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1. Introduction

This supplemental material augments and reinforces the analyses and results presented
in the primary manuscript.

2. Results

Herein, results are presented in the same order as in the accompanying manuscript.
Figure, table and equation numbers followed by an “m” refer to those appearing in the
manuscript.

2.1. Mean Vorticity Field Development

This section first examines how the integral property of displacement thickness develops
with δ+. The subsequent analyses then examine the scaling behaviours of the Ωz profiles.

2.1.1. Displacement Thickness

Figure 1 presents δ∗/δ versus δ+ using the data sets listed in table 2m. For reference,
the value for the laminar solution for fully developed pipe flow is plotted at δ+ = 30. The
onset of the four layer regime for each flow is indicated by a vertical dotted line. These
δ+ values were determined by Elsnab et al. (2011); Klewicki et al. (2011) and Klewicki
et al. (2012). Although each is different in detail, the profiles in figure 1 share a number
of qualitative features. Each drops precipitously through the transitional regime. Each
profile also exhibits a distinctive change in slope near the onset of the four layer regime.
The channel and pipe profiles transition from a steeply downward to a more gradually
downward slope. For the boundary layer, the change in slope is more dramatic; from a
steeply downward slope to at least a plateau, and even possibly to a slightly upward slope
for a small range of δ+. The scatter in the boundary layer data is, however, noticeably
higher than either the pipe or channel data.

Higher scatter is also seen for the boundary layer data of figure 5 below. This is most
likely a consequence of the more delicate manner by which the boundary layer vorticity
field develops. That is, the boundary layer has neither a mean flux of vorticity from
the wall, nor an inherent annihilation of mean vorticity in the outer region; both of
which are present in the channel and the pipe. In addition, boundary layers are bounded
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Figure 1. Outer normalized displacement thickness as a function of δ+, boundary layer, H;
channel, �; pipe, �; profile found by using the pipe flow data in (3.1m), �.

by an (essentially) irrotational freestream, and thus their dynamics involve entrainment
processes not present in pipes or channels.

Once within the four layer regime, the profiles maintain a plateau-like character, and
then exhibit another change in slope. For the channel, this change is subtle, but appears
to exhibit a slightly steeper downward trend starting near δ+ = 1500. For the pipe the
region of steeper slope is more distinct; starting near δ+ = 2000 and completing near
δ+ = 3000. Beyond its elevated plateau between 400 . δ+ . 2000 the boundary layer
data exhibit a more smoothly decreasing trend – to within the data scatter.

At any given Reynolds number, the δ∗/δ values are consistently largest in the bound-
ary layer, followed by the channel, and then the pipe. Both the total amount of outer
region vorticity (circulation/length) and the geometry of the flow influence this trend.
Comparison of figure 6m with figures 4 and 5 herein indicates that the boundary layer
proportionally contains the largest amount outer region vorticity at any given δ+. This
naturally causes the centroid of mean vorticity to reside at a larger wall-normal location.
The channel and boundary layer δ∗/δ profiles have been verified to nominally merge
if they are weighted by a measure of this outer region |Ωz|, e.g., the inverse of their
respective U+

e − U+

Wmax

values from table 3m.

The pipe flow U+
e − U+

Wmax

entry in table 3m is between that for the channel and
boundary layer, and thus this explanation leads to the expectation that the pipe flow
δ∗/δ profile should also fall between the other two. The pipe profile, however, is also
influenced by its geometry, as indicated by the radial weighting in the integral of (3.2m).
Effectively, there is more volume per unit circular arc near the outer wall than near the
pipe centerline. Thus, more of the total amount of spanwise vorticity concentrates nearer
to the wall through transition, and into the four layer regime. This results in the observed
lower values for the pipe profile. A test of this explanation is made by using the pipe flow
mean velocity profile data in the δ∗/δ equation appropriate for a rectangular geometry,
(3.1m). The net result is shown by the open symbols in figure 1. As expected, this “pipe
profile” now resides between the channel boundary layer profiles.
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2.1.2. Mean Vorticity Contributions to δ∗

A combination of theoretical predictions and empirical quantifications respectively
allows one to construct approximate formulae for the displacement thickness, δ∗, for
each of the canonical flows studied herein. An attractive attribute of this formulation
is that it reveals the contributions to δ∗ from each of the inner and outer self-similar
domains on the Lβ hierarchy (figures 1m - 3m), as well as from the flow domains that
are interior to and beyond the lower and upper boundaries of the hierarchy.

The approximate equations are based upon the vorticity formulation for δ∗, which for
rectangular geometries is given by

δ∗ =

∫ δ

0
yΩzdy

∫ δ

0
Ωzdy

. (2.1)

Noting that the denominator of (2.1) is the total circulation per unit length, Γ∞ = −U∞

(or Γc = −Uc), the task is thus to develop expressions for the numerator on the following
domains,

(a) from the wall to the onset of the hierarchy (0 6 y+ . 7),
(b) layer II (7 . y+ . 1.6

√
δ+),

(c) between the top of layer II and the end of the hierarchy (1.6
√

δ+ . y+ . δ+/2),
and

(d) between the top of the hierarchy and the freestream or centerline (1/2 . y/δ . 1).
The centroid of region (a) is readily estimated by noting that Ωz is approximately con-
stant between 0 6 y+ . 7. The wall value is used in the present equations, and thus
slightly over-estimates this contribution. The near-wall curve-fit of figure 7 over the lower
portion of layer II is well-approximated by |Ω+

z | = 25.4(y+)−φc , where φc = 1.6. This is
the expression used for the region (b) contribution, although it is recognized that as δ+

becomes large, the use of this function results in an under-estimation of the net contri-
bution. For region (c) the theoretical prediction, |Ω+

z |ε−1 = φ2
c(εy

+)−1 is employed (see
figure 7). This equation also slightly under-estimates the true value at low δ+, but be-
comes increasingly accurate with increasing δ+. Between y/δ = 0.5 and y/δ = 1 (region
d), the theory informs us that |Ω+

z | scales like a constant times ε2, with the magnitude
of the constant reflecting the actual rate of |Ωz| decay.

The same value of φc = 1.6 was used for each flow. This is based upon the theoretically
based expectation that the values of φc in each flow will become closer to each other
as δ+ increases. In each case, the region (d) constant was chosen to shift the overall
result such that it reasonably matched the data shown in figure 2. No special effort was
made to optimize the fit. On physical grounds, however, the constant is expected to
be close to the respective value of dU+/dη|Wmax

in table 3m. This was borne-out by
the results, with the constant, C1, equaling 3.5, 7.2, and 6.6 for the channel, pipe, and
boundary layer, respectively. Upon performing the integrations, the resulting equation
for the inner-normalized displacement thickness in the channel and boundary layer is
given by

δ∗+ =
49/2

U+
e

+
25.4(1.2δ+0.2 − 2.18)

U+
e

+
2.56(δ+/2 − 1.6

√
δ+)

U+
e

+
3/8C1δ

+

U+
e

. (2.2)

The four terms on the right respectively represent the contributions (a)-(d) listed above,
with the difference between these two flows reflected in the value of C1. Owing to the cir-
cular geometry, the corresponding equation for the pipe has a significantly larger number
of terms (in both the numerator and denominator), and thus is not presented here. The
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Figure 2. Inner-normalized displacement thickness for channels, pipes and boundary layers
versus δ+. Solid symbols are the inner-normalized data from figure 1. Open symbols are from
approximate formulation, e.g., (2.2).

open symbols in figure 2 show the results from the approximate formulation as a function
of δ+, while the actual data are given by the smaller solid symbols. As can be seen, in
all cases the agreement between the approximate equation and the measured values of
δ∗+ is very good.

Figure 2 rather strongly suggests that a power function fit to the data would yield a
compact and reasonably accurate representation of δ∗+ as a function of δ+. The advantage
of (2.2), however, is that it allows one to examine the (a)-(d) contributions to δ∗+. These
contributions are respectively shown for the channel and the boundary layer in figures
3a,b.

The data of figure 3a for the channel shows that for increasing δ+ contribution (d)
rapidly levels-off at 1/2 of the total. At the onset of the four layer regime, contribution
(c) is about 35%, and approaches 50% as δ+ increases. These attributes of contributions
(c) and (d) with increasing δ+ are consistent with the approximate symmetry properties
of the channel flow Ωz profile about η = y/δ = 0.5 recently noted by Laadhari (2011).
Contributions (a) and (b) diminish as δ+ increases. At δ+ = 3941, contribution (a) ac-
counts for about 0.25%, while contribution (b) amounts to about 2.5% of the total. At
this Reynolds number, contribution (b) is slightly under-estimated. The overall contri-
bution of this term decreases with increasing δ+, and thus the parity between (c) and
(d) emerges slightly more slowly than depicted in figure 3a.

The boundary layer data of figure 3b exhibit similarities, but are distinct from those
for the channel. Like in the channel, the fractional contribution from term (d) is nearly
constant for all δ+, but in this case it accounts for about 2/3 of the total. Similarly,
contribution (c) rises up with increasing δ+ to account for nearly all of the remainder. At
δ+ ' 47000, contributions from regions (a)-(d) are about 0.015%, 0.3%, 34%, and 66%,
respectively. Again, the actual drop-off in contribution (b) is reasoned to be not quite as
fast as estimated.

The results of figures 3a,b reveal that the structural differences between channels and
boundary layers are not always subtle. They also reinforce the observation that the
development of the vorticity distribution in layer IV is a primary difference between the
canonical flows. The emergence of Reynolds number invariant contributions from region
(c) and the rapidly constant contribution from region (d) indicates that the vorticity
distribution inherently adjusts such that the effect of increasing domain size compensates



Supplemental Material: Vorticity description consistent with mean dynamics 5

Figure 3. Fractional contributions from regions (a)-(d) to δ∗+ in (a) channels and (b)
boundary layers: region (a), .; region (b), ♦; region (c), �; region (d), ◦.

for the decreasing vorticity magnitude so as to keep the contribution to (2.2) from the
outer half of the flow essentially constant. These properties provide insight regarding the
success of the displacement thickness weighted outer-normalization proposed by Zagarola
& Smits (1998b). Lastly, it is useful to bear in mind that the position where Γ = Γ∞/2
resides near the outer edge of layer II, and thus the initial 50% of the circulation (per
unit length) becomes concentrated very close to the wall relative to δ∗ as δ+ increases.

2.1.3. Scaling Behaviours of the Ωz Profile

Figures 4 and 5 augment the pipe flow data of figure 6m. In each case it is observed that
these measures of the vorticity distribution in the outer part of layer IV do not settle into
approximately constant values until well after the onset of the four layer regime. This is
apparently distinct from the behaviour of y+

ε . The pipe and channel data show that the
magnitudes of dU+/dη|Wmax

and U+
c −U+

Wmax

are at first lower than the approximately
constant values indicated by the linear curve-fits. For the pipe these lower values are
more apparent. There is also evidence of an overshoot in these quantities in the pipe over
the intermediate Reynolds number range 600 . δ+ . 3000. This indicates an elevated
mean vorticity at η = 0.5 and an elevated mean circulation in the outer half of layer IV
in the pipe. These behaviours are not seen in the channel data, which apparently settle
into their high Reynolds number character sooner than in either the pipe or boundary
layer. Different from the pipe and channel, the low δ+ four layer regime boundary layer
dU+/dη|Wmax

values are smaller than at high δ+, while the values of U+
∞

− U+

Wmax

are
larger. These behaviours are evident for δ+ . 2000.

Comparison of the data in figures 4, 5 and 6m reveals that the outer region vorticity
profile development in boundary layers is distinctly different from that in channels or
pipes. Consistent with a number of related quantities, the boundary layer data also
exhibit greater scatter. This scatter is likely to be associated with factors that are not
present in pipes or channels, such as deviations from an exactly zero pressure gradient
(in the presence of mean advection). For example, the dU+/dη|Wmax

data of Oweis et
al. (2010) (at δ+ ' 19000, 32000 and 47000) indicate values that are discontinuously
about 20% lower than the other data in figure 5. On the other hand, their U+

∞
− U+

Wmax

data on this same figure indicate values that are in very good agreement with the data
from the other boundary layer studies. Taken together, these provide evidence that the
mild pressure gradient reported for this study may have modified the shape of the layer
IV mean vorticity distribution, but apparently not the total vorticity content of this
region.

As described in the manuscript, with increasing Reynolds number the mean vorticity
concentrates differently on two increasingly distict domains. At any finite δ+, slightly
more than half of this vorticity is contained in the region εy+ . 2.6, with the remainder
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Figure 4. Channel flow mean vorticity profile properties versus δ+, •; y+
ε = y+ position where

dU/dy = uτ /
p

νδ/uτ , �; U+
c − U+(y/δ = 0.5), �; dU+/dη(y/δ = 0.5), —–; y+

ε = 2.48
√

δ+, – –

–; U+
c −U+ = 1.75− (9.1× 10−6)y+, - - - -; dU+/dη = 6.24− (2.1× 10−5)y+. Estimated δ+ for

the onset of the four layer regime is based upon the study of Elsnab et al. (2011).

Figure 5. Boundary layer mean vorticity profile properties versus δ+, •; y+
ε = y+ position where

dU/dy = uτ /
p

νδ/uτ , �; U+
c − U+(y/δ = 0.5), �; dU+/dη(y/δ = 0.5), —–; y+

ε = 2.53
√

δ+, – –

–; U+
c − U+ = 2.66− (1.29× 10−6)y+, - - - -; dU+/dη = 9.86 + (8.26 × 10−6)y+. Estimated δ+

for the onset of the four layer regime is based upon the study of Klewicki et al. (2011).

being spread over a layer IV domain that approaches δ in width as δ+ → ∞. When
|Ω+

z |ε−1 is plotted versus εy+ on linear axes, the profile is increasingly comprised of two
spikes of height ε−1 along the plot axes as depicted in figure 6.

A number of the Ωz profile properties are more clearly revealed by plotting the nor-
malization of figure 6 on logarithmic axes. This is shown for channel flow in figure 7.
On this figure, as well as those for the boundary layer (figure 7m) and the pipe (figure
9), the horizontal dotted line identifies yε, while the vertical dotted lines identify the
upper and lower boundaries of layer III. As indicated, the outer edge of layer II marks
the position where, to within the increment of layer I, Γ = Γc/2. With increasing δ+,
the Γ contribution from layer I becomes a diminishing fraction of the total. Thus, the
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Figure 6. Mean vorticity profiles from the channel flow DNS of Hoyas & Jimenez (2006),
meso-normalized and plotted on linear axes. Individual profiles are at δ+ = 186, 547, 934 and
2004.

position where Γ = Γc/2 (or equivalently, U = Uc/2) approaches the outer edge of layer
II (εy+ ' 1.6) as δ+ → ∞. Commensurate with the analysis of figure 4, all of the profiles
shown in figure 7 convincingly attain an amplitude of 1.0 near the outer edge of layer
III. Similarly, logarithmic axes clearly reveal that the limiting values of the profiles are
equal to ε−1 =

√
δ+. Another apparent feature of these profiles is that they exhibit two

regions of distinctive negative slope. These are respectively associated with the rapid de-
cay rate of |Ωz| near the wall, and the more gradual rate of decay farther from the wall.
Lastly, an intriguing feature revealed in figure 7 is that the extensions of the constant
slope lines re-intersect the profiles nearly exactly where they first attain their constant
limiting values.

In accord with the theory, the outer region of constant slope is well-approximated
by |Ωz|ε−1 = φ2

c/(εy+), with the best curve fit of the δ+ = 2004 data over the region
extending outward from εy+ ' 2.6 having a downward slope that is slightly less than the
φ2

c/(εy+) function indicated on the graph. In this expression φ = φc = 1.6 as determined
by Klewicki et al. (2009). At the onset of the four layer regime (δ+ ' 180) the outer
region of approximately constant slope first emerges near the outer edge of layer III, and
with increasing δ+ extends to greater εy+. As indicated, this region of approximately
constant slope seems to migrate slightly inward of εy+ = 2.6 with increasing δ+. This
coincides with the broadening of the T+ profile across its peak region with increasing
δ+, and the increasing spatial separation between the region of steep downward slope
and the position where the V F term loses leading order. The profiles of figure 7 also
exhibit a slightly lower magnitude slope in the region just beyond the domain of steeper
downward slope. This feature is, however, most recognizable in the high δ+ pipe flow
data discussed below.

The series of profiles in figure 7 reveal that the domain of constant slope closer to the
wall moves to smaller εy+ with increasing δ+. Note that at δ+ = 186 (i.e., near the onset
of the four layer regime) this region extends to the edge of layer III, but as δ+ increases
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Figure 7. Mean vorticity profiles from the channel flow DNS of Hoyas & Jimenez (2006),
meso-normalized and plotted on logarithmic axes. Individual profiles are at δ+ = 186, 547, 934
and 2004; dotted, small dash, large dash and solid lines, respectively. φc = 1.6, and ∆+

I
is the

inner-normalized width of layer I.

it becomes embedded deeper within the region where the V F term is of leading order.
Thus, at the start of the four layer regime there is no spatial separation at all between
the steep near-wall decrease in |Ωz|, and the more gradual decay rate characterized by
the inertially dominated mean dynamics in layer IV. With increasing δ+ this spatial
separation approximately increases like 2.6

√
δ+ − 40 when measured in inner units.

The area under any of the curves in figure 7 is the inner-normalized numerator in
(2.1), while U+

c has magnitude equaling the inner-normalized denominator. Owing to
this, the inner-normalized displacement thickness is simultaneously located closer to the
wall and farther from the outer edge of layer III, i.e., deeper within the region where φ
approximates constancy, as δ+ increases. The displacement thickness analysis of §2.1.2
used the results in figure 7, the layer scaling properties (table 1m), and the entries in
table 3m to develop an accurate estimate for δ∗+ as a function of δ+.

Inner-normalized mean vorticity profiles for pipe flow are plotted versus y+ in figure 8.
This figure contains the data of McKeon (2003), along with the δ+ = 1000 profile from
the DNS of Cheng (2011). Over an interior domain, each of these profiles convincingly
follow a region of constant downward slope that is close to −1. This is the region asso-
ciated with a logarithmic-like mean velocity profile, and its existence is consistent with
classical scaling arguments as well as the present theory. This region of constant slope,
however, extends over a different y+ range at each δ+, and for profiles at sufficiently
disparate δ+ the respective regions of constant downward slope extend over y+ ranges
that approach being (or, in fact, become) mutually exclusive. This phenomenon is char-
acterized by the logarithmic zone of the low δ+ profile residing on a lower y+ range. The
region where φ = φc most closely approximates constancy initiates near the outer edge of
layer III, and this position moves outward in y+ units like 2.6

√
δ+. As previously noted

by Wei et al. (2005), this structural attribute of the theory connects to experimental
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Figure 8. Inner-normalized mean vorticity profiles in turbulent pipe flow. Solid lines are from
the experiments of McKeon (2003), 1800 . δ+ . 530000. Dashed line is from the δ+ = 1000
DNS of Cheng (2011).

observations indicating that the onset of logarithmic behaviour moves to increasing y+

values with increasing δ+ (Zagarola & Smits 1998a; Wosnik et al. 2000; McKeon et
al. 2004; Osterlund et al. 1999; Marusic et al. 2013).

The data of figure 8 exemplify the result demonstrated by all of the flows; that the
near-wall profile of |Ω+

z | is invariant with Reynolds number when plotted versus y+. The
totality of the evidence examined indicates that this region of inner scaling extends to
about y+ = 40. This position is indicated by the vertical dotted line on the graph. As
can be seen, y+ ' 40 coincides with the outermost position of steep downward slope.
Beyond this position, the downward slope diminishes, and for the higher δ+ flows becomes
detectably less than the slope at larger y+. This connects to the pipe flow data presented
in Marusic et al. (2013) indicating that the logarithmic mean profile is approached from
below at large δ+. McKeon et al. (2004) identify a domain in the pipe that is beyond the
traditionally defined buffer layer and interior to the onset of a logarithmic profile where
they find that the mean velocity follows a power law dependence. In the context of the
present description, this is the region 40 . y+ . 2.6ε−1.

Figure 9 presents |Ω+
z |ε−1 versus εy+ for the δ+ = 500 and 1000 profiles from the DNS

of Cheng (2011), along with profiles of McKeon (2003). As with figure 7, the vertical
dotted lines indicate the upper and lower boundaries of layer III, while the position where
the profile crosses the horizontal dotted line denotes y+

ε (see table 3m). Owing to the
diminishing physical size of the viscous length with increasing Reynolds number, only the
lower δ+ profiles contain data in the region y+ < 40. Thus, the apparent invariance of
the near-wall profiles under inner-normalization is used to generate profiles in this region
at higher δ+. These reconstructed estimates are given by dotted lines, and have been
reproduced for the selection of δ+ values given in the figure caption. The data support
inner scaling out to y+ ' 40. Thus, at any given δ+ the reconstructed profile is only
valid out to 40ε, although for visual appearance they are extended to greater εy+ on the
figure.
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Figure 9. Mean vorticity profiles in turbulent pipe flow, meso-normalized and plotted on log-
arithmic axes. Solid lines are from the experiments of McKeon (2003), 1800 . δ+ . 530000.
Dashed lines are from the δ+ = 500 and 1000 simulations of Cheng (2011). Dotted lines are from
the near-wall δ+ = 1000 DNS, and have been transformed to correspond to the experimental
profiles at δ+ = 5108, 10914, 25279, 102200, 216980 and 530030.

This last point connects to the aforementioned spatial separation between the region
of inner scaling and the position where the V F term loses dominant order in (1.1m). As
clearly shown by the normalization of figure 9, the knee in the profile associated with
the change from the steep downward slope moves to smaller εy+ with increasing δ+.
The data of figure 8, however, give an indication that the flattening of the profile just
after y+ = 40 is at most a weak function of δ+. We add to this the theoretical finding
that y+

ε = ξε−1, where it is empirically shown that ξ ' 2.6 (see table 3m). Collectively,
these considerations indicate that the value of |Ω+

z | is (nominally) invariant at y+ ' 40,
while the value of |Ω+

z |ε−1 equals unity at εy+ ' 2.6. With Reynolds number these
two end-points move apart according to ∆y+ ' 2.6

√
δ+ − 40. Thus, if the flattened

portion of the profile (just after y+ = 40) is invariant under inner-normalization, then
the inner normalized profile between the end-points of this domain is a function of δ+.
This feature varies weakly with δ+. According to the theory the inner normalized mean
profile in this region approaches invariance as δ+ → ∞, but apparently more slowly than
does the profile in the region of φ = φc similarity. The divergence of the φ profiles beyond
y+ = 40 but interior to εy+ ' 2.6 (Klewicki 2013a), supports the existence of this weak
δ+ dependence.

As with the channel data, all of the pipe flow profiles of figure 9 convincingly pass
through unity at εy+ ' 2.6. These data verify this property over the range 500 . δ+ .
530000. The region beyond the outer edge of layer III is also seen to mark where each
of the profiles most accurately approximates a constant downward slope having a value
close to −1. This is the domain where self-similar dynamics are approximated by φ = φc

as δ+ → ∞.
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2.1.4. Mean Circulation Apportionment

We now derive relations that describe the rates of Γ accumulation on each of the four
layers as δ+ is varied. These begin with the relations developed by Klewicki (2013a).
According to the scaling properties of the four layer structure (table 1m), the rate of
change of the inner-normalized increments in mean circulation per unit length across
layers II and IV (or equivalently the increments in mean velocity) with Reynolds number
are given by

dΓ+

II

dδ+
=

dΓ+

IV

dδ+
' 0.5

dΓ+
e

dδ+
, (2.3)

where Γ+
e refers to either Γ+

c or Γ+
∞

. The theory also indicates that the Γ+ increments
across layers I and III are, in order of magnitude, fixed for all δ+. From this, one readily
surmises that increments in inner-normalized mean velocity associated with increases in
δ+ are solely added to layers II and IV.

How these mean circulation increments accumulate within layers II and IV is clarified
by considering dΓ+

II/d∆+

II and dΓ+

IV /d∆+

IV , where, ∆+

II and ∆+

IV are the inner normalized
thicknesses of layers II and IV, which are also Reynolds number dependent. The growth
rates of layers II and IV with δ+ are respectively given by

d∆+

II

dδ+
=

0.8√
δ+

, (2.4)

and

d∆+

IV

dδ+
= 1 − 1.3√

δ+
(2.5)

Klewicki (2013a). Combining (2.3) with (2.4) yields

dΓ+

II

dδ+

dδ+

d∆+

II

=
dΓ+

II

d∆+

II

=
5
√

δ+

8

dΓ+
e

dδ+
= (εφc)

−1 dΓ+
e

dδ+
, (2.6)

where, in the last equality we use ε = 1/
√

δ+, and the value of φc = 1.6 as determined
by Klewicki et al. (2009). Equation 2.6 indicates that with increasing Reynolds number
the circulation in layer II increases at a rate that is

√
δ+ times the rate at which the

total circulation (per unit length) accumulates within the flow as a whole. This property
underlies the development of the near-wall spike in Ωz shown in figure 6, and is charac-
teristic of the near-wall φ = O(1) 6= constant self-similarity. This is associated with the
mechanism of vorticity stretching described later. This mechanism affects scale separa-
tion between the velocity and vorticity field motions by causing a rate of reduction in
the scale of the vortical motions that out-paces the rate at which the layer II width is
decreasing relative to δ, see (2.16) below.

Similarly, combining (2.3) with (2.5) yields

dΓ+

IV

dδ+

dδ+

d∆+

IV

=
dΓ+

IV

d∆+

IV

=
0.5

√
δ+

(
√

δ+ − 1.3)

dΓ+
e

dδ+
, (2.7)

and thus as δ+ → ∞

dΓ+

IV

d∆+

IV

→ 0.5
dΓ+

e

dδ+
. (2.8)

Equation 2.7 indicates that with increasing δ+, Γ+

IV accumulates (in layer IV) at the
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same rate that Γ+
e accumulates within the entire flow. This is associated with ∆IV → δ as

δ+ → ∞. The direct proportionality is a consequence of the layer IV vorticity dispersion
mechanism described in the manuscript.

The above analysis clarifies that increments in Γ+ associated with increases in δ+ solely
occur in layers II in IV, and further describes the relative rates at which these increments
accumulate. The theoretically determined decay rates of |Ωz| described in the manuscript
also reveal that for sufficiently high δ+ only the portion of layer IV between εy+ ' 2.6
and y/δ ' 0.5 exhibits increases in Γ+ with increasing δ+. Similarly, analyses of the
mean vorticity profile indicate that the lower portion of layer II (y+ . 40) has a fixed
Γ+. Thus, only the portion of layer II between y+ ' 40 and εy+ ' 1.6 accumulates Γ+

with increasing δ+.
It may be shown that

dU+

dy+
=

φ2
c

(y+ − C)
, (2.9)

holds on the domain where φ = φc (Fife et al. 2009; Klewicki et al. 2009; Klewicki 2013a).
Integration of (2.9) yields a mean profile that is approximated by the logarithmic function

U+ = φ2 ln(y+ − C) + D, (2.10)

with increasing accuracy as δ+ → ∞. Thus, relative to describing the rate at which
Γ+

e accumulates within a layer of thickness δ+, the present theory attaches logarithmic
growth to this outer portion of the Lβ hierarchy.

The traditional way of describing U+
e = −Γ+

e as a function of δ+ uses a logarithmic
equation of the form

U+
e = A1 ln(δ+) + B1. (2.11)

In (2.11) A1 is the inverse of the von Kármán constant, and B1 is made up of the sum
of an invariant near-wall contribution and a wake contribution that, at sufficiently high
δ+, is also constant, e.g., Monkewitz et al. (2008).

While the present theory attributes Γ+ increments to both layers II and IV, it also
specifies that the layer IV contribution is most accurately described by a logarithmic func-
tion. Recent pipe and boundary layer data at large δ+ support this prediction (Marusic
et al. 2013). Accordingly, one can write

U+
e = |Γ+

I | + |Γ+

II |+ |Γ+

III| +
4

A2
ln

(

δ+/2 − 7

2.6
√

δ+ − 7

)

+ (U+
e − U+

Wmax

), (2.12)

where in this expression A = A(β), and the offset C in (2.10) is set to the estimate of
7 described in the manuscript, also see Klewicki (2013a). Noting that Γ+

I and Γ+

III are
constants, |Γ+

II | ' 0.5U+
e , and at sufficiently high δ+ (U+

e − U+

Wmax

) becomes constant
(see figures 6m, 4 and 5), allows (2.12) to be written as

U+
e

2
= A2 ln

(

δ+/2− 7

2.6
√

δ+ − 7

)

+ B2. (2.13)

Figures 10a,b present channel, pipe, and boundary layer data plotted and fit according to
(2.11) and (2.13) respectively. As indicated in figure 10a, the curve-fits were only applied
to data that are significantly within the four layer regime. The differences between the
curve-fits in figures 10 are not detectable by visual inspection. The difference is that (2.11)



Supplemental Material: Vorticity description consistent with mean dynamics 13

Figure 10. Measures of maximum mean velocity, U+
e (U+

c or U+
∞), as a function of δ+, boundary

layer, H; channel flow, �; pipe flow, �, (a) plotted according to (2.11), (b) plotted according to
(2.13).

Flow Reynolds Number Range A1 (A−1
1 ) B1 A2 (A−1

2 ) B2

Channel 540 . δ+ . 4000 2.372 (0.422) 6.161 2.514 (0.398) 6.645
Pipe 1000 . δ+ . 530000 2.321 (0.431) 7.420 2.369 (0.422) 7.319
Boundary Layer 1000 . δ+ . 50000 2.525 (0.395) 7.633 2.614 (0.383) 7.661

Table 1. Coefficients in (2.11) and (2.13) determined by fitting the data presented in figure 10.

attributes logarithmic dependence to an internal region that extends from O(ν/uτ) to
O(δ), while (2.13) only accounts for it on the domain where φ = φc. This difference
is apparent in the curve-fit parameters listed in table 1. Specifically, the values for the
inverse of the leading coefficient are consistently larger for the curve-fit based on (2.11).
On the other hand, fitting the channel data to (2.13) yields a value that is only about
1.7% different from that determined by Klewicki et al. (2009) at δ+ = 2004. Similarly,
the pipe data fit to (2.13) yields a slope that is essentially identical to that found by
McKeon (2003), and for the boundary layer, identical to the estimate reported by Nagib
& Chauhan (2008). These studies used different techniques on the same data sets. A
common element, however, is that in each case the region of logarithmic dependence was
taken to begin at a position farther from the wall than implicitly assumed by fitting
to (2.11). The present theory provides a precise specification for the Reynolds number
dependent position where a logarithmic profile is most accurately approximated, and this
corresponds to the Γ+ increments on the hierarchy portion of layer IV.

If U+
e /2 is logarithmic as described by (2.13), then according to the theory so is the

growth rate of −Γ+

II ' U+
e /2. Thus, the small difference between the slopes determined

by (2.11) and (2.13) is not in the overall rate of change of Γ+ in the region interior to
εy+ . 2.6, but rather in where and how it occurs in this region. This has to do with the
profile variation in the region ε40 . εy+ . 2.6. In the context of the theory, this is the
region where the length scale (figure 1m) required to write the mean dynamical equa-
tion in its self-similar form transitions from its steeper near-wall slope to its constant
slope (beginning beyond εy+ ' 2.6) that is characteristic of the logarithmic behavior
accounted for in (2.13). In figures 2m and 3m, this is where the vorticity transport con-
tribution to dT+/dy+ gains parity with and subsequently exceeds the vorticity stretching
contribution.

Considering (2.13) under the condition, δ+ → ∞, allows the small effect of the offset,
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C = 7, to be neglected. After some algebraic manipulation, its differentiation with respect
to δ+ yields

d|Γ+
e |

dδ+
=

φ2
c

δ+
. (2.14)

Combining (2.14) with (2.8) gives

d|Γ+

IV |
d∆+

IV

=
(εφc)

2

2
. (2.15)

While (2.8) gives the Γ+ accumulation rate in layer IV relative to that in the layer as a
whole, (2.15) gives its absolute growth rate. Similarly, combining (2.14) with (2.6) gives

d|Γ+

II|
d∆+

II

= εφc. (2.16)

This is the absolute growth rate of Γ+ in layer II. Regarding (2.6) and (2.16), φc ap-
parently has relevance to (2.16), even though the φc ' constant similarity begins near
εy+ = 2.6. This is theoretically reconciled via (2.3). Physically, it points to a self-similar
inner-outer interaction. A key attribute of the inner-outer interaction is that it embod-
ies the mechanistically equivalent processes that simultaneously support the wallward
transport of mean momentum and the outward transport of mean vorticity (Klewicki et
al. 2007; Eyink 2008). Under such an interaction, the scale and intensity of the vortical
motions in layer II adjust (as a function of δ+) in concert with the vorticity intensity
and scale in layer IV, such that (independent of δ+) the scale separation at the outer
edge of layer II (induced by vorticity stretching in layer II) equilibrates with the onset
of vorticity dispersion induced scale separation that becomes predominant starting near
the inner edge of layer IV.

2.2. Properties of the vorticity fluctuations

This section augments those parts of the paper associated with the properties of the
vorticity fluctuations.

2.2.1. Ratio of rms to mean spanwise vorticity

The boundary layer profiles of figure 11 exhibit similar properties as just described for
the channel in figure 10m. The inner region of these profiles is essentially indistinguishable
from the channel. In particular, the region of steep increase is observed to have the same
slope. It is clear, however, that the outer region of constant slope develops differently
than in the channel. In comparing the boundary layer and channel it should be noted
that the maximum δ+ value in figure 11 is only about 65% of that in figure 10m, and
that at equal δ+ these flows are at different stages of evolution relative to the onset of
the four layer regime (figure 1).

2.2.2. Vorticity stretching and exchange

Here we clarify how the mechanisms of vorticity stretching and exchange are related
to the layer II scale separation phenomena depicted in figure 3m.

The mean vorticity is dominant near the wall. By y+ ' 20, however, the intensities
of all three components attain magnitudes that are about equal to the mean (Klewicki
1997). As exemplified by figures 10m and 11, interior to y+ ' 15 the instantaneous
vorticity dynamics are dominated by Ωz , and beyond y+ ' 40 the fluctuations are, on
average, larger.
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Figure 11. Spanwise vorticity intensity profiles from the boundary layer DNS of Schlatter &
Orlu (2010), normalized by |Ωz| and plotted versus y+, δ+ = 359, · · ·; δ+ = 830, - - -;
δ+ = 974, – – –; δ+ = 1145, — — —; and δ+ = 1271, ——. Curve-fit in Layer II is given by
ω′

z/|Ωz| = 0.027(y+)1.21. Curve-fit in layer IV is given by ω′

z/|Ωz| = 0.796(y+)0.34.

How this transition takes place is clarified by examining the transport equation for the
mean enstrophy. Its inner-normalized form is given by

0 = Ω+
z

(

∂〈wωy〉+
∂y+

− ∂〈vωz〉+
∂y+

)

+
∂2(1

2
Ω+

z
2
)

∂y+2
−

(

∂Ω+
z

∂y+

)2

(2.17)

which is exact for channel or pipe flow. The last two terms on the right of (2.17) re-
spectively represent the viscous diffusion and dissipation of mean enstrophy. As noted
relative to equation 1.2m, to within the boundary layer approximation

〈wωy〉 − 〈vωz〉 =
∂〈uv〉

∂y
= −∂T

∂y
, (2.18)

and thus the first term on the right of (2.17) is associated with the variation of the TI
term in the mean momentum equation. This term in (2.17) is analogous to the produc-
tion term in the equations for mean and turbulence kinetic energy, as it is associated
with the exchange between Ω2

z and 〈ω2
i 〉 (i = 1, 2, 3), e.g., Tennekes & Lumley (1972).

Vorticity stretching is the relevant physical mechanism, as it underlies a rapid three-
dimensionalization of the instantaneous vorticity field with increasing distance from the
wall. Like the transport equation for 〈u2〉, that for 〈ω2

z〉 (not shown) solely contains this
exchange term, only with a negative sign. Thus, in a time averaged sense, 〈ω2

z〉 is the
conduit through which the loss of mean enstrophy is transferred to the other fluctuating
vorticity components. This transfer also occurs via vorticity stretching and reorientation
(Tennekes & Lumley 1972).

A number of features are apparent in figures 12a,b, with the overarching observation
being that the mean enstrophy transport mechanisms in the region y+ . 40 are essen-
tially identical in all of the canonical wall-flows. Note, however, that in the region y+ . 1
the δ+ = 2004 channel profile differs slightly from channels at lower δ+ (figure 12a), and
from pipes and boundary layers at δ+ ' 1000 (figure 12b). Interior to y+ ' 2.6, (2.17) is
nearly perfectly balanced by the diffusion and turbulence exchange terms. These terms
attain essentially equal and opposite maxima at the outer edge of layer I (y+ ' 2.6).
Beyond this point, the dissipation term becomes non-negligible, and the diffusion and
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Figure 12. Near-wall inner normalized mean enstrophy budgets for turbulent wall flows, mean
to turbulence exchange, ——; viscous diffusion, — — —; viscous dissipation, – – –. (a) channel
flows of Hoyas & Jimenez (2006), δ+ = 547, ♦; δ+ = 934, �; δ+ = 2004, ◦, (b) δ+ = 1020
channel flow DNS of Abe et al. (2004), ♦; δ+ = 1142 pipe flow DNS of Wu & Moin (2008), �;
δ+ = 1245 boundary layer DNS of Schlatter & Orlu (2010), O; δ+ = 2004 channel flow DNS of
Hoyas & Jimenez (2006); no symbol.

exchange terms rapidly decrease. The start of the Lβ hierarchy coincides with a zero-
crossing in the turbulence exchange term. This must be the case since the TI term
attains its maximum at this position. The dissipation of mean enstrophy is maximal at
this point, and is essentially balanced by the now positive diffusion term which passes
through zero near y+ = 6. The diffusion term peaks near y+ = 10, and beyond that point
the turbulence exchange and dissipation profiles merge to provide similar magnitude neg-
ative contributions that together balance the diffusion term. For greater y+ the profiles
decrease in magnitude, and by y+ ' 40 they attain values that are small in comparison
to near the wall.

The turbulence exchange term is positive and increasing out to y+ ' 2.6, and thus the
mean enstrophy is enhanced by the turbulence. This occurs owing to the constraint im-
posed by the no-slip boundary condition. Unlike away from the wall, streamwise velocity
fluctuations in this region directly (and with negligible loss) contribute to ω̃z, and thus
also to its average, Ωz. This interpretation is substantiated by the essentially zero value
of the dissipation term in layer I. Between the outer edge of layer I and the start of the Lβ

hierarchy (y+ = y+

pi ' 7), this direct connection is diminished, albeit the net exchange is
still from the turbulence to the mean. Consistent with this, the dissipation term acquires
the largest magnitude of the three terms in (2.17) near y+

pi. Beyond y+

pi, the turbulence
exchange term acts like a sink in (2.17), or equivalently, the mean enstrophy acts like
a source to the fluctuating enstrophy. This is where the ω′

z/|Ωz| profiles of figures 10m
and 11 begin to exhibit their rapid layer II increase. Physically, mean enstrophy is being
converted into 〈ω2

z〉 which, by the processes of vorticity stretching and reorientation, is
rapidly transferred to 〈ω2

x〉 and 〈ω2
y〉 (see figures 11m and 12m).

The distance between layer I (y+ ' 2.6) and the onset of the hierarchy (y+ = y+

pi ' 7)
is interpreted to be where Ωz loses its boundary condition related correlation with ωz.
This loss of correlation is due to the inertial mechanism embedded in the turbulence
exchange term of (2.17). It is thus expected that the scale of this turbulence mechanism
should be about the width of this region, or slightly greater than 4 viscous units. The
W+(y+) distribution quantifies the average length scale of this mechanism. Figure 1m
shows that W+(y+) is minimal ' 4.1 precisely at y+ = y+

pi. Consistently, the minimum

value of Wω′

z/uτ ' 1.15 (figure 9m) also occurs at y+ = y+

pi.
The above description of how the vorticity field three-dimensionalizes is supported by
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the channel results of figure 11m, and the channel and boundary layer results of figure
12m. At the outer edge of layer I the Wω′

x/uτ values are near unity, and from there they
decrease to a minimum near y+ = 6. In this region of the flow, the Wω′

x/uτ profiles from
the channel exhibit a slight Reynolds number dependence, but with increasing distance
from the wall the variations between the different δ+ profiles diminish. Beyond about
y+ ' 40 these variations are undetectable for the range of Reynolds numbers considered.
Whether this behaviour is retained at higher δ+ is currently unknown. Beyond y+ ' 40,
the Wω′

x/uτ profiles exhibit features that are highly similar to those those of Wω′

z/uτ

in figure 11m. The Wω′

y/uτ profiles provide evidence of an emerging invariance from the
wall to the end of the Lβ hierarchy (y/δ ' 0.5).

Figure 12m compares the Wω′

i/uτ for the channel at δ+ = 2004 and in the boundary
layer at δ+ = 1271. Effectively, these figures portray the process by which the vorticity
field becomes three dimensional, as described in terms of the length scale intrinsic to the
mechanism of turbulent inertia. Consistent with the analysis of (2.17), interior to y+ ' 40
the spanwise component is largest. Near this location, however, all three component
intensities gain approximate parity, and each is about three times greater than |Ωz|
(see figures 10m and 11). For y+ ' 40, the Wω′

x/uτ profile slightly exceeds the other
two. By εy+ ' 2.6 Wω′

x/uτ is essentially parallel to but slightly greater than Wω′

y/uτ

and Wω′

z/uτ . This feature persists to the end of the hierarchy (y/δ ' 0.5). Near the
zero crossing of the TI term (position of maximum −〈uv〉+, y+

m), the Wω′

y/uτ profile
exactly melds with the Wω′

z/uτ profile, and beyond that point, the two profiles are
indistinguishable. This is true for both the channel and the boundary layer. Beyond the
outer edge of layer III, all of the channel profiles on figure 12m(a) convincingly attain the
same slope, as do the boundary layer profiles of figure 12m(b). This slope, however, is not
the same the channel and boundary layer at the given Reynolds numbers. In combination,
the present theory, mean enstrophy analysis, and results of figures 11m and 12m support
the emergence of a self-similar vorticity three-dimensionalization process. This process is
characteristic of the φ 6= constant similarity structure on the portion of the Lβ hierarchy
interior to εy+ ∼ 2.6 (Klewicki 2013a). Beyond layer III, these evidences also support
the existence of self-similar vorticity dispersion as depicted in figure 10m.
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