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This supplementary material contains a more complete derivation of the perturbation solution to the
nonlinear coupled problem of a fluid sloshing in a rectangular vessel, along with more details on the
normal form derivation. For full details of the coordinate system, the parameter definition and the 1: 1
resonance in the linear solution, see the main paper.

1. Nonlinear equations governing the coupled motion.
Assuming the fluid motion is irrotational so it can be written in terms of a velocity potential ¢(z, y,t),
the nonlinear equations governing the coupled fluid and vessel motion are

¢ww+¢yy:0 in 0<y<h(x,t) O<ax<lL,

1 . .
¢t+§(¢i+¢g2/)_q1¢m_q2¢y+g(y_h0) =Be on y=h(z,1),
ht+(¢z7q.1)hm:¢y742 on y:h((t,t),
¢y = qQ on y = Oa
¢w = (h on Tr = OaL7

for the fluid and

d29 g 1%7%4 L h L
Mo + f(m” +my)sinf = - cos 6 / / Pbat dydx + / phids(z, h(x,t),t) dx
o Jo 0

W L rh L
- sin 6 </ / POy dydx + / phioy(z, h(z,t),t) dx) ,
o Jo 0

for the vessel motion.
Here
g1 =1sinf(t) and g = —lcosO(t),
which parametrize the constraint as ¢? + ¢3 = [2, and Be is the Bernoulli constant.
We look for a solution to this system of equations in the form of a perturbation expansion in powers

of € < 1 about the quiescent solution 6 = 0, h = hg and ¢ = constant. The parameter ¢ is a measure of
the wave amplitude induced on the free-surface during the vessel motion. Hence we introduce

B,y t) = Bo + edy (z,y,t) + € Pa(z,y,1) + O(®),
h(z,t) = ho + €hi(z,t) + €2ha(x,t) + O(e),
0(t) = €01 (t) + €205(t) + O(€%),
Be = eBey + € Bey + O(€%),
where ®( is a constant. At this stage it is convenient to remark that previous studies have shown that
the linear solution of the above system of equations has frequency w, and so it is convenient to introduce

a new time variable £ = wt so the linear solution is now 27 periodic. As it will be clear from the context,
we drop the ~for the rest of this work and just consider the solutions to be 27 periodic in time.
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In order to derive the normal form equations in §3 of this report we also need to expand the frequency
w in powers of €, so

W =Wy + €Wn,1 + 62wn72.
Therefore, the derivative of h(z,t) for example, with respect to the original unscaled time becomes

hy = ewphyy + € (wphay + wWn,1hie) + O(€”).

Substituting the above expressions into the nonlinear equations and grouping terms of the same order
in € leads to the systems of equations given in the subsections below.

1.1. The O(¢) equations

At O(€) we obtain the linear equations

Prae + P1yy = 0 in O<y<hy O0<z<lL,
wWno1¢ + ghy = Bey on y = ho,
wrhiy = ¢1y on Y= ho, (1'1)
¢1y =0 on y=0,
D1z = lwp b1y on x=0,L,

for the fluid and

L ho
g wp W
R e ) A A
o Jo
for the vessel motion. It is easy to show that Be; = 0. This system can be reduced to a system for ¢,
and 6; only, by combining the two free surface conditions together to give

Wi + gp1, =0, on y = he.

These equations have been solved using two contrasting approaches, namely expanding the solutions in
terms of different eigenfunctions. Alemi Ardakani et al. (2012a) investigates the two different expansions,
the cosine and the vertical eigenfunction expansions, and proves that both methods are equivalent. In
this work we use the infinite cosine expansion so as to overcome the numerical issues found when using
the vertical eigenfunction expansion highlighted by Alemi Ardakani et al. (2012b).

At the 1 : 1 resonance the dispersion relation for the linear problem, given by (1.1) of the main paper
has a double root, and the velocity potential has the solution

o1(z,y,t) = gz@l cos(t) = (ASo(x,y) + BS1(x,y)) cos(t). (1.2)

Here A and B are arbitrary constants and

cosh 8,y
So=——77— T, 1.3
07 cosh Brnho €08 fin (1.3)
1 4w? & 1 cosh o,y
=lw, (z—=L - —2 mZ |, 1.4
S1=lw (m 2 L = a3 ,0mn coshamho cosa m) (14)

where a,, = (2m + 1)7/L, B, = 2n7/L and oy, ,, = hoga?, tanh a,,ho/(amho) — w?. Alternatively, we
can also write

S =1 i dw? 1 coshapy
=lw - COS iy T,
! " m L a2,0mn coshamhg m

m=0
where the constants p,, = —4/(a?,L) come from expanding x — L/2 as cosine expansion,
o0
x—L/2= me cos(am). (1.5)
0

Note that at the 1 : 1 resonance, w, and f3, are related by w? = g83,, tanh(8,,ho).
Also, the solution for 6, (t) is

01(t) = Bsin(t).
The linearized problem is solved numerically with the parameter values given in table 1, which corre-
spond to the series of experiments of Cooker (1994).
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Parameter Value

My 0.552kg

w 0.13m

L 0.525m

p 1000 kgm ™ (water)

TABLE 1. Values of the parameters used in this paper, based on the experiments in Cooker (1994).
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FIGURE 1. Plot of ¢, (z, ho) with A = 1m? ' and B = 1 for the lowest frequency 1:1 resonance for (a)
ho = 0.05m and (b) ho = 0.15m. In each case the solid line gives the result using the cosine expansion formulation,
while the dashed line gives the same result from the vertical eigenfunction expansion. The horizontal dotted lines

correspond to the value lwn B which indicates the required boundary conditions of q@w at x =0 and L.

In figure 1 we plot ¢ (z, ho) from (3.11) of the main paper with A = 1m2?s™! and B = 1, plus
the corresponding form of ¢Z;1: (x, ho) using the vertical eigenmode expression, for two separate values of
ho. The vertical eigenfunction expansion for quS at resonance is given by the equation before (5.23) in
Alemi Ardakani et al. (2012a). In the cosine expansion we use 500 terms in the sum and in the vertical
eigenfunction expansion we use 50 terms in the sum. Both these values are sufficiently large so that
the numerical solutions have converged. The linear boundary condition ¢, = 16 at x = 0 and L states
that g?)x = lw, B, but for larger values of hg, the vertical eigenvalue expression fails to give this value
(denoted by the horizontal dotted line), while the cosine expansion still accurately gives this value. The
reason for this discrepancy at « = 0, L for larger values of hg is due to the Gibbs phenomenon causing
oscillations in the vertical eigenfunction series expansion close to y = hg. This issue is addressed in §6.4
of Alemi Ardakani et al. (2012b) and explains why we choose to use the cosine expansion approach in
this paper even though it has slower convergence than the vertical eigenfunction expansion. Although we
highlight this convergence problem with the vertical eigenfunctions here for a value of w,, at resonance,
this convergence problem at y = hg is also observed at frequencies away from resonance. This convergence
issue does not affect the calculation of the sloshing frequency from the dispersion relation (1.1) from
the main paper, because in this case the x integrals occurring in the solution procedure are evaluated
exactly. However, when calculating the nonlinear normal form in §3 we need to calculate x integrals
involving the function qﬁr numerically, and it is here that any inaccuracies in the function at x = 0, L
would contribute to errors in the solution.
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1.2. The O(€?) equations

Retaining only the terms of O(e?) we obtain the following system of equations for ¢s, ho and 6s:

¢2m+¢2yy:0 in O<y<hy O<ax<lL,
wndor + gho = Bes — wphidry — (43, + ¢1,) + lwnb11910 — w101 on y = ho,
wphay = ¢oy — (P12 — lwpb1¢) iy + hid1yy — lwnb161s — wp 1hay on y = ho,
¢2y = lwn 01014 on y=0,
G2z = lwn bz + lwp 1014 on z=0,L,
(1.6)

for the fluid and
w, W L rho W, W L rho
%(mv + mf)HZ = _vawnwmleltt - I / / p¢2zt dydx - ll / / p¢1yt dyd.’l?
o Jo o Jo

L L L h

wpW WnaW 0

/ phiedre(z,y = ho,t) i ph1¢12¢(x,y = ho,t) do — ll / / P12t dydw,
0 0 o Jo

2
Mywy, B2 +

_wnW

for the vessel.
In order to solve this system of equations, the RHS of each equation needs to be expressed fully in
order to determine the time dependence of the second order solution.

2. Solution of O(e?) equations

As for the O(e) equations, we can eliminate hs (and h;) and consider the problem solely as a system
of equations for ¢o and #;. Combining the two free surface boundary conditions above, and using h; =
—woP1t/g to eliminate hy, we generate the free surface condition

w721¢2tt + g¢2'q = _2wn¢1w¢1tz + wnd)ltgblyy - 2wn¢1y¢1ty + wig_ld)ltgblytt
+21w2 0110100 + w2014 D12 + glwn 0101 — 2wWnwn 1 14s-

Introducing the forms of ¢ and 6y from the leading order solution we find

R R . R 1 R
w2 b + G2y = (wn (2(1)?90 + 3¢?y — ¢1¢>1yy) — 3w’ B, + glwn32> 3 sin(2t) + 2wy w191 cos(t),
(2.1)
where we have left <Z51 in terms of gbl at this stage, and we have also used the leading order free surface

condition (¢1y = 7¢1) to remove first order derivatives with respect to y. This is useful for simplifying
the final form of the solution.

Looking at equation (2.1) it is clear that if w, ; = 0 then only second harmonics appear in the equations
and the solution procedure is simplified. This is also the case in the vessel equation and the side wall
boundary conditions. In fact, wy,; = 0 is the only value w,, ; can take, and this can be shown formally
using a solvability condition at this order which can be found in appendix A. This also agrees with the
works of Tadjbakhsh & Keller (1960) and Feng & Sethna (1990) who consider similar problems.

Thus, with w, 1 = 0 we can look for a solution to the O(e?) system of equations with

ba(,y,t) = do(x,y)sin(2t) and  Oy(t) = b cos(2t).
Substituting these into the O(€?) system of equations reduces them to
Graw + dagy =0 in 0<y<hy 0<z<lL,
—4w2 po + oy = lcUn (2¢ + 3&%74 - ledglyy> - glwinA)u + %glwnB2 on y = ho,
(;Aﬁgy = %lwnB2 on y=0,
¢22:1: = —2wnlé2 on z=0,L,
for the fluid and

A N 2wnW ho IO
—dwlmyby + = (mv +my)ba = / / pP2g dyd. P¢1¢1x(567 y = ho)dx,
0
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for the vessel. We have simplified the vessel equation by again using hy = —w,¢1:(z, ho)/g, and by

noting that
L tho
/ / pP1y dydx = 0.
0o Jo

The equations can be further simplified by removing the constant terms in the free surface boundary
condition and the bottom boundary condition. This is achieved by introducing the new velocity potential

lwnhoB2

~ A 1
2 = 2 — §lwn32y + 5

and thus the equations become

QBQTT+¢;2yy:0 in O<y<h0 0<‘T<L7
_ _ 1 . . o 3 )
420 + 9day = 5wn (268, + 303, — drdyy ) — SWEBAL on y=ho,
&29 =0 on Yy= Oa
bow = —2wplfy on x=0,L,

for the fluid and

pd161.(2,y = ho) dz,
0

) X AW L fho
—4w?m, 0y + %(mv +myg)fy = — ; / / Ph2
0o Jo

for the vessel.

In the free surface condition, we now need to determine the form of the RHS. To do this we substitute
the form of ¢y from (1.2) using the forms of Sy(z, ho) and Si(x, ko) given in (1.3) and (1.4). Thus the
terms on the RHS can be written as

4Bn
(B —a?)

COS () T

32, = %AQB, (1 — cos 2B,) — 2ABlwnﬂnZ -

—ABlw, 3, Z (4w%> (cos(Bn — am)z — cos(Bn + am)z) + 1Pw2 B?

m=0 LOsz'm,n
S Awy 2 - 4o 1 il A2 2
212,,2 B2 n _ __m : - B22,,2 A ) cos20m0) |
+20%w? mZ::O Lomomn ) | Lom ;L(ﬂffa?n) cos Brx| + 5 wnmzzo Lamomn (1 — cos2a,,x)
) oo A 9 4 9
+B22w? 2. q;mﬂ (Lamwanmyn) (Laj;n,q> (cos(ag — )z — cos(ag + am)) ,

¢2, = —AQBQ tanh? B, ho (1 4 cos 26,)

+ABlw,, 3,, tanh 5, ho E ( LL tanh amh0> (cos(Bn — am)x + cos(Bn + am)z) ,
amam n
m=0

1 > w2 2
+§BQZQWZ mz:() ( m tanh amho) (14 cos2a,x),

4, 2
+B212W? tanh a,, ho ~_"Yn_ tanha ho | (cos(ag — am)x + cos(ayg + am)z),
La e q q a

La,o
m=0qg=m+1 avn.q
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and

Qz’lyyél = %A26721 (1 + cos 25nx) + %ABZWH Z <_ 4W721 > (COS(ﬂn - am)x + COS(ﬁn + Oém)w) )

m=0

1 5 4w?
+§ABlwn6n ,;) (pm - Lazom) (cos(Brn — am)x + cos(Bn + am)x) ,

—1—132 2 Z A - A (14 cos2a,x)
2 Pm = T2 2 Omon Lopmn mess

272 2 4w} dw?,
—|— B lFw Z Z Tt s ~1- (cos(am, — ag)x + cos(aum, + aq)x)
mY m,n n,q

m=0g=m+1
Y Y ( Y (5= 725 o ) + o + o))
vy menl B Lamn Laqon,q

Also on y = hy

(oo}
~ 4, 2
¢12 = —ABy sin B + Blw, (1 + Z (LWTL) sin ozmx> )
m—0 AmOm.n

We note that the first 3 terms on the RHS of the free surface condition are written as infinite cosine
expansions (or as constants) while the final term is expressed as infinite sine expansions. Therefore, in
order to simplify our overall solution for ¢ we convert the infinite sine expansions into cosine expansions
by using the expressions

. — 45,
sin Bpx = ——————CcoS Q,.T,
B ey

. 2 dayy,
sin o, = Tan — ; L2 — oZ) cos 3.

Thus, we can see from the above expressions that the RHS of the free surface boundary condition can
be written as F' + f(x) where F' is a constant, and f(z) is an infinite cosine expansion. We can again
remove the constant term from this boundary condition by introducing the new velocity potential

1

A
G2 = g2 + b
for which the system of equations become
¢2zz+¢2yy*0 in O<y<hy O<ax<L,
— 4wl P2 + ghoy = f(x) on y = ho,
Py =0 on y=0, (2.2)
¢2z = —2(,«)71192 on T = 0, L7
A A w L rho 7 L 2 o«
—40.)277%,92 + %(mv + mf)92 = -2 }IW fo 0 0 p¢2:€ dyd p¢1¢1w($7 Yy = hO) dl‘,
where
F = 2w, A262(1 + 3 tanh? Bho) + B2 5§: ! Sh 1% agh
= —wn i~ n n wy, nn- oy,
4 0 = Loma | Lod,omn — LaZ,0mn 0
4w? 1 > 1
o — n _712 332—812 532
P Lo2,0mn 9! “n Wn Z L2020

m=0
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and
1 =3 2wt 32w2
= 5%Wn 7A2 267‘ n(t h2 nh -1 7nl2325r ——
fo =g 2 [2 Futnan(tant fuo =1+ 75 L3ors
48w2 16w2 1
tanh? = 3,h - — — 16°w; B?
Lﬁr — an ﬁr o+p e Tn} ZL20mn(ﬁ2—az)
Lo ors o 64w 96w
+§l w, B Z [T r— + TP amagomnan tanh o, ho tanh aghg
m=0 ) s s )
q=m-+r
N dw? 4w? N 4w? 4w?
Pm La2 omn Logn Lomn Pq Lagaq’n
1o ors s 64w’ 96w
+§l w, B Z 7L2amaqam e + P —— tanh o, ho tanh aghg
m=0 ’ ’ ’ ’
om

n 42 4w? n 42 42 3
" — -t cos Brx
p La2 omn Loy, Loy, n Pq LaZog,

1 = 1663, 245,
+4lw§ABZ[ 3 {— Buion_ 24Butn 01y 5, g tamh gy

=L S Logogn Laqaq n

g=n—r—1
q>0

4w? 402 1608, 245,
+ “n 52 (pq wn)}+ Z { 65ncn Buton tanh 3, ho tanh agho

2
Logn Logogn Logogn Laqaq n

q=r—m
q>0

N dw? g2 dw? 832
Logn Pe™ Tazo,, L2 -a2) )| "

— Z (A%d + B2dP) cos Bz + Z ABd?® cos .
r=1 r=0

The parameters 0,2, and 6, appearing in f(z) are defined by

P 1 r=2n 5. — 1 for r odd
™2 7Y 0 otherwise "1 0 otherwise

In order to solve the system (2.2) we assume that ¢(z,y) can be split into two components, one
proportional to 65 and one not, so we write

Go(x,y) = H(z,y) + 02G(x,y),

where H satisfies the homogeneous = boundary conditions and inhomogeneous y boundary conditions,
while G satisfies the homogeneous y boundary conditions and inhomogeneous = boundary conditions.
Substituting this expression into the governing equations gives the following equations for G

Gez+Gyy=0 In O0<y<hy O0<z<L,
—4w,21G+gGy =0 on y=hy,
Gy=0 on y=0,
Gy =—2w,l on x=0,0L.

In order to take into account the x boundary conditions, we shift them into the surface boundary
condition by introducing G(x,y) such that

G = —2w,l <3§ s) +G,
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and G satisfies
Goo+Gyy=0 in 0<y<hy 0<z<IL,
R A L
—4w2G + gGyy = —8wil (:v — 2) on y=ho,
éy = on y=20
G, = on x=0,0L.
The solution for G satisfying all the equations except the surface boundary condition is

- cosh(a,y)
G= go ay cosh(a, o) cos(a ).

The expansion of  — L /2 in terms of cosines is given by (1.5), and so to find the unknown constants a,,
the solution for G is substituted into the surface boundary condition giving

o — 8wnlpy

dw?2 — ga, tanh i hg
The problem for the function H(z,y) is very similar, and the solution procedure follows similarly. The
function H satisfies
Hypy+Hyy=0 in O<y<hy 0<z<IL,
—4w2H +gH, = f(z) on y= hy,
Hy,=0 on y=0,
H,=0 on z=0,L.

Therefore the solution for H satisfying all the equations except the surface boundary condition is

cosh( BTy cosh( aTy
H= T ).
Z "cosh(B,ho) cos(frz) + Z " cosh(a,.ho) cos(arz)

This can then be substituted into the surface boundary condition and the b/.s and ¢].s can then be read
off by comparing coefficients of cos(8,x) and cos(a,.x). Thus,

A2dA7" + B2dBr ABdABr
b, = — and ¢, = — .
4w2 — g, tanh B,.ho 4w? — ga, tanh a-hy
Therefore
by = Lo B2y — lwphoB> 1 i A?d s, + B?dp, cosh B3,y cos B,
2T ey 2 4dw? 4w? — gB, tanh B,.hg ) cosh B,.hg "

L\ -
CoS 0T — 2wl (:z: — 2> 0.

JFZ —ABdag, + 6’28w31pr cosh o,y
4dw? — ga- tanh ai.hg | coshaghy

The coupling equation for 65 can be expressed as

R s 2wn ho 1.
—umufy + Sy mp)ly = ~ 22 pW/ / (. +0,6.) dydz — ng [2@} ,
0

which rearranges to

. 2wan ho 2ABw3 pW w?
— H, -l (2L §
0 / / dydx JA <2 + LO&2O'T e

where

2w, pW ho
A= —4w?im, + %(mv +my) + ~ lp / / Gy dydzx.
o Jo
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Evaluating the double integrals gives

OO

ho ho ho h
/ G, dydx = —2w,l / / dydzx 7/ / CORHIY Gin arx dydzx,
o Jo cosh a,hg

= 2w,lhoL — / ZGT tanh «,-hg sin a,.x dx,
r=0

= —2wplhoLl — 2 Z — tanh ahg,
r= O
and similarly
L rho
/ H,dydx = -2 Z — tanh ahg.
o Jo — ¢

Thus, 0y is proportional to AB, i.e. it is made up solely of antisymmetric modes, while Q/SQ contains both
symmetric and antisymmetric modes.
Therefore the final form of ¢o(x,y) and 05(t) are

pa(z,y,t) = (A%Co(z,y) + ABG(2,y) + B*Co(x,y) + B> Ziy + B> Zy + A% Z3) sin(2t),
O2(x,y,t) = ABO; cos(2t),

where
oo
d;! cosh(5,y)
: : ‘ 2.
Co ; g3, tanh 3, hg — 4w? cosh(B,hg) cos(B,x), 23)
3 a?? cosh(a,y)
: : T’ 2.4
G ; ga, tanh o, hg — 4w? cosh(a,hg) cos(a-x) (2.4)
dyp cosh(5,y)
: T o 2,
G ; g3 tanh B, hg — 4w? cosh(B,hg) cos(fBrx) 25)
Z) = %lwm e

1 1 1 8w? 1202
Zy = —Slwpho — ~1Pwi Y 7 [ + tanh? anho

2 4 = Lomn La2,0m.n La?2 2. 0m.n
4‘*’121 Lo 2, 312 1
m,n m—0 mYm,n
Z3 16 2(1 + 3tanh? 3, hy), (2.8)

4w, pW dAB Zw
0, = r tanh a,.h L 2.9
! IA ; (9o tanh a.hg — 4w?) v, amitarfio = Z LCVQO'T " (2.9)

3. The Lagrangian formulation

In order to formulate the normal form equations about the 1 : 1 resonance, we assume that the arbitrary
eigenmode constants A and B now depend upon a slow time variable 7 = €2t. Also, the governing
equations are variational, i.e. they can be determined by taking the first variation of a Lagrangian
functional. It is useful to use a Lagrangian formulation when calculating the normal form to reduce the
amount of algebra required. Alemi Ardakani et al. (2012a) defined a reduced Lagrangian for this system
in order to derive the vessel equation, but did not include the constraint terms needed to correctly
describe the fluid motion. The complete Lagrangian for this system is

T2 to
& = / / Ladt, (3.1)
T t1
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where [tq,t5] and [y, 73] are arbitrary time intervals of the fast and slow time, and
L h(:b,t) 1
c—ow ] (qznt 45 (64 62) +oly — ho) - Be) dyda (3.2
o Jo

1 . ) L ph(z,t)
fimvl292 — (my, +my)glcosd — l(‘)pW/ / (¢g cos B + ¢y sinf) dydx,
o Jo

where hg is the mean fluid height. Therefore, we insert our perturbation expansion up to second order
into the Lagrangian, and then take variations with respect to A* and B* (where x denotes the complex
conjugate) to determine the normal form equations. In order to determine the form of the Lagrangian,
we first require the form of the free surface h(x,t,7) up to second order in e. So that phase effects are
not missed when calculating the form of h, we write the expansions for ¢, # and h in exponential form,
as A and B are now complex. Thus, the forms of ¢, h and € which are substituted into the Lagrangian
are

d(w,y,t,7) = P + %e[(ASo(sc, y) + BS1(z,y))e' + (A*Sy(z,y) + B*Sl(:r,y))e_it}
5 (A2G(w,) + ABG () + BGola,y) + B2y + B2 + A2 Z5)™
—(A*2%Go(z,y) + A*B*Ci(2,y) + B2Co(a,y) + B2 Z1y + B2 Zs + A*ng)e—m]
+0(€%), (3.3)
h(z,t,7) = ho — %ei[(AHo(x) + BH (2))e! — (A* Hy(z) + B*Hl(m))e—it}
%62 [(A%(x) + ABM (z) 4+ B?Xy(x))e? + (A2 No(z) + A*B* My (z) + B2\ (x))e 2t

+(Ao(z) = Co)|A]* + (A1 (z) — C1)AB™ + (Az(w) — C2) A™B + (As(w) — C3)|BI2}

+0(%), (3.4)
1 . : 1 ; i
(t,7) = — 56 [Belt - B*e—ﬂ + 3¢ [ABele“ + A*B*G)le‘“} +0(e%), (3:5)
1
Be = _5629 (ColAP + C1AB* + C2A*B + C3|B|?), (3.6)

where the €2 part of Be is determined from (1.6). Here the constants C; are chosen such that

1 L
Z/o h(z,t,7) dx = ho,

i.e. that the mean free surface height remains at y = hg. This gives the definition for the C;’s as
1 L
Ci= Z/o Ai(x) de.

The unknown functions Hy, Hi, Ao, A1, A2, Ag, A1, Aa, A3 are determined by substituting (3.3)-(3.5)
into the nonlinear free surface boundary condition

waoy + %(d)i + ¢§) — 1wl cos B¢, — lwh sinf¢, + g(y —ho) =Be on y=h,

and equating the combination of terms proportional to A, B, A%, AB, AB*, A*B, B?, |A|? and |B|?
equal to be zero. The convention in the work which follows is that the functions Sy, S1, (o, (1 and
(o will be assumed to be evaluated at y = hg unless they lie under an integral with respect to y. The
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nonlinear free surface condition leads to

W

Hy(z) = wgSo,

Hy(z) = ?”Sl,

Ao(z) = 419 (552 + S5, + 2wnHoSoy + 8wnlo + 8wn Z3)

Ai(z) = 1 (S()xslx + SoyS1y + wnHoS1y + wnHi1 S0y — lwnSog + 4wn (1),

Ao () 41 (5%, + Sly + 2wy, H1 S1y — 2lwn S1g + 8wnla + 8wn Z1ho + 8w, Za)
Ao(z) = 21 (S’OI + Soy 2wnHOSOy) ,

Al({l?) = AQ((E) = —% (Somslx + Soysly - wnH()Sly — wnHlSoy - anSOI) s

1
Ag((E) = —% (S%x + S%y - 2wnH131y - 2lwn51z) .

The consequence of Ay () = Aa(z) is that Cy = Cs.

Substituting the above expressions for ¢, # and h into L and integrating with respect to ¢t between 0
and 27 we obtain an expression of the Lagrangian in the following form

L= / [eBAO + %aoi (A*A, — AA*) + %boi (B*B, — BBY) + ¢oi (B*A, — BA®) + 11 (A*B, — AB?)

N N 1 1
—alwn,g\A|2 — blwn,2|B\2 — CaWn 2 (AB + A B) — §a2|A|4 — §b2|B|4 — CL3‘A|2‘B‘2

—%M (B?A** 4+ A’B*?) — c3 (AB|A|” + AB*|A[®) — ¢4 (AB|B|* + A*B|BJ?)

The coefficients of the terms containing 7 derivatives are

1w2 L )
ag = f—"pW/ S; dx,
29 o 0

1 L ho
by = —lwan/ / Sz dw—f— ) W/ 52 d:r—i—lewzmv,
0 0
1 L
o = prW/ SoS: dz,
49

ho
c = lwan// Soz + pW/ S051 dx,

the linear terms are

1 L ho 1 L
A Wn 2 = prW/O /0 (ng + Sgy) dydzx + @wn(wn + 2wn72)pW/O Sg dx,

1 L ho 1 L
biwn.o = —pr/o /O (5% + 57, — 2l(wn + wn,2)S1a) dydz + @wn(wn + 2wn72)pw/0 S% dx

1
_Zl (g(my +my) — myl(wn + wy2)?)

1 ho 1 L
CoWn 2 = _ZPW/ / (SozS1z + SoyS1y — lwn + wn 2)S0z) dydx + @wn(wn + 2wn,2)pW‘/ SoS1 dz,
o Jo 0
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and the nonlinear terms are

1 k ho 2 2
o2 =5 [ [ (G ) dudo
1
2
+39%S0, + 39755, — 4gwa S0 Sh, + 4w S8 Soyy + 12w 5555, + 329w SoSoy Z3
+64g°w; Z3 + 169°wn S5, Zs + 169°w, S5, Zs + 128g%w?: Z3(o + 329w3 SoSoy o
—169°wn SoS0yCoy — 169%wn SoS0xCor + 649°w2 (G + 16gwi S3Coy + 169°wn 53,0
+169%wn S5, Co + 89" C§ — 16w;g°S0S0yCo + 89°55,Co + 84°55,Co ) d,

L
oW / (=402 S0S0y 52, — Ag? 52 oy Soyy — 49252 S0 Somy + 69%52,52,
0

1 L h()
by = _ng / / (4¢3, + 4¢3, — AwnCay + 8Z1Coy + lwnS1o + 427 — Alwn Zy) dydx
0 0

1 L
0

—4gw7215’15’§y + 39251193 + 392512 - 4gw35151ywa + 12wa5fo?/ + 4gwil$1251wy
—12¢%w, 1S3 + SnglslsuSly — 1292wn15115fy +12¢%W2 1282, + 892%21151519
—|—64g2w,21 24+ 169w,315'12C2y + 16g2wn5fgc§2 + 1692wn512y@ — 16g2wn5151y@y
—169°w, 81 S12Cos + 329wi S191yCo + 169°wlS1 Cor — 329°w2 1514 (o + 128¢%w?2 Z1 holo
+6492w2 72 — 64¢°w2 Z2hE + 169w S? 7y + 16¢%w, S3, Zo + 16gzwnSfyZ2

+128¢°%w2 ZaCo + 329w 181y Z1ho — 32*w21S1. Z1ho + 329wy S1S1y 2o

—329%w 15145 Z + 16g°wn Z1ho ST, + 169°wn Z1ho ST, — 169°wy 5151y Z1

+128¢2w2 Z3hE 4+ 128¢*w? Z1ho Zs — 16w2 g% S1 81, Cs — 1693w, 1581,Cs

1
+8¢°57,C3 + 8¢°57,Cs + 8¢*C3 ) da + 3—219(% +my),
1 L h()
az = —ZpW/ / (GFe + Gy + Uwn©1(1p + lwn©150y) dydx
0 0

1 L
0

—2gw2 83,5151, — 2gw25§y8151y — ngTQLSoSlZySOy — 29w2 S80S0y Sty + 2w S0ST Soyy

+2wi 8158 S1yy — 29w2 57 S0y Soyy — 29w2 S5 S1yS1yy — 29wW2S7S0:S0xy + 8witS0S0yS151y
+2wp 5357, 4 2w S5, ST — 2gwh S5 S10S 12y — 697 wWnlS1250, — 20°wnlS1255, + 4gwilS0SeySia
—46%w,180251y S0y + 29wWE1S3S1 4y + 26°W2IAS3, + 89w S0S1,C1 + 89w So.S1 iy
+892wn S0z 5121 + 897w SoyS1yC1 + 89w S150yC1 — 897 w21S0xC1 — 49°wWnS1S0y 1y
—49%wn 81 S00C1e — 49°wn S0S1yCry — 49°Wn S0 51210 + 497w 1S0C1e + 169%w) (T
—8920.121@1515035 — 8g2w2l@15051$ + 2g3SoISMCl + QggSoySlyC’l + 4g4C'0C'3 + 4g4C'1C'2
+2¢°55,Cs + 2g358y03 +2¢°S7,Co + 2935%1100 +29%802:51:C2 + 29° S0, S1,Ca

—2¢%w2 80,810 — 292w2 8051, 0 — 29°wnlS0:Co — 4g*w?2S151,Co — 49°w2S0S0,C
—4g3wnlS1,Co — 2¢3wn1SpC1 — ZgwalSoSlyCl — 2g2wi50y5101 ) dx

1
—Zl@% (g(my +my) — dwZmyl)
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1 L ho
_ZpW/O A (QCOyCQy + 2CO.L<2L - lwnCOy + 221C0y) dydﬂf

1 L
+@pW / (3975150, + 755,55, + 951,56, + 39°57,55, + 49° 0250y S12S1y
0

+2gwp 515155, — 29wa 55,5151y — 29w S0S0y Sty + 29wh S80S0y St — 4gwr S0SoyyS151y
—4gw? S0y S1S1yy — 49w2 05055112y — 49w SS02yS1512 — 49w So.S0z Stz S1y
—4gw? S02S0,S1 512 + 2w S0S0yy St + 2w S2S1S1yy + 29w2 Sy Soyy St + 29wESES1,S1yy
+2gw SoaSozy ST + 29wiSgS1eS1ay + 8wy SoS0yS1 Sty + 2w S5ST, + 2w S5, 57
+292w31253w + 4g2w2l5050y — 6g2wnl58w511 — 292wn153y511 + 4gw215050wy51
+4gwilSoSOley — 4gw,?;lSOSoy51m + 4gw2lS()xS()y51 — 4g2wnlS()ISOysly — 2gw215§51my
+89°wn ST, Co + 897w ST, Co + 897 wn S5, Ca + 89°wn S5, G2 + 649°wi CoCa + Bgwi ST oy
+8gw3 SgCay + 16gw? S1.81yC0 + 169w SoSoyCa — 89°wnS1S12C0x — 89°wWnS0S0zCax
—89%wn S80S0y G2y — 89°wnS151yCoy + 89°wilS1Cor — 169°winlS12C0 + 89°wn ST, Z3
+8¢%wn ST, Z3 + 64g°w.: Z3(a + 897 wn Z2S0, + 897 wn Z2S5,, + 6497w’ Zs(o + 8gw Z15]
+6492wiZlZ3ho + 1GgwiSlSlyZ3 + 169w;°’1ZgSoSoy — 8ggwnZlSoSoy — 16g2w,2ll23511
+8¢%wn Z1ho S, + 89 wn Z1ho S5, + 64g°w], Z1holo + 64g°w;: Z3 Z3 + 16gwiy Z1hoSoSoy
+89% 8025101 + 89S0, 51,C1 + 89 CE — 8¢°w,1S80.C1 — 897w?2S0S1,C1 — 89°w2 S, 5101 ) d,

_ZPW/ / (CozC1z + CoyCiy + 2lwn©1os) dydx
o Jo

1 L
—&—@pW/ (— ngngSoySl — gwiSSSOIySM — gwiS@SOwSmy — ngS’gSoySlyy
0

—gwiSﬁSoyysly + Bw;ﬁSgSonyl — 2gwaSoSoySonyl — 2gw350501501y51

+wn 5§ S1yy — 3gwi S055,S1y — gwi S50, S1y + 39”56, S0yS1y + 6wnSG S0y S1y + 6wn 5055, 51
—&—392531/509;5175 — gwngysl — 29w2 8050y S0xS12 + 39° S, Sz + 39253y51y

—3gzwnl5’0x5’§y + gwingSOxy — 3g%wnlSs, + 2gw2lSoSoySOZ — 8¢°w?10150S0, + SgwiSoSon
+8gw? S.S1Co + 89w S1.S0,Co — 89°w21S02C0 — 497w S0S0:C1 — 49%wn S0y S1 oy
—49*wnS0S1yC0y — 49°wWnS0251Cox — 49°wWnS0S0yC1y + 49%w21S0Cor — 49°WnS0S14C0x

+8gw3 S0.51Coy + 892 wn S0x51:C0 + 89%wn S0y S1yCo + 49w Sg 1y + 497wn S5, C1

492w, S2,C1 + 329°w2CoC1 + 89Z3w3 SoS1y + 89wE Z3S0,S1 + 89%wn Z3S0:S1s + 89°wn Z3S0y Sty
_8g2w721lZ3SOI + 3292wZZ3C1 — 4g3wnlSp.Co — 4g2w,215051y00 — 492w250y5100 + 4gBSO2yC1
+8¢9*CoC1 + 4¢°S3,C1 + 46°S0:S1:Co + 49° S0, S1:Co — 89°w?2 S080,C1 ) da,

1 L rho
_372pW/0 /0 (8<1wc2a: + SClyCQy - 4lwngly + 16lwn®l€2a: + lwnSOz +4lwn6151y + 8Z1C1y) dyd.’L‘

1
@P
—gwi S0z ST S1ay — gwiSoey ST S1a — gwiSoy St S1yy + 6wy SoST,S1 + 6wy SoyS1y ST

—gwﬁSonyfsly + 3925()y51y51296 + 3ngOESlefy - gw,%SoSi”y — 2gw,2150m5151951m

+3w 8957 S1yy — 29w2S051 81y S1yy — 29w2 808151210y + Wi Soyy St — 99%wnlS0,S7,
—39%wnlS00 ST, + gwilSoayST + 69°w21%S00S14 + 29wil 8025151y + 29w3 1505141y
+2gw2150y5151z - GganlSoySlmSly - 892wil®15151x + Zg2wzlSoSly + ZQQleSOySl
+29w318051 S1ay + 89w S151yC1 + 89w SoS1yCa + 89w SoyS1Ca + 89w SoS1l2y + 89°wnS0sS12C2
+89%wn SoyS1yCa + 4gwy S C1y + 49%wn ST, C1 + 49%wn ST, C1 + 3207w (1 G — 897w 181G
—89%w21S50: (2 — 497w S1.91yC1y — 49°wWn 80512 Cor — 497w S0 S1yCay + 497w 211 Cia

+49%w150Cax — 49°Wn S0y S1Cay — 49°WnS0251C2e — 49%wn S1512C1a + 8gw) 225051y
+8gwiZgSoySl + 8gwbelSoSl + 8g2(,unZ250w§13j + ngwnZgSoySly + SgwiZlhoSosly

+8gw? Z1hoSoyS1 — 892wl Z1hoSox + 89°wn Z1h0S0xS12 + 89°wn Z1hoSoy Sty

—892W72JZ2509: + 3292%%21%@1 + 329200222@ - 492Wn2150y51 - 492WnZ15051y - 492%2150517;03
—4g%w2 80,8103 — 493wl S0 Cs — 83w lS1,Co — 8g%w?2 S1 81, Ca + 49° S0, S1.Cs

+4ggSoySlyC'3 +8¢1CLC5 + 493312ZC’2 + 4g?’SfyCQ ) dz.

L
+ W/ ( — 39wy Soy 5157, — 9wz SoS1y ST, — gwaSoyS15T, + 39 S0x S5, + 39750y ST,
0
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The above coefficients can be simplified by noting that

L ho
pW/ / Soxz dydx = 0, (3.7)
o Jo
L ho
pW/ / S dydx = M — Mylwny, (3.8)
o Jo Wn
L pho 2w b
oW / / (2, + 52, dydz — 2PV / S2dz = 0, (3.9)
o Jo g 0
L ho 2 W L
pW/ / (5%, + S%,) dydx — %/ S% dx = lw, (g(mv—l-mf) - mvlwn> ) (3.10)
o Jo ‘ g 0 Wn

and also that Sp, = w2 /g8y and Sty = w2 /¢Sy on y = hg. The forms of the integrands of ¢y, c1, c2, c3
and ¢4 are all anti-symmetric about the centre-line of the vessel at © = L/2 and therefore the integral
of these terms is 0. The constants C; and Cy are also both 0. Thus the coefficients of the Lagrangian
simplify to

1 2 L
ag = iw—"pW Sy de,
0
1w? L 1
by = §?pW/O S%dx + Zlg(mv +my),
1 Lo
a] = —w pW/ Sg dx,
29" o

1 L lg
by = —wppW | S?dx + —2(m, ,
1= gpnW [ Stde+ 3 (m, 4 my)

WL fho w rt 8
4y = _PT/ / (G2, +¢2) dydz + ;273/ (—2025252, + 3¢Sk, + 112254
o Jo 9= Jo g

+48w? SE Z3 + 64¢°w? Z3 + 16¢%w,, Sa, Z3 + 128¢%w? Z3(o + 48w? S5 o
—1692w, S80S0z Cos + 6497W2CE + 1692w, S2 (o — 8¢°C2 ) dur,

W L ho
by = _% /O /0 (4¢3, + 4¢3, — Awnay + 8Z1(oy + lwn S1o + 427 — AlwnZ1) dydzx

oW L

32¢° Jo
+649°w2 (3 + 169%w, S7,Co + 48wP S7¢o — 169°w, S1514Cor + 1697wW21S1 (o
—3292W2181,Co + 128¢%w? Z1 hoCo + 64¢°w? 72 — 64¢°w?2 Z2hE + 169w, SE, Zs
+48w3 8% Zy + 128¢%w? Za(Co + 48wD Z1ho ST — 32¢° w2181, Z1ho — 32¢°w?181. 75

8
(- 2wtS252 + 11%5;‘ +3g25%, — 12¢%w, 183, + 12g°w212S2, + 8gw?1S?

l
1602w, Z1hoS2, + 128g%w2 Z2h2 + 128¢%w2 Z1ho Zs — 8¢*C2 ) du + G—Z(mv +my),
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ho ao ax a2 as a4 bo by b2

0.01  24.323 6.504 —346965.582 —7607.023 85845.591 15.400 4.118 —20410.023
0.02 47965 9.134 —84160.573 —10554.333 27934.742 26.249 4.999 —7799.324
0.03  70.321 11.059 —35408.536 —13199.384 17437.132 42.719 6.718 —5590.563
0.04  90.915 12.575 —18248.991 —14766.293 14314.677 65.599 9.073 —4835.622
0.05 109.435 13.796 —10208.916 —15441.721 13846.522 96.411 12.154 —4417.360
0.06 125.732 14.788  —5751.113 —14884.675 14908.399 136.935 16.106 —3885.173
0.07 139.802 15.593  —2986.405 —24117.712 17151.009 188.837 21.063 —2817.218
0.08 151.750 16.246  —1132.049 —21628.028 20415.617 253.051 27.091 —76.818
0.09 161.755 16.773 181.996 —23028.441 24522.598 328.864 34.102 2951.772
0.1  170.035 17.197 1149.094 —24730.839 29157.071 412.908 41.761 8777.781
0.125 184.686 17.923 2670.280 —34910.791 39465.003 609.095 59.109  29915.277
0.15 193.239 18.333 3479.054 —29949.511 41170.085 676.320 64.164  41503.246
0.175 198.103 18.562 3920.644 —23030.135 33998.371 592.523 55.520  32728.922
0.2 200.827 18.690 4163.392 —15867.775 24599.383 454.975 42.341  19134.032
0.225 202.340 18.760 4296.987 —10608.343 17086.217 335.303 31.087 10187.484
0.25 203.177 18.799 4370.497 —7218.494 11999.003 249.554 23.089 5558.420
0.3  203.893 18.832 4433.167 —3758.248 6563.936 152.517 14.086 2173.503
0.35 204.110 18.842 4452.114 —2293.214 4153.070 107.002 9.877 1389.215
0.4  204.175 18.845 4457.840 —1584.454 2947.428 83.631 7.719 1488.541

TABLE 2. A selection of coefficient values for the normal form equations.

W L h()
az = _pT / / (Gle + (3 + Uwn©1(1p) dyda
0 0

w o [F 8
+71p693 | (36°51,58, — 3w 831, — 3w S5, 51 + 11%5&55 + 40 5050051 1
~69°wnl S5, Stz + 4wplSE St — 4wy lS0S0s St + 297wl S5, + 24w, S081C1 + 897w Sox S12Ca

—8920\]721[501;41 - 492wn50151C1x - 492‘*)715051:1:(11 + 492w»r21150<1a: + 1692w721<12
102
—892w210151 S0, — 892w2101 5051, — 49 CoC3 ) dx + 71 (g(my +my) — dwlmyl),

WL o
ag = _%/0 /0 (CoyCay + CoxCox) dydx

L
+% | (39753, 5% + BwnSgSi, + 5w S5, 57 + 11‘52535% 12625050251 512
+26°w21% S5, + 4gwilSE — 697wnlSs, S1: — 8w2lS3 S, + 8w21S0S0,S1 + 892w ST, Co
+48w? 2o + 8¢%wn Sa,Co + 48w S2(Cy + 64¢%w? (ol — 89°wnS1512C0e — 8G%Wn S0 S0z Cox
+892w2151Con — 169°w21S1,C0 + 89%wn S%, Z3 + 48wS 52 Z3 + 649°w? Z3Co + 89°wn Z2S2,
+48w? 7587 + 6497 w2 ZaCo + 6497w Z1 Zsho — 169 w21 7351, + 8¢%wn Z1ho S, + 48w Z1hoS3
+649°w2 Z1holo + 649°w2 7273 ) da.

By taking variations of the Lagrangian with respect to A* and B* respectively gives the normal form
equations

iagA, = alwn’gA + ag‘A|2A + a3|B|2A + a4BQA*,
ibg B, = biwn 2B + ba| BI*B + a3|A|? B + a4 A>B*.

These equations are analysed fully in the main paper, but a selection of these parameter values are given
as a function of hg in table 2.



16 M. R. Turner and T. J. Bridges

Appendix A. Solvability condition at O(¢?)

The system of equations (1.6) have terms proportional to both cos(2t), sin(2t) and cos(t), sin(t). The
terms proportional to the first harmonic should not appear in the problem, and we can choose wy 1 in
such a way as to remove these terms. This is achieved via a solvability condition at O(e?). Assume that
the solutions for ¢o(x,t) and 05(t) can be expressed as

(2, y,1) = ba(w,y) sin(2t) + a1 (x,y) cos(t),
0(t) = B3 cos(2t) + by, sin(t),
then (52)1 and ég)l satisfy the system of equations
Gotwe + bo1yy = Alx,y) in 0<y<hy 0<z<L,
¢22,1y - wjém =b(z) on y=ho,

Qgg}ly =a(z) on y=0,

Agliz — lwnég,l =c¢(y) on x=0,L,

1 » R L ho R
= <g(m+mf) — lmvwn) by, +W / / oV dydx = d,
P Wn, ’ o Jo o

where A, a,b,c,d are the terms on the RHS of the system (1.6) which are proportional to the first
harmonic solution. Therefore, in this case

A(z,y) =0,
a(z) =0,
b(z) = 2wpwn,1 (ASo(x, ho) + BSi(z, ho)) ,
c(y) = lwn,1 B,
d= _wn1 oW /L /h0 (ASoe + BS1.),= 1B (g(mf ) _ mvlwn) :
Wn o Jo Wn Wn,

These expressions are then substituted into the solvability condition
L rho ho
pW/ / S(z,y) Az, y) dyds + lwpfd = pW/ (S(L,y) = 5(0,9))c(y) dy
o Jo 0

L L
—|—pW/0 S(x, ho)b(z) dx—pW/O S(z,0)a(z) dx,

where the two sets of (5, 0) come from the homogeneous solutions and are (Sp(x,y),0) and (S1(x,y),1).
Therefore, the two resulting equations after applying this solvability condition are

L
0= 2wnwn’1A/ Sg dr = wpwn 14,
0

L
O = 2wn,1B |:l (g(mf_F’rn’U) - m'ulwn> + wn/ Sl2 dm:|7
0

Wn

with the only nontrivial solution being w,, 1 = 0.

Appendix B. Equivalence with study of Tadjbakhsh & Keller (1960)

The forms of ¢2(x,y) and ha(x,t) in (3.3) and (3.4) can be shown to be equivalent to equations (30)
and (31) of Tadjbakhsh & Keller (1960) for the first symmetric sloshing mode, i.e. when B = 0 and
n=1.

In Tadjbakhsh & Keller (1960) all quantities are non-dimensionalised by the length scale 8; L and by
the timescale y/B1¢g. The linear solutions of Tadjbakhsh & Keller (1960) agree with those in the current
paper (albeit by moving our free surface from y = h(x,t) to y = h(z,t) — hg) if we choose

_ 9
Prwr
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This choice of A is important, as now both definitions of € are equivalent. Also, the non-dimensionalisation
of the frequencies gives the expressions

TK w1 TK _ 2Wi2

wy = and wy = =
‘ Vbig ? Vbig

where the superscript TK denotes the non-dimensional variable in Tadjbakhsh & Keller (1960).
Now,

C
P2 = g O|A|2t+A2Z3 sin 2t + Ay (z, y) sin 2t,
by absorbing the Bernoulli constant 1nto the velocity potential. Thus,
2 g2 -3
g 3g(Th — 17 °) cosh2pB1y .
= 1-T 14377 2t — 52 sin 2t
02 =g a1l T 565 3( 3T sin I681an  cosh2pyhg 2P s 20

using (5.4) of the main paper, (2.8) and by noting that (2.3) reduces to

39(Ty — Ty ®) cosh 2By
16581w1 cosh 231 hg

Co=— cos 26 x.

Here T} = tanh B1hg = wl ¥, which when substituted into the above expression gives

1 1 1 .
2= 5o\ | = ) = g (92 + ) sin2

3 _-, cosh2pByy .
]_6 (OJ(’)TK (onK) 7) mCOSQﬁlISIDQt .

When this expression is non-dimensionalised it then agrees with (31) of Tadjbakhsh & Keller (1960).
Similarly it can be shown by simplifying Ao(x) and Ag(z) in §3 that

ho(z,t) = 05?2 — (wg™) 2 + ((wg™) ™% = 3(wp X)) cos 2t] cos 2z,

1
86, [(
which is the dimensional form of (30).

From (1.2) of the main paper with B = 0 and n = 1 we observe that

wl 2 = _7|A|2
Using the exact forms of a; and ay given in appendix B of the main paper, this becomes

wi,2 =

)

9
{ 124+ 3T2 4+ T,
:\/519

U [9<w§K>7 2 - 3~ 20y,
_ VP9 1k
- 9 Wy
and thus agrees with the form of w}® from (35) of Tadjbakhsh & Keller (1960).
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