but dependent on the initial conditions in similarity space, we have solved the
similarity ODE for different separation distances between the starting points
A = |G1(0) − G2(0)|. In real space A corresponds to the numerical pre factor
for the scaling law in the limit of approaching the singularity. In each case the
coplanar vectors G′1(0) and G′2(0) form an angle of 60 degrees. The circulations
are equal in magnitude.

The shape of the solution is quantified using the geometry of the resulting
‘tent’, as characterized by the opening angles θ1,2 and φ1,2 (see Fig. 2). The
filaments are no longer symmetric and many different ‘tent’ geometries are pos-
sible. This is an explicit demonstration of the asymptotic geometry not being
universal.

5


