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1 GOVERNING EQUATION

The Graetz-Nusselt problem considers transport of heat between a fluid and a tube, beginning
at some location in the hydrodynamically developed flow region. The tube entrance length is
unheated, and the wall temperature T1 of the heated or cooled section is constant but different
from that of the entering fluid temperature T0. The fluid has constant physical properties, and
viscous dissipation and axial heat conduction are neglected. In this study we extend this classical
problem to fluid flows with a finite slip velocity us at the wall at r =R. Wall slip can be quantified
by a slip length b, which is defined according to Navier’s slip condition,

us =−b
∂u
∂ r

∣∣∣∣
r=R

. (1.1)

The governing equation describing stationary heat transport in such an axisymmetric cylindrical
system, under the assumption of constant density ρ and thermal conductivity k, can be written
as

u
∂T
∂x

=
α
r

∂
∂ r

(
r

∂T
∂ r

)
, (1.2)

where u(r,b) decribes the velocity profile of the laminar fluid flowing in the x-direction, and
α = k/(ρCp) is the thermal diffusivity. The initial and boundary condition are T (0,r) = T0 and
T (x,R) = T1.

Solving the Navier-Stokes equation for stationary slip flow in the axial direction, again assuming
constant ρ and k, yields the following expression for the velocity profile,

ũ =
2
(
1− r̃2

)
+4b̃

1+4b̃
, (1.3)

where ũ = u/uav, r̃ = r/R, and b̃ = b/R. ũ can written as the sum of the variable velocity ũv(r̃, b̃)
and the slip velocity ũs(b̃) at the wall:

ũ = ũv + ũs =
2
(
1− r̃2

)
1+4b̃

+
4b̃

1+4b̃
. (1.4)

The governing heat equation can now be non-dimensionalised using Θ = (T1−T )/(T1−T0) and
x̃ = x/L (L being the length of the heated or cooled section of the pipe),(

1− r̃2
)
+2b̃

2(1+4b̃)
∂Θ

∂ (x̃/Gz)
=

1
r̃

∂
∂ r̃

(
r̃

∂Θ
∂ r̃

)
, (1.5)

with Θ(0, r̃) = 1 and Θ(x̃,1) = 0. The Graetz number Gz is defined as

Gz = RePr
D
L
= 4

uavR2

αL
, (1.6)

where Re = uavD/ν is the Reynolds number, Pr = ν/α is the Prandtl number, and D is the
diameter of the tube. For x̃/Gz < 0.01 the fluid flow is thermally developing, while for x̃/Gz >
0.1 the fluid flow is said to be thermally developed.
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2 NUSSELT NUMBER

The local Nusselt number Nux is defined, by definition, as

Nux =
hxD

k
, (2.1)

where hx is the local heat transfer coefficient, being a function of the dimensionless position
x̃/Gz. Following Newton’s law of cooling and using Fourier’s Law of thermal conduction, the
heat transfer coefficient hx can be rewritten as

hx =
q”
∆T

=− k
⟨T ⟩−T1

∂T
∂ r

∣∣∣∣
r=R

, (2.2)

where q” represents the local heat flux between the wall and the fluid. Rewriting the temperature
gradient in dimensionless form gives

hx =−2k
D

1
⟨Θ⟩

∂Θ
∂ r̃

∣∣∣∣
r̃=1

, (2.3)

where ⟨Θ⟩= (T1−⟨T ⟩)/(T1−T0). Here, it is always true that ∂r̃Θ ≤ 0. Now, Nux can be written
as

Nux =− 2
⟨Θ⟩

∂Θ
∂ r̃

∣∣∣∣
r̃=1

, (2.4)

where ⟨Θ⟩(x̃/Gz). The dimensionless flow-averaged or mixing-cup temperature ⟨Θ⟩ can be
calculated according to

⟨Θ⟩=

∫ 1

0
Θ(x̃/Gz, r̃)ũ(r̃)r̃dr̃∫ 1

0
ũ(r̃)r̃dr̃

. (2.5)

When x̃/Gz > 0.1, Nux → Nu∞.
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3 LÉVÊQUE APPROXIMATION

3.1 GOVERNING EQUATION AND VELOCITY PROFILE

To solve the temperature field near the very entrance of the pipe the Lévêque approximation is
followed. This involves the following assumptions:

• curvature effects are neglected;

• infinite bulk is assumed;

• the velocity profile is regarded as linear, with the slope given by the slope of the velocity
profile at the wall.

Then governing equation can be solved in Cartesian coordinates:

u
∂T
∂x

= α
∂ 2T
∂y2 . (3.1)

The wall at r = R is now located at y = 0, i.e. the directions of the r- and y-axis are reversed.

Under the assumptions listed above, the velocity profile can be writted as

ũ =
4

1+4b̃
(ỹ+ b̃), (3.2)

where ỹ = y/R.

Three different flow regimes can be distinguished:

1. no-slip, i.e. b̃ = 0 and hence ũ = 4ỹ;

2. finite slip, i.e. 0 < b̃ < ∞;

3. no-shear, i.e. b̃ = ∞ and thus ũ = 1.

In the next sections an analytical expression for the local Nusselt number Nux is derived for each
flow regime. In general,

Nux ∝
(

x̃
Gz

)−β
. (3.3)

The exponent β is constant for the two limiting cases and equals 1/3 for no-slip flow, and 1/2
for no-shear flow. In case of slip flow, β = f (x̃/Gz, b̃).

3.2 NO-SLIP

Making the governing energy equation dimensionless results in the following differential equa-
tion for no-slip flow,

Gzỹ
∂Θ
∂ x̃

=
∂ 2Θ
∂ ỹ2 , (3.4)

with Θ(0, ỹ) = 1, Θ(x̃,0) = 0, and Θ(x̃,∞) = 1.
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By introducing a similarity variable η , where

η =

(
Gzỹ3

9x̃

) 1
3

, (3.5)

and subsequent rewriting of the energy balance, we obtain the following ODE:

d2Θ
dη2 +3η2 dΘ

dη
= 0, (3.6)

with boundary conditions Θ(0) = 0 and Θ(∞) = 1. This ordinary differential equation has a
known solution, and with the boundary conditions given the final solution for Θ becomes

Θ =
1

Γ(4
3)

∫ η

0
exp(−η̄3) dη̄ . (3.7)

Previously, an expression for the Nusselt number was found using the dimensionless temperature
gradient ∂r̃Θ. Rewriting this in terms of ∂ỹΘ, the expression for Nu becomes

Nux =
2

⟨Θ⟩
∂Θ
∂ ỹ

∣∣∣∣
ỹ=0

. (3.8)

However, in the Lévêque approximation ⟨Θ⟩ = 1. Furthermore, the dimensionless temperature
gradient is rewritten in terms of dηΘ. Then

Nux =
2η
ỹ

dΘ
dη

∣∣∣∣
η=0

. (3.9)

Always the temperature gradient dη Θ > 0. Now, using the Leibniz formula for differentiation
of integrals, an expression for the temperature gradient can be found:

dΘ
dη

=
exp(−η3)

Γ(4
3)

. (3.10)

Evaluating this at η = 0 and substituting this in the expression for Nux we find

Nux =
2

Γ(4
3)

η
ỹ
, (3.11)

or,

Nux =
2

9
1
3 Γ(4

3)

(
x̃

Gz

)− 1
3

. (3.12)

Thus, we find that for the no-slip regime the exponent is β = 1/3.
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3.3 NO-SHEAR

For the no-shear case, which implies that we have plug flow, the velocity profile is uniform.
Rewriting the governing equation yields the following dimensionless PDE:

Gz
4

∂Θ
∂ x̃

=
∂ 2Θ
∂ ỹ2 , (3.13)

with Θ(0, ỹ) = 1, Θ(x̃,0) = 0, and Θ(x̃,∞) = 1. Using the similarity variable

η =

(
Gzỹ2

16x̃

) 1
2

, (3.14)

this PDE turns into the following ODE having a known solution,

d2Θ
dη2 +2η

dΘ
dη

= 0, (3.15)

with Θ(0) = 0 and Θ(∞) = 1. Solving this ODE gives

Θ =
2√
π

∫ η

0
exp(−η̄2) dη̄ = erf(η). (3.16)

In order to find an expression for Nux, we need an equation for the temperature gradient. This is

dΘ
dη

=
2√
π

exp(−η2). (3.17)

Ultimately this results in the following expression for Nux:

Nux =
1√
π

(
x̃

Gz

)− 1
2

. (3.18)

Here, β = 1/2.

3.4 FINITE SLIP

To find an analytical expression for Nux for fluid flow with finite slip, we start by rewriting the
expression for the velocity profile:

u = 4uav
y+b

R+4b
. (3.19)

Plugging this into the governing equation for heat transport, and using the dimensionless vari-
ables

Θ =
T1 −T
T1 −T0

, (3.20)
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Y =
y
b
, (3.21)

X = x
α(R+4b)

4uavb3 , (3.22)

we can non-dimensionalize the governing equation. This yields

(1+Y )
∂Θ
∂X

=
∂ 2Θ
∂Y 2 , (3.23)

with Θ(0,Y ) = 1, Θ(X ,0) = 0, and Θ(X ,∞) = 1. To reduce the number of variables, we perform
a Laplace transformation of ∂X Θ in X ,

LX

[
∂Θ
∂X

]
=

∫ ∞

0

∂Θ
∂X

e−pX dX = pΘ̄(p,Y )−Θ(0,Y ) = pΘ̄(p,Y )−1, (3.24)

where Θ̄ is the Laplace transform of Θ,

Θ̄(p,Y ) = LX [Θ] =
∫ ∞

0
Θ(X ,Y )e−pX dX . (3.25)

Furthermore,

LX

[
∂ 2Θ
∂Y 2

]
=

∂ 2Θ̄
∂Y 2 . (3.26)

The governing equation now becomes

(1+Y )(pΘ̄−1) =
∂ 2Θ̄
∂Y 2 , (3.27)

with Θ̄(p,0) = 0 and Θ̄(p,∞) = 1/p. To convert this into an ODE with a known solution, we
change variable by introducing

Θ̂ = Θ̄− 1
p
. (3.28)

Now we obtain

p(1+Y )Θ̂ =
∂ 2Θ̂
∂Y 2 (3.29)

with Θ̂(p,0) =−1/p and Θ̂(p,∞) = 0. Now we change variable a second time by defining

η = p1/3(1+Y ). (3.30)

Following Faà di Bruno’s formula for second order derivatives saying

∂ 2Θ̂
∂Y 2 =

∂ 2Θ̂
∂η2

(
∂η
∂Y

)2

+
∂Θ̂
∂η

∂ 2η
∂Y 2 , (3.31)
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we find
d2Θ̂
dη2 −ηΘ̂ = 0 (3.32)

with Θ̂(p1/3) = −1/p and Θ̂(∞) = 0. This ODE is known as the Airy equation, whose general
solution of the first kind is the Airy function Ai(η),

Ai(η) =
1

2πi

∫ +i∞

−i∞
exp

(
ηz− z3

3

)
dz, (3.33)

or,

Ai(η) =
1
π

∫ ∞

0
cos

(
ηz+

z3

3

)
dz, (3.34)

with limη→∞ Ai(η) = 0. Then the solution for Θ̂ becomes

Θ̂ =−Ai(p1/3(1+Y ))
pAi(p1/3)

, (3.35)

and

Θ̄ =
Ai(p1/3)−Ai(p1/3(1+Y ))

pAi(p1/3)
. (3.36)

This expression for Θ̄ recovers both Θ̄(p,0) = 0 and Θ̄(p,∞) = 1/p. To obtain Θ, we take the
inverse Laplace transform in X , giving

Θ(X ,Y ) = L −1
X

[
Θ̄
]
=

1
2πi

∫ c+i∞

c−i∞

Ai(p1/3)−Ai(p1/3(1+Y ))
pAi(p1/3)

epX dp. (3.37)

For Nux we can derive that

Nux =
2
b̃

∂Θ
∂Y

∣∣∣∣
Y=0

, (3.38)

where, following Leibniz’ integral rule,

∂Θ
∂Y

=− 1
2πi

∫ c+i∞

c−i∞

Ai′(p1/3(1+Y ))epX

p2/3Ai(p1/3)
dp. (3.39)

Then, finally, we obtain

Nux =− 1
b̃πi

∫ c+i∞

c−i∞

Ai′(p1/3)epX

p2/3Ai(p1/3)
dp, (3.40)

or
Nux =

2
b̃

g(X), (3.41)

with

g(X) =− 1
2πi

∫ c+i∞

c−i∞

Ai′(p1/3)epX

p2/3Ai(p1/3)
dp. (3.42)
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X turns out to be a function of x̃/Gz and b̃, as

X =
x
L

αL
4uavR2

R2(R+4b)
b3 =

(
x̃

Gz

)
1+4b̃

b̃3
. (3.43)

The function g(X) is universal, as it does not depend on the slip length b. The slip length affects
the scaling between X and x̃/Gz, so it determines with part of the function g(X) is relevant.
When b̃ → 0, X → ∞, while for b̃ → ∞, X → 0. As a check, when b̃ → 0 we expect that

g(X) ∝ X−1/3 (3.44)

for large X . Then

Nux ∝
1
b̃

(
x̃

Gz
1
b̃3

)−1/3

=

(
x̃

Gz

)−1/3

. (3.45)

When b̃ → ∞ we expect that
g(X) ∝ X−1/2 (3.46)

for small X . Then

Nux ∝
1
b̃

(
x̃

Gz
4b̃
b̃3

)−1/2

=

(
x̃

Gz

)−1/2

. (3.47)

To evaluate g(X), let p = s3. Then

g(X) =− 1
2πi

∫ c+i∞

c−i∞

Ai′(s)es3X

s2Ai(s)
3s2 ds =− 3

2πi

∫ c+i∞

c−i∞

Ai′(s)es3X

Ai(s)
ds. (3.48)

The integral should start in the sector −π/2 < arg(s) < −π/6 and finish in the sector π/6 <
arg(s)< π/2. The convergence properties of the integrand are best if we integrate along the rays
arg(s) = ±π/3. On the ray ∞e−iπ/3 to the origin we let s = ke−iπ/3 with k going from ∞ to 0.
On the ray from the origin to ∞eiπ/3 we let s = keiπ/3 with k going from 0 to ∞. Thus

g(X) =−3e−iπ/3

2πi

∫ 0

∞

Ai′(ke−iπ/3)e−k3X

Ai(ke−iπ/3)
dk− 3eiπ/3

2πi

∫ ∞

0

Ai′(keiπ/3)e−k3X

Ai(keiπ/3)
dk, (3.49)

or

g(X) =
3e−5iπ/6

2π

∫ ∞

0

Ai′(ke−iπ/3)e−k3X

Ai(ke−iπ/3)
dk+

3e5iπ/6

2π

∫ ∞

0

Ai′(keiπ/3)e−k3X

Ai(keiπ/3)
dk. (3.50)

The integrand decays rapidly and can be evaluated numerically. In FIG. 3.1 the function g(X)
is plotted as function of X . As demonstrated in the graph, the limiting behaviour of g(X) is
as expected: when X → 0, g(X) ∝ X−1/2 , and when X → ∞, g(X) ∝ X−1/3. β , as obtained
by computing the gradient of log10(Nux) versus log10(x̃/Gz), is plotted in FIG. 3.2. β ≈ 5/12
when X = 1. Thus, the dimensionless group X can be considered as a kind of criterion for the
behaviour of β : β → 1/2 when X ≪ 1, whereas β → 1/3 when X ≫ 1.

The expression

G(X) =
0.546

(
X1/2.420 +1.058

)2.420/6

X1/2 (3.51)

is a good approximation to g(X), which is accurate to about 0.5% for 10−4 < X < 104.
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Figure 3.1: g(X) as function of X .
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Figure 3.2: β as function of X as obtained from g(X).
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4 NUMERICAL PROCEDURE

Numerically, the Graetz-Nusselt problem for finite slip was solved using the pdepe-solver in
MATLAB. It is required that the equation to be solved has the following form:

c
(

r̃, x̃/Gz,Θ,
∂Θ
∂ r̃

)
∂Θ

∂ (x̃/Gz)
= r̃−m ∂Θ

∂ r̃

[
r̃m f

(
r̃, x̃/Gz,Θ,

∂
∂ r̃

)]
+s

(
r̃, x̃/Gz,Θ,

∂Θ
∂ r̃

)
. (4.1)

In this study, c = ũ/4, f = ∂r̃Θ, and s = 0. The value of m depends on the coordinate system
chosen to solve the equation. For cylindrical coordinates m = 1. The initial and boundary
conditions were defined according to

Θ(r̃,(x̃/Gz)0) = Θ0 (r̃) = 1, (4.2)

and

p(r̃, x̃/Gz,Θ)+q(r̃, x̃/Gz,) f
(

r̃, x̃/Gz,Θ,
∂Θ
∂ r̃

)
= 0. (4.3)

For the boundary condition Θ(1, x̃/Gz) = 0, p = Θ(1, x̃/Gz) and q = 0. Furthermore, for
∂r̃Θ(0, x̃/Gz) = 0, p = 0 and q = 1. However, boundedness of the solution near r̃ = 0 re-
quires that the flux f vanishes at r̃ = 0. For m > 0, pdepe imposes this boundary condition
automatically and it ignores values specified for p and q. The relative and absolute tolerance
for the pdepe-solver were set at respectively 10−6 and 10−12. For calculating ∂r̃Θ at r̃ = 1 the
MATLAB-function pdeval was utilised.

Because heat transport mainly occurs near the inlet and near the wall, the x̃× r̃ = 82×101-mesh
was refined near these boundaries. For x̃ = 0, the MATLAB logspace-script was used to create
an logarithmically equally spaced grid in the x-direction. Refinement in the r̃-direction was
obtained by using a linearly spaced vector (linspace) for r̃0 and the following expression:

r̃ = 1−
[
0.99(1− r̃2

0)+0.01(1− r̃0)
]
. (4.4)

The values for β f in the thermally developing regime were obtained by fitting a straight line
through log10(Nux) for −7 ≤ log10(x̃/Gz) ≤ −4 using the polyfit-algorithm.1 βl is the gradi-
ent of log10(Nux) or log10(g(X)) versus log10(x̃/Gz), computed using the 2nd order accurate
gradient-algorithm. Nu∞ is taken as the average of Nux for x̃/Gz ≥ 0.1. To compute the flow-
averaged or mixing-cup temperature ⟨Θ⟩ the trapz-script was utilised. Gradients of β and Nu∞
versus b̃ were calculated using the gradient-algorithm.

The thermal boundary thickness λ̃T was calculated numerically from the temperature profile,
which was approximated by linear intrapolation of the temperature to find r̃(Θ = 0.99) using
two the temperature points closest to Θ = 0.99.

1Note that changing the range of x̃/Gz-values used to compute β f results in a different transition point for β f . Using
larger values shifts the transition point upwards. Nonetheless, the distance between the transition points for β f
and Nu∞ remains at least one order of magnitude large. When using −7 ≤ log10(x̃/Gz)≤−4, the transition point
for β f is located at b̃ = 1.5×10−2. This point is located at b̃ = 0.7×10−2 when using −7 ≤ log10(x̃/Gz)≤−6.
For −5 ≤ log10(x̃/Gz)≤−4, it is located at b̃ = 3×10−2.
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