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Appendix B. Derivation of the fifth order Ginzburg-Landau equation

This file provides the pertinent details of the derivation of the nonlocal fifth order
Ginzburg-Landau equation

pA+ Axx +i (YAx + a1|APAx + as A A% ) + b|APA — |A*"A =0, (1)
and of the coeflicients
. 2
= o+ p1 (JA[?) + p2 (|A[*) + palm [(AAX)] + pa (JAI?)7,
v=9+n{|A*), b=0bo+bi(|A*) (2)

used in the accompanying paper Convectons in a Rotating Fluid Layer by C. Beaume,
A. Bergeon, H.-C. Kao and E. Knobloch, published in the Journal of Fluid Mechanics.
We start with the equations of motion (Veronis 1959)

Rab, — Tv, + V* = o1 [VQi/Jt + J(, V21/1)] , (3)
Yo+ V20 =0, +J(1,0), (4)
Ty, + Vi =0 vy + J(1p,v)] (5)
subject to the boundary conditions
Y=, =0=v,=0at z€{0,1}. (6)

Equation (1) describes the above problem near the critical Rayleigh number Ra,. for
the onset of convection and the critical Taylor number 7, determined by the degeneracy
condition ¢2 = 1/3 (Cox & Matthews 2001). Here ¢ = \/§T+:20’ p = k? + 7% and the
wavenumber k represents the critical wavenumber corresponding to Ra.. Consequently,
we write Ra = Ra. + €29 + €*ry and T = T, + €25, where € < 1. We also introduce a
slow spatial scale X = ez and write

Y~ Z"1/}nxXz GNZ"G (x,X,2), v~wv(X i "op (2, X, 2). (7)

The leading order term in the zonal velocity is now of order one instead of being of order
€ (Cox & Matthews 2001). To simplify the expressions that follow we use the notation
V2 = 04y + 0.2, J(u, w) = upw, — Uzwy, j(u,w) = uxw, — U Wy,
DPom = — (n2k2 + m27r2) + Ran*k? — T?m?r?
Expansion (7) leads, order by order, to linear inhomogeneous problems of the form
VY Ra.d, -T.0.

MV, =| o, V2 0 v, =f, (8)
T.0, 0 \V&

where W, represents (¢, 0y, ’Un)T and f,, is a vector with components that are polyno-
mials in ¥, ..., ¥p_1, 01, ..., 0n—1, V0, ..., Un—1, and their derivatives. Equation (8) can also
be written as a single equation with respect to .,

M"/Jn = (VG - Racazz + Tgazz) wn = v2fnl - RacaIfNQ + Tcazfn?" (9)
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We solve this equation for 1,, and determine the corresponding 6,, and v,, from Eq. (8).

First € second order

At O(e) f; = 0. The resulting homogeneous problem has a solution of the form

X) .
P = %em sin(wz) + c.c.,
ka(X)
0, = %elkz sin(rz) + c.c.,
Tea(X) ;
v = wezkm cos(mz) + c.c.,
2p

where k and 7 are, respectively, the wavenumbers in the x and z directions. The critical
value Ra. and the critical wavenumber £ satisfy

Ra. = 3p?, p? (2k2 — 71'2) = T?x2. (10)
Note that the linear operator M in Eq. (9) is self-adjoint with kernel e*** sin(7z). This
fact simplifies the solvability condition applied at each subsequent order.
At O(€?) £y is given by
f21 = Uﬁlj(wlv VQ"/)l)v
foo = —J(61,4¢n),
faz = =J(v1,41).

The solvability condition for v, is always satisfied. Thus 12 may be set to zero and ¥
is given by

1/}2 = 07
]{?2 2
0y = — 87|:;| sin(27z),
'TC 2.2 )
Vo = ’U20(X) + ﬁ 62ka + c.c.

The homogeneous term vso(X) plays an important role in what follows.

Third order
At O(e?) f3 is given by

f31 = =4V x4 — Rachy,x + 6v1 . + 0" [J(vh2, V1) 4+ J (Y1, V2)] — rab1 4,
fa2 = J (¢1,02) + J(¥2,61) — 1, x — 201 X,
faz = =001, — 201 x0 + 0 [T (Y1, 02) + J (2, v1) — 1200, x] -

The solvability condition at this order gives

k2ry T.72 T2 3pk:4
2 7% )a- =S e P% ) |af2a = 0. 11
( 2 i )“ oy VXt (16p02 16 )'“l “ (11)

In traditional approaches which do not include spatial modulation the result (11) with
ry = 6 = 0 reduces to &2 = 1, i.e., the relation that determines the location of the
codimension two point at which a subcritical periodic wavetrain becomes supercritical
(Veronis 1959).



The solution W3 is

T27403 .. 3pktlal?a .
s = 7# elike sin(mz) — w etk sin(37z) + c.c.,
16pa2ps1 16p13
'k3 -3 2k2 2 ) 3T2k 4.3 )
by = (p1s = 3p°k%)[al"a ks sin(372) — gk a 3R gin(72)
16pp13(k2 + 972) 16pp310°(9k? + 72)
2 k2 ) -k3 2 )
% e sin(mz) — : 1!;32 2 ek sin(mz) + c.c.,
_[7m(wox +60)a  iTckrax  Ter®lal?a] s,
v3 = 200 + e 16527 e cos(z)
T .k w|al?a Tor®a® (T30 + p31) i

——— " cos(37z) — cos(mz) + c.c.

16])13(]{32 + 97T2) 160’2]?]?31(9]62 + 7T2) €

Fourth order
At O(e?) £y is given by

fu=0c"" {QJ (Y1,¢1,x2) + j(wl,v2¢1) + J (1, V2ih3) + J (v3, Vi)
+J (e, V21/12)} — 1oy — Ra.bs x + 6va . — 4AV?9g xa,

fao = —o.x — 202, x0 — J (01,1) — J (B3,1p1) — J (B, 102) — J (01,3),

fas=—0"" [Uo,xl/a,z + J (vi,¥1) + J (v1,03) + J (v2,12) + J(U3,1/11)}

—2v2 Xy — Vo, xx — 02 5.

The solvability condition for 1, is always satisfied at this order. However, the Laplace
operator appearing in the equation for v4 has a nonempty kernel spanned by multiples of
vy = 1, a fact that is responsible for the presence of a second solvability condition, viz.,

T

T (laf?)x = 0 (12)
4dpo X

vo,xXx +

From Egs. (11) and (12) we obtain the condition €2 = 1/3 that defines the critical Taylor
number T,:

T, = Tpod = om?(24+ V1 — 022).
(1+V1-0?)

(13)

Note that two such critical values of T" are present.

Now that all solvability conditions have been imposed we can proceed to solve the
O(€*) problem. Here we only list the terms which enter into the computation of the
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solvability conditions arising at O(e®) and O(€%). These are

Km(2T77° 4 4p°n° 4 30p%)(lal*) x

= — in(2
s 207 pa0 sin(27z) + ...,
k*(p13 — 3p°k?) (k* 4 57°)a|* ikra*ax .
04 = 327Tp21713(/€2 + 972) sin(2mz) + W SIEme) et
k1 (4T27? + 8p*n? + 60p° + po2)(lal®) x
vy = — > cos(27mz)
8ppoam
ikm® (T27% + pa1) (5k* 4 7%) a[*a® 2ikx WQ(UO,X +d0)a’ ik
_ e
64pps102(9k2 4+ 72) 16kpo?
2 2
— M eQikz _|_ c.c. —|—
16p

Fifth & sizth order
At O(e%) and O(e%), f5 and fs3 are given by

2

4
fa=0o" [Z (2J(wn, Us—n.xa) + J (UYn, v%_n)) + Y T, v%_n)] — 41 X Xao
n=1

n=1

=2V xx — AV xu — Rachs x — 14014 + 0vs . — 1201 x — 7203 4,

4 2
fro=—tsx — O1xx —203.x0 — Y J(On,5-n) = > J(On,03-n),
n=1 n=1
4 2
foz =—0"! [Z J(n, ¥5-n) + > J(n,th3n) + UO,X1/13,Z] —V1L,XX — 203, X2 — 03,2,
n=1 n=1

n=1 n=1

3 5
foz=—0""! [Z J(WnyPa—n) + Z J(vn, Y6—n) + UO,X1/J4,Z] — Vo xXx — 2V4 x5 — 04 .

The solvability condition for 5 yields
(fio + fvo,x + ifizvo,xx)a+daxx + i [(F0 + F1v0,x) ax + aiolal®ax + dzoa’dix |
. ) 2
+ (bo + blvoyx) la*a — élal*a — pTavgoﬁx =0 (14)

with coefficients given by

_ k%ry — 6272 ~ o2 ~ - kn?(rq 4+ 27,6
uoz%v /1‘1:72—7 d:6k2p7 ’Yoziga
o p
- - ~ 2po7m% — k%ry0 ~ k2m?
=% =k by= 2 = —
M2 =M » Yo 16p0 ) 1= 1602
G k3p(4k? + 272 + 3po) (2k* — 97t + Tk?7w? + 6k2n20) n 9k3(372 + k?) n k7
10 8po20? 32 1672’
_ E3p(4k? + 272 + 3po) (2k* — 97t + Tk27m? + 6k%n20)  K3(3m% + k?) K7
Ggo = + + ,
8pp202 32 1672

. p*kP(19K% +37%)  K'm(5k% +7%) | 9Kp*  3KS(K® + 57%)(pis — 3K%p?)
07 128ps1 (9K + 72) | 6402(9k2 + 72) | 128p1s 64p13 (k2 + 972)




The solvability condition for vg yields

k3 72lal2v snlal2 k2n2lald
V20, x X + (—Im[aa}] + |al*vo,x lal _ d ) _0
2p p

15
4po? 4dpo 32po? (15)
Equation (1) follows from (14) on integrating conditions (12) and (15) with respect to
X.
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