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Throughout this supplementary document, all references to the main document will9

be prefixed by ‘Main−’.10

1. Application of model of Corcos and Sherman (1976)11

Figure 1(a) shows the result of the CS76 calculation for a sample test case characterized12

by Ri0 = 0.08 for the time at which the cores have grown to their final scales. The13

streamlines correspond to the final state of the Stuart vortices and the thick black line14

shows the calculated braid. Panel (b) of the figure shows the evolution of the half thickness15

of the core (or equivalently the elevation of the tip of the braid). Panel (c) in figure 116

shows the evolution of the stagnation point strain rate for our test case. As we will be17

primarily interested in studying the secondary instabilities occurring after the primary18

KH wave has achieved its maximum amplitude, the final value of γ will be used in our19

calculations. To investigate how the calculations compare to our numerical results, we plot20

the calculated braid profiles versus the simulated profiles (both at the time of maximum21

H) in panel (d) of the figure. The solid lines are from CS76-type calculations while the22

dashed lines are for the equivalent braids from the DNS simulations. The arrows in panel23

(d) indicate the direction of increase in the Richardson number from 0.04 to 0.12, 0.16,24

and 0.2 respectively. The results presented in the figure demonstrate excellent agreement25

between the calculations and the simulations. As originally pointed out by CS76, the26

differences between the solid and dashed curves are partly due to simplifications made27

to obtain equations (Main− 3.5, 3.6) and also to advecting the vorticity field using the28

simple structure of the Stuart vortices. The increasing difference between the curves for29

larger values of the Richardson number is derivative of the fact that we have used a value30

of ∆ρ = 2 in equation (Main−3.6). This value is more accurate for small Ri0 cases than31

for large. As Ri0 increases, the time of roll-up of the KH wave to its maximum amplitude32

increases and hence the density difference across the braid decreases due to the direct33

influence of diffusion.34

2. Heuristic model for vortex core35

2.0.1. Estimating tm36

Figure 2(a) plots the values of tm versus the Richardson number for various Reynolds37

and Prandtl numbers (for the cases listed inMain−table 1). The overlap of essentially all38

of the curves confirms the Ri0 -dependence of tm . The level of stratification of the initial39

shear layer sets the maximum amplitude that the KH wave can obtain and the time it40

takes to reach this amplitude. For comparison, tm calculated based on the CS76 method41

is also plotted in the figure (shown by the −o− line). As discussed earlier, evolution42

timescale is not accurately predicted using their method.43

2.0.2. Estimating ∆ρustm44

The results listed in Main− table 1 for ∆ρustm are plotted in figure 2(b). The markers45

on each of the lines in the figure correspond to Ri(0) = 0.04, 0.08, 0.12, 0.16, and 0.2.46

The figure shows that ∆ρustm is very close to 2 for small Ri0 and drops to a value close to47

0.5 at Ri(0) = 0.2. It also shows that for higher Reynolds and Prandtl numbers, ∆ρustm48

decreases less significantly with Ri0 . So, for very high values of Re and Pr (outside the49

range covered by the cases explicitly analyzed in our study) it might be safe to assume a50

value of 2 for ∆ρustm . In our calculations of the Raust however, we will use the linear fit51
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Figure 1. (a) Streamlines and braid location obtained from CS76 calculations for Ri0 =0.08;
(b) Time evolution of the braid elevation H (or half the core thickness) for the case of panel (a);
(c) Time evolution of the stagnation point strain rate for the case of panel (a); (d) Comparison of
braids calculated using the CS76 method (solid lines) and braids from simulations at Re = 1000
and Pr = 1 (dashed lines). The arrows indicate increase in Ri0 from 0.04 to 0.12, 0.16 and 0.2.

shown in the figure, the equation for which is:52

∆ρustm = 3.22− 0.024tm. (2.1)

It should be noted that the abscissa in figure 2(b) is labled tmd which refers to the53

time at which ∆ρust peaks. Although table SM − 1 shows that tm and tmd are close, it54

is important to note that they are not exactly the same. Figure 3(a) shows the ratio of55

these two times and indicates that for 0.04 < Ri(0) < 0.16, it is reasonable to use tm for56

tmd . This will be our choice as a simplifying step in the analysis to follow. Comparison57

between the tm and tmd columns in table Main− table 1 shows that the latter is more58

sensitive to Pr and Re . This is because the time needed by the KH wave to grow to its59

maximum amplitude is primarily a function of the Richardson number while evolution60

of the unstable region is affected by the inter-layer diffusion inside the core which itself61

depends on both Pr and Re .62

3. Analysis of the braid63

Table 1 shows the results of the theoretical prediction of the braid stagnation point64

Richardson number versus those obtained from 2D numerical simulations of the table in65
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Figure 2. (a)Simulation-based results obtained for tm for Pr = 1, Re = 1000 (solid line with
’+’s), Pr = 1, Re = 2000 (solid line with ’*’s), Pr = 2, Re = 1000 (solid line with upward
triangles), Pr = 2, Re = 2000 (solid line with downward triangles), Pr = 4, Re = 1000 (solid
line with diamonds) and Pr = 4, Re = 2000 (solid line with crosses). The solid line with hollow
circles shows the tm results obtained by using the CS76 model; (b)Simulation-based results for
∆ρustm versus tmd for Pr = 1, Re = 1000 (solid line with ’o’s), Pr = 1, Re = 2000 (solid
line with ’+’s), Pr = 2, Re = 1000 (solid line with ’*’s), Pr = 2, Re = 2000 (solid line with
diamonds), Pr = 4, Re = 1000 (solid line with upward triangles) and Pr = 4, Re = 2000 (solid
line with downward triangles). The solid straight line is a linear fit to all the curves in the figure.
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Figure 3. (a) tm/tmd plotted for the cases listed in a table in Main− table 1. At each value of
Ri0 , there are six stars corresponding to different Re and Pr ; (b)Data points from the same
table (circles) plotted along with correlation (Main− (3.3)). The Richardson number increases
from 0.04 for the data points at the left to 0.2 for points at the right.

Main− table 1. To obtain theoretical values for RiB , we have employed (Main− 3.9)66

along with γ and ψ obtained using the CS76 model (using equations (Main− 3.7, 3.8).67

It is important to note that in the analyses of CS76 leading to relation SM − (2.1),68

it was assumed that γ could be assumed to be constant along the braid. However, the69

main equation governing evolution of γ in CS76 indicates a non-constant value with70

a peak at the stagnation point. In our analysis, we average γ over the braid and use71

the result in (Main − 3.9). For comparison between the predictions of (Main − 3.9)72

and the simulations, we choose the braid Richardson number at the stagnation point73

(RistagB ) in our numerical results and at a time between tm and the onset of the pairing74

instability. As we will see, RistagB does not change significantly during this period of time.75

Table 1 shows that the values of RistagB calculated using the theoretical prediction are in76
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Case Name RiB theory RistagB simulation
c1− 1000− 0.08 0.20 0.20
c1− 1000− 0.16 0.12 0.13
c1− 2000− 0.08 0.14 0.15
c1− 2000− 0.16 0.085 0.09
c1− 4000− 0.08 0.10 0.13
c1− 4000− 0.16 0.06 0.04
c2− 1000− 0.08 0.36 0.25
c2− 1000− 0.16 0.21 0.15
c2− 2000− 0.08 0.25 0.19
c2− 2000− 0.16 0.14 0.12

Table 1. RiB calculated using equation (Main− 3.7) in the middle column and from
simulations in the right column for sample test cases from Main− table 1

good agreement with our 2D numerical simulations. The agreement however diminishes77

with an increase in the Prandtl number. This is probably because, for higher Prandtl78

numbers, the strength of the vorticity bands in the cores is increased compared to that79

for the lower Prandtl number cases. Hence, the effect of the flow field of the cores on80

the braid at the stagnation point is more pronounced for cases with Pr = 2. As the81

theoretical prediction totally ignores this effect, the agreement between the theory and82

the simulations deteriorates at higher Prandtl numbers. Nevertheless, the results are still83

in reasonable agreement for Pr = 2.84

3.1. Diagnostic tools for the braid85

To facilitate our analyses of the braid, we needed to develop certain diagnostic tools.86

To explain development of the tools, we consider the case c1-2000-0.12 as an example.87

Figure 4 shows the vorticity field at a sequence of times in the evolution of this flow.88

To extract braid information from the simulations, we extracted data from one hundred89

traverses between the centers of the cores for each time frame of each simulation. The90

point of maximum vorticity on each traverse was then identified to define the location of91

the braid center. Alternatively, one could use the density profiles to locate the center of92

the braid. Connecting the 100 points obtained in this fashion provided a braid profile for93

each time frame. The solid lines in Figure 5(a) present the results for three different times94

for the same test case as illustrated in Figure 4. The solid lines in the figure are overlain95

by a third-order polynominal fit shown as the dash-dotted curve. For times shown in96

panel (a), the braid profiles and the fits coincide closely. Panel (b) illustrates the braid at97

a sequence of later times when the braid deformation is pronounced and so the fits do not98

coincide with the earlier braid profiles. For these cases, the fits (dash-dotted lines) can be99

treated as an unperturbed braid, or in other words, as the braid had it had no secondary100

braid instabilities deforming it. Therefore, for the cases of panel (b), the deviation of the101

braids from the polynominal fits can be considered a measure of the braid deformation.102

We have calculated the area between the solid and dash-dotted curves for each time103

step and we employ the difference to define the “braid deformation”. For the test case104

under consideration, this braid deformation is plotted in panel (c) of Figure 4. At early105

times when the braid has yet to become deformed, this parameter has a value near zero.106

However, at a time shortly before t = 80, the braid begins to grow (as shown in Figure107

4 (d − e)). At a time slightly prior to t = 90, small billows form on the braid and these108
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Figure 4. Vorticity contours for case c1-2000-0.12 and at times (a) t=50, (b) t=60, (c) t=75,
(d) t=80, (e) t=85, (f) t=90, (g) t=95, (h) t=100, (i) t=105, (j) t=110, (k) t=140, (l) t=165.
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appear in the form of small peaks on the braid deformation plot. The larger deformations109

at later times in panel (c) of figure 5 are associated with the pairing process. Comparing110

panels (a, b) shows that despite the braid deformation, its location does not vary much111

for times beyond t = 50.112

Panel (d) of Figure 4 shows the braid thickness calculated from the vorticity field113

(solid line) and the density field (dashed line). We define the braid vorticity thickness114

as twice the normal-to-braid distance of the center of the braid from the location where115

the vorticity has a value of about 10% of the difference between the maximum value (at116

the center of the braid) and the minimum value of approximately zero (sufficiently far117

from the braid). The density thickness is defined in a similar fashion. This definition of118

the thickness based upon the 10% criteria is somewhat arbitrary and a more accurate119

definition is that proposed in S03. However, we are primarily interested in braid location120

and changes in thickness not the value of braid thickness itself. As shown in the figure,121

there is a period of time between t = 50 and t = 85 when the braid is in a stable condition122

and its thickness is unchanging. As we will see, the value of RiB is also relatively stable123

during this period and, if it is sufficiently low, we may anticipate the emergence of124

secondary shear instability of the braid. The ratio of the braid’s vorticity thickness to125

its density thickness is also close to unity during the semi-equilibrium phase which is in126

agreement with the results of S03 for Pr = 1.127

Panel (e) plots the parameter δpair which is the horizontal distance between the tips128

of the strong vorticity layers in two neighbour cores (shown in panels (b − d) of Figure129

4). As mentioned previously, the time at which these bands meet and thereafter drain130

the vorticity from the braid is of critical importance as it marks the onset of the growth131

of various secondary instabilities. As panel (e) of Figure 5 shows, at a time shortly after132

t = 80, δpair drops to zero and it is at this time that we observe the braid deformation to133

begin to grow in panel (c). This time also marks the onset of the merging instability. To134

demonstrate this, we plot ∆zcore in panel (f) which is the difference between the vertical135

positions of tops of the left and right cores. Prior to the onset of merging, the two positions136

are identical and ∆zcore is zero but this grows slowly after δpair vanishes implying that137

pairing is underway. Although the coincidence of the time of δpair = 0 and the onset138

of ∆zcore > 0 occurs in many of our simulations, in general, the pairing instability may139

get underway even before δpair vanishes depending on the flow initialization. Moreover,140

δpair = 0 is not a necessary condition for the merging instability. At high Richardson141

numbers (0.2 and higher) merging may be completely prohibited by the influence of the142

density stratification.143

Panel (g) of Figure 4 presents time variation of the vertical extent of the core, Dcore,144

demonstrating that it oscillates about the mean for a time but is thereafter affected by145

the onset of secondary instabilities that originate on the braid and by the pairing process.146

Panel (h) plots the variation of RiB at the stagnation point. During the period when147

the braid is approximately steady (t ∼ 50− 85), the RistagB is essentially constant. Near148

t = 85 when δpair vanishes and the braid is drained of its vorticity, its Richardson number149

drops very rapidly and secondary vortices appear on the braid. The large variations for150

t > 100 in panel (h) are due to the merging process. A more detailed examination of151

RiB may be constructed by plotting it as a function of position along the braid. This is152

done in panels (i) and (j) for various times. For earlier times and before δpair tends to153

zero, the minimum value of RiB obtains at the stagnation point. However, as δpair → 0,154

at the locations where the tips of the cores outermost negative vorticity bands meet155

the braid, RiB is further reduced. This is clearly seen for times t > 75. The two points156

of contact have a near zero Richardson number at t = 85 which is near the time that157

secondary vortexes form at those points on the braid. The horizontal axes in panels (i)158
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and (j) denote the global x-direction and not the along-braid coordinate. The diagnostic159

tools described above (specially those employed to construct panels (c) through (f)) are160

useful for determining conditions under which the emergence of small and large scale161

deformations on the braid and cores appear. We will further employ these tools in our162

analyses in the next sections and we will also construct similar plots to those shown in163

figure 5 for the cases to be considered.164

4. Details of the Non-Separable Stability Analysis165

To convert the system of equations into an eigensystem, we expand the perturbations166

via the Galerkin method (see KP85 for details) using the expansions167

û =

L
∑

λ=−L

N
∑

ν=0

uλνFλν , ŵ =

L
∑

λ=−L

N
∑

ν=0

wλνGλν , (4.1)

ρ̂ =

L
∑

λ=−L

N
∑

ν=0

ρλνGλν , p̂ =

L
∑

λ=−L

N
∑

ν=0

pλνGλν ,

where168

Fλν = eiλαx cos
νπz

H
, Gλν = eiλαx sin

νπz

H
. (4.2)

We next substitute ( 4.1) into the system of equations main − (4.4), main − (4.6),169

main− (4.7) and main− (4.9) and diagonalize the left hand side of the system by taking170

proper inner products. Then we solve equation main − (4.9) for pλν and the result is171

substituted into main − (4.4) and main − (4.6). This leads to a set of linear algebraic172

equations for the coefficients û, ŵ and ρ̂ as173

σuκµ =< UU >λν
κµ uλν+ < UW >λν

κµ wλν+ < UT >λν
κµ ρλν , (4.3)

σwκµ =< WU >λν
κµ uλν+ < WW >λν

κµ wλν+ < WT >λν
κµ ρλν , (4.4)

σρκµ =< TU >λν
κµ uλν+ < TW >λν

κµ wλν+ < TT >λν
κµ ρλν . (4.5)

The expressions for the < >λν
κµ terms are long and can be found in the appendix of Smyth174

& Peltier (1991). The system of equations ( 4.3), ( 4.4) and ( 4.5) can be compiled into175

the form σVi = AijVj , where A is a constant matrix and V is the concatenation of uλν ,176

wλν and ρλν . Eigenvalues of A are computed using exactly the same methods employed177

in by Klaassen & Peltier (1985).178

The truncation level N for the Galerkin expansions in ( 4.1) is chosen based on the179

scheme proposed by KP85, namely:180

L(ν) =

[

N − ν

2
−

b

α

]

. (4.6)

where the square brackets mean “the largest integer not exceeding the value of the181

enclosed quantity” and N should be an odd integer. The value of N is limited by two182

factors: 1- The limited memory of the machines used to solve the eigensystem and 2-183

human labour. Although the memory of machines available to us allows for a very large184

N for the stability analysis at one instant for one case, we are interested in performing185

the analysis for various times during the evolution of each case and we need to cover the186

several cases in this paper and the companion paper Mashayek & Peltier (2012). Hence,187

the value of N affects the overall time of our calculations greatly.188

More importantly, one has to note that the Reynolds and Prandtl numbers that we189
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Figure 5. Flow diagnostic tools for case c1-2000-0.12. (a) Braid location at times t = 30, 50, 75;
(b) braid location at times t = 80, 85; (c) braid deformation; (d) braid thickness calculated from
the vorticity and the density fields; (e) δpair; (f) ∆zcores; (g) Dcore; (h) RiB at the stagnation
point; (i) RiB along the braid for t = 30, 50, 75; (j) RiB along the braid for t = 80, 85.
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are interested in are considerably higher than those considered in the earlier studies190

of KP85, Klaassen & Peltier (1991), Klaassen & Peltier (1989) and Smyth & Peltier191

(1991). As a result, we detect more secondary instabilities some of which exist over a wide192

range of spanwise wavenumbers, are of oscillatory nature, and persist over long periods193

of flow evolution. This translates to detection of a large number of ‘new’ eigenvalues194

in our analysis. Since identification of the type of each eigenvalue is achieved through195

the calculation of its corresponding eigenfunction, and since that calculation depends196

directly on both N and the resolution of our simulations (which are relatively high),197

the stability analysis we perform involves a tedious mode-finding and mode-tracking198

procedure. Therefore, N has to be chosen to be sufficiently large but not excessively so.199

We determine this limit by increasing N from a small value to large until we no longer200

observe any significant difference in the instability modes detected and in their growth201

rates. For all the cases considered in this paper and in the companion paper MP2, we202

found N = 37 (for one wavelength of the primary KH wave) to satisfy this criterion.203

REFERENCES

Klaassen, G.P. & Peltier, W.R. 1985 The onset of turbulence in finite amplitude kelvin-204

helmholtz billows. J. Fluid Mech. 155, 1–35.205

Klaassen, G.P. & Peltier, W.R. 1989 The role of transverse secondary instabilities in the206

evolution of free shear layers. J. Fluid Mech. 202, 367–402.207

Klaassen, G.P. & Peltier, W.R. 1991 The influence of stratification on secondary instabilities208

in free shear layers. J. Fluid Mech. 227, 71–106.209

Mashayek, A. & Peltier, W.R. 2012 Secondary instabilities of parallel stratified shear layers.210

part ii: Effect of stratification. J. Fluid Mech. submitted.211

Smyth, W.D. & Peltier, W.R. 1991 Instability and transition in finite amplitude kelvin-212

helmholtz and holmboe waves. J. Fluid Mech. 228, 387–415.213


