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Supplementary Materials:
“On damping of two-dimensional

piston-mode sloshing in a rectangular
moonpool under forced heave motions”

O. M. Faltinsen and A. N. Timokha

Centre for Autonomous Marine Operations and Systems, Department of Marine Technology,
Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

To provide a self-contained narrative, the Supplementary materials repeat details of the
Galerkin method by Faltinsen et al. (2007) with small modifications which allow for
finding the primary harmonics of the steady-state solution of the quasi-linear boundary
value problem. The method focuses on the first harmonics of the quasi-linear problem.
All new quantities relative to Faltinsen et al. (2007) are framed.

We construct the 2π-periodic solution of the two-dimensional quasi-linear boundary

(2.4)-(2.8) in the mean liquid domain Q0 shown in figure 1 with a focus on the cos t

and sin t harmonics. The method employs dividing Q0 into four subdomains I, II, III and
IV by auxiliary interfaces T1, T2 and T3 and setting appropriate transmission conditions
on them and accounting for that the motions inside the (II + III + IV )-domain are
described by

ψII−IV (x, z, t) = ψ|(x,z)∈(II+III+IV ) = φ(1)(x, z) cos t+ φ(2)(x, z) sin t. (0.1)

This makes it possible to define the Neumann traces of φ(i), i = 1, 2 on Tj , j = 1, 2, 3
as follows

T1 :
∂φ(i)

∂x
(−b, z) = w

(i)
1 (z) − h < z < −d, (0.2a)

T2 :
∂φ(i)

∂x
(−1

2 , z) = w
(i)
2 (z) − h < z < −d, (0.2b)

T3 :
∂φ(i)

∂z
(x,−d) = w

(i)
3 (x) − 1

2 < x < 0, (0.2c)

(the six functions w
(i)
j , i = 1, 2, j = 1, 2, 3 belong to admissible functional spaces which

provide the correctness of the corresponding boundary value problems) and reduce the

original wave problem to a system of integral equations relative to w
(i)
j , i = 1, 2, j =

1, 2, 3.

In contrast to (0.1), ψI(x, z, t) = ψ|(x,z)∈I should include an outgoing-wave component.
By separating spatial variables in the semi-infinite band and matching with solution (0.1)
and the Neumann-traces (0.2a), one obtains the following solution in I as a function of
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Figure 1. Geometric notations to the dimensionless problem (2.6)-(2.10).

w
(1)
1 and w

(2)
1

ψI(x, z, t) =

∫ −d

−h

(
w

(1)
1 (z0) cos t+ w

(2)
1 (z0) sin t

)
GI(x, z; z0)dz0+

+
cosh(K(z + h))

KN0

[
sin(K(x+ b) + t)

∫ −d

−h

w
(1)
1 (z0) cosh(K(z0 + h))dz0−

− cos(K(x+ b) + t)

∫ −d

−h

w
(2)
1 (z0) cosh(K(z0 + h))dz0

]
, (0.3)

where

GI(x, z; z0) =
∞∑
j=1

cos(κ
(1)
j (z0 + h)) cos(κ

(1)
j (z + h))

κ
(1)
j N

(1)
j

exp(κ
(1)
j (x+ b)). (0.4)

K is the root of the transcendental equation

K tanh(Kh) = Λ and N0 = 1
2h(1 + sinh(2Kh)/(2Kh)), (0.5)

and {κ(1)i } are the positive roots of

κ
(1)
i tan(κ

(1)
i h) = −Λ and N

(1)
i = 1

2h(1 + sin(2κ
(1)
i h)/(2κ

(1)
i h)), i > 1. (0.6)

The pairs (w
(i)
1 , w

(i)
2 ), i = 1, 2, constitute part of the Neumann boundary value prob-

lems for the Laplace equation in II. These problems have solutions (generally, to within

unknown constants A(i)
−1), if and only if, the following solvability conditions is satisfied

−
∫ −d

−h

w
(i)
1 (z0)dz0 +

∫ −d

−h

w
(i)
2 (z0)dz0 + ϵδ2i

∫ − 1
2

−b

1 dx0︸ ︷︷ ︸
(b− 1

2 )

= 0, i = 1, 2 (0.7)

(δij is the Kronecker delta). In a physical sense, Eq. (0.7) states instantaneous in-
flow/outflow balance through I. If (0.7) is true,

φ
(i)
II (x, z) = A(i)

−1 + ϵδ2i
(z + h)2 − (x+ b)2

2(h− d)
+
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+

∫ −d

−h

[
w

(i)
1 (z0) G(1)

II (x, z; z0) + w
(i)
2 (z0) G(2)

II (x, z; z0)
]
dz0, i = 1, 2, (0.8)

where

G(1)
II (x, z; z0) =

x

h− d
−

−
∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j N

(2)
j

·
cosh(κ

(2)
j (x+ 1

2 ))

cosh(κ
(2)
j (b− 1

2 ))
, (0.9a)

G(2)
II (x, z; z0) =

∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j N

(2)
j

·
cosh(κ

(2)
j (x+ b))

cosh(κ
(2)
j (b− 1

2 ))
(0.9b)

with

κ
(2)
j =

πj

h− d
; N

(2)
j = 1

2 (h− d) tanh(κ
(2)
j (b− 1

2 )), j > 1. (0.10)

Even though the solutions (0.8) are formally determined to within A(i)
−1, the actual values

of these constants must be computed via the Dirichlet-transmission conditions on T1, T2
and T3.
Analogously, (w

(i)
2 , w

(i)
3 ), i = 1, 2, yield part of the Neumann boundary value problem

in III, which needs the solvability condition∫ −d

−h

w
(i)
2 (z0)dz0 −

∫ 0

− 1
2

w
(i)
3 (x0)dx0 = 0, i = 1, 2. (0.11)

Its solution is

φ
(i)
III(x, z) = A(i)

−2 +

∫ −d

−h

w
(i)
2 (z0) G(1)

III(x, z; z0)dz0+

+

∫ 0

− 1
2

w
(i)
3 (x0) G(2)

III(x, z;x0)dx0, i = 1, 2, (0.12)

where A(i)
−2 are also computed from the Dirichlet transmission conditions and

G(1)
III(x, z; z0) = −x

2 − (z + h)2

h− d
−

−
∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j N

(3)
j

·
cosh(κ

(2)
j x)

cosh( 12κ
(2)
j )

, (0.13a)

G(2)
III(x, z;x0) =

∞∑
j=1

cos(κ
(3)
j x0) cos(κ

(3)
j x)

κ
(3)
j N

(4)
j

·
cosh(κ

(3)
j (z + d))

cosh(κ
(3)
j (h− d))

(0.13b)

with

κ
(3)
j = 2πj; N

(3)
j = 1

2 (h− d) tanh(12κ
(2)
j ); N

(4)
j = 1

4 tanh(κ
(3)
j (h− d)), j > 1. (0.14)

Finally, the mixed boundary value problems in IV involving the Neumann boundary
condition (0.2c) and extra nonlinear boundary condition on Σ02 have to be solved. It has
a unique solution if and only if the analogous homogeneous problems have only trivial
solutions. This occurs when

Λ ̸= κ
(3)
j tanh(κ

(3)
j d), j > 1. (0.15)
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The cos t and sin t components of the vertical velocity on T4 takes the form

∂ψIV

∂z

∣∣∣∣
T4

= w
(1)
3 (x) cos t+ w

(2)
3 (x) sin t, (0.16)

so that the mean relative velocity in the right-hand side of the dynamic boundary con-
dition is

u0(t) =

∫
T4

∂ψIV

∂z

∣∣∣∣
T4

dx = a1 cos t+ (a2 − ϵ) sin t; ai = 2

∫ 0

−1/2

w
(i)
3 (x)dx. (0.17)

Substituting (0.17) into the dynamic boundary condition, extracting the first harmonics
and combining it with the kinematic conditions leads to the Robin boundary condition

Λ
∂2ψ

∂t2
+
∂ψ

∂z
= Λ∗

2

3π
Λ(C−1

0 − (2b∗)
−1)2︸ ︷︷ ︸

β

√
a21 + (a21 − ϵ)2︸ ︷︷ ︸
û0=ξ(a1,a2)

[(a2 − ϵ)︸ ︷︷ ︸
Ξ1

cos t+ (−a2)︸ ︷︷ ︸
Ξ2

sin t]

(0.18)

The mixed boundary value problems in IV have the following solution

φ
(i)
IV (x, z) = −Ξi+

∫ 0

− 1
2

w
(i)
3 (x0) GIV (x, z;x0)dx0, i = 1, 2, (0.19)

where

GIV (x, y;x0) = 2

(
z +

1

Λ

)
+

+
∞∑
j=1

cos(κ
(3)
j x0) cos(κ

(3)
j x)

κ
(3)
j N

(5)
j

·
κ
(3)
j cosh(κ

(3)
j z) + Λ sinh(κ

(3)
j z)

κ
(3)
j cosh(κ

(3)
j d)

(0.20)

and

N
(5)
j =

1

4

[
Λ

κ
(3)
j

− tanh(κ
(3)
j d)

]
. (0.21)

The kernel (0.20) becomes unbounded as Λ tends to the critical values defined by (0.15)

because this limit causes N
(5)
j → 0 for a certain j.

The problem reduces to integral equations with respect to w
(i)
j , j = 1, 2, 3; i = 1, 2,

by using the Dirichlet transmission conditions on Tj , which imply

ψI(−b, z, t) = φ
(1)
II (−b, z) cos t+ φ

(2)
II (−b, z) sin t, −h < z < −d, t > 0 (0.22)

as well as

φ
(i)
II (−

1
2 , z) = φ

(i)
III(−

1
2 , z), −h < z − d,

φ
(i)
III(x,−d) = φ

(i)
IV (x,−d), −1

2 < x < 0, i = 1, 2.
(0.23)

Together with the solvability conditions (0.7) and (0.11), Eqs. (0.22) and (0.23) yield
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the following system of integral equations∫ −d

−h

w
(1)
1 (z0)K1,1(z, z0)dz0 +

∫ −d

−h

w
(1)
2 (z0) K1,2(z, z0)dz0 −A(1)

−1−

− cosh(K(z + h))

KN0

∫ −d

−h

w
(2)
1 (z0) cosh(K(z0 + d))dz0 = 0,∫ −d

−h

w
(2)
1 (z0)K1,1(z, z0)dz0 +

∫ −d

−h

w
(2)
2 (z0) K1,2(z, z0)dz0 −A(2)

−1+

+
cosh(K(z + h))

KN0

∫ −d

−h

w
(1)
1 (z0) cosh(K(z0 + h))dz0 = ϵ

(z + h)2

2(h− d)
,

− h < z < −d,

(0.24a)

∫ −d

−h

w
(i)
1 (z0)K2,1(z, z0)dz0+

∫ −d

−h

w
(i)
2 (z0)K2,2(z, z0)dz0+

∫ 0

− 1
2

w
(i)
3 (x0)K2,3(z, x0)dx0+

+A(i)
−1 −A(i)

−2 = −ϵδ2i
(z + h)2 − (b− 1

2 )
2

2(h− d)
, −d < z < −h, (0.24b)

∫ −d

−h

w
(i)
2 (z0) K3,2(x, z0)dz0+

∫ 0

− 1
2

w
(i)
3 (x0) K3,3(x, x0)dx0+A(i)

−2 −Ξi = 0, −1
2 < x < 0,

(0.24c)∫ −d

−h

w
(i)
1 (z0)dz0 −

∫ −d

−h

w
(i)
2 (z0)dz0 = ϵδ2i(b− 1

2 ), (0.24d)

∫ −d

−h

w
(i)
2 (z0) dz0 −

∫ 0

− 1
2

w
(i)
3 (x0) dx0 = 0, (0.24e)

for i = 1, 2. The kernels are defined as follows

K1,1(z, z0) = GI(−b, z; z0)− G(1)
II (−b, z; z0) =

b

h− d
+

+

∞∑
j=1

cos(κ
(1)
j (z0 + h)) cos(κ

(1)
j (z + h))

κ
(1)
j N

(1)
j

+

∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j N

(2)
j

,

(0.25a)

K1,2(z, z0) = −G(2)
II (−b, z; z0) = −

∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j N

(2)
j cosh(κ

(2)
j (b− 1

2 ))
, (0.25b)

K2,1(z, z0) = G(1)
II (− 1

2 , z; z0) =

= − 1

2(h− d)
−

∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j N

(2)
j cosh(κ

(2)
j (b− 1

2 ))
, (0.25c)
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K2,2(z, z0) = G(2)
II (− 1

2 , z; z0)− G(1)
III(−

1
2 , z; z0) = − (z + h)2

h− d
+

1

4(h− d)
+

+
∞∑
j=1

cos(κ
(2)
j (z0 + h)) cos(κ

(2)
j (z + h))

κ
(2)
j

[
1

N
(2)
j

+
1

N
(3)
j

]
, (0.25d)

K2,3(z, x0) = −G(2)
III(−

1
2 , z;x0) = −

∞∑
j=1

(−1)j
cos(κ

(3)
j x0)

κ
(3)
j N

(4)
j

·
cosh(κ

(3)
j (z + h))

cosh(κ
(3)
j (h− d))

, (0.25e)

K3,2(x, z0) = G(1)
III(x,−d; z0) =

= h− d− x2

h− d
−

∞∑
j=1

(−1)j
cos(κ

(2)
j (z0 + h))

κ
(2)
j N

(3)
j

·
cosh(κ

(2)
j x)

cosh( 12κ
(2)
j )

, (0.25f )

K3,3(x, x0) = G(2)
III(x,−d;x0)− GIV (x,−d;x0) =

= 2

(
d− 1

Λ

)
+

∞∑
j=1

cos(κ
(3)
j x0) cos(κ

(3)
j x)

κ
(3)
j N

(6)
j

, (0.25g)

where

1

N
(6)
j

= 4

(
coth(κ

(3)
j (h− d))−

κ
(3)
j − Λ tanh(κ

(3)
j d)

Λ− κ
(3)
j tanh(κ

(3)
j d)

)
.

The inhomogeneous system of ten integral equations (0.24) couples six unknown func-

tions w
(i)
k , k = 1, 2, 3, i = 1, 2 and four coefficients A(i)

−1,A
(i)
−2, i = 1, 2. It can be solved

by the Galerkin projective scheme suggesting approximate solutions in the form

w
(i)
1 (z) =

N1∑
j=1

α
(1,i)
j v

(1)
j (z); w

(i)
2 (z) =

N2∑
j=1

α
(2,i)
j v

(1)
j (z); w

(i)
3 (x) =

N3∑
j=1

α
(3,i)
j v

(2)
j (x),

(0.26)

where {v(1)j } and {v(2)j } are two complete systems of functions on (−h,−d) and (− 1
2 , 0),

respectively. Insertion of (0.26) into (0.24) and use of the projective scheme lead to a
system of 2N1+2N2+2N3+4 linear algebraic system with respect to 2N1+2N3+2N3+4

variables {α(1,i)
j , j = 1, . . . , N1}, {α(2,i)

j , j = 1, . . . , N2}, {α(3,i)
j , j = 1, . . . , N3} and

A(i)
−j , i, j = 1, 2.
By introducing the vector

B =
(
α
(1,1)
1 , . . . , α

(1,1)
N1

;α
(2,1)
1 , . . . , α

(2,1)
N2

;α
(3,1)
1 , . . . , α

(3,1)
N3

;A(1)
−2,A

(1)
−1;

α
(1,2)
1 , . . . , α

(1,2)
N1

;α
(2,2)
1 , . . . , α

(2,2)
N2

;α
(3,2)
1 , . . . , α

(3,2)
N3

;A(2)
−2,A

(2)
−1

)T
, (0.27)

the matrix problem following from the Galerkin scheme is as follows(
P −ξD

)
B = ϵ

(
b −ξd

)
, (0.28)

where P and D are the (2N1 + 2N3 + 2N3 + 4)× (2N1 + 2N3 + 2N3 + 4)-matrices,

û0 = ξ =
√
a21 + (a2 − ϵ)2 . (0.29)
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Elements of P and the right-hand side vector b are integrals over the kernels (0.25)

and the functions {v(1)j } and {v(2)j }. The matrix P has the following structure

P =

∥∥∥∥∥∥∥∥∥∥
D -p

0

p

0 D

∥∥∥∥∥∥∥∥∥∥
, (0.30)

where the two sub-matricesD and p have dimensions (N1+N2+N3+2)×(N1+N2+N3+2)
and N1 ×N1, respectively.
Convergence and accuracy of the Galerkin method depend on the functional sets

{v(1)j (z)} and {v(2)j (x)}. Because the Neumann traces on Tk, k = 1, 2, 3 are singular

at the corner points of the piercing rectangular body, i.e. w
(i)
j (z) → ∞ as z → −d and

w
(i)
3 (x) → ∞ as x → − 1

2 , the use of a smooth functional basis, for instance, trigono-
metrical or polynomial, causes weak convergence. On the contrary, accounting for the
singular character of the traces should improve the convergence. The local solutions of
the complex velocity at the edges Ā2 and Ā3 in the complex plane Z = x̄ + iz̄ can be
expressed as

dW0

dZ

∣∣∣
atĀ2

= e−iπ2 η3aσ sin(σt) +
∞∑
i=1

T
(2)
i (t)

[
Z + B̄ + id̄

] 2i
3 −1

, (0.31a)

dW0

dZ

∣∣∣
atĀ3

= e−iπ2 η3aσ sin(σt) +

∞∑
i=1

T
(3)
i (t)

[
eiπ
(
Z +

L1

2
+ id̄

)] 2i
3 −1

, (0.31b)

where W0 is the complex velocity potential. The first term in (0.31) is caused by the
vertical motion of the body.
By conducting direct analytical derivations or noting that summands in (0.31) with i

that are divisible by 3 are regular, one can see that terms associated with T
(2)
3l (t), T

(3)
3l (t), l =

1, 2, . . . vanish on the intervals T̄k, k = 1, 2, 3. This implies that ψ(−b, z, t) ∼ (z +
d)m, z → −d; ψ(x,−d, t) ∼

(
x+ 1

2

)m
, x→ − 1

2 , where the numbers m belong to the
set

{± 1
3 + 2(i− 1), i > 1}. (0.32)

The enumeration of (0.32) in ascending order determines a sequence mj , j > 1. The
functional basis must satisfy

v
(1)
j ∼ (z + d)mj , z → −d; v

(2)
j ∼

(
x+ 1

2

)mj
, x→ − 1

2 j > 1. (0.33)

Further, accounting for the zero Neumann conditions on SB and SS , i.e.

(v
(1)
j )′(−h) = 0 and (v

(2)
j )′(0) = 0, j > 1, (0.34)

deduces from (0.33) the following functional sets

v
(1)
j (z) =

1

r
(1)
j

(
1−

(
z + h

h− d

)2
)mj

; v
(2)
j (x) =

1

r
(2)
j

(1− (2x)2)mj , j > 1, (0.35)

where

r
(1)
j =

√
(h− d)

√
πΓ(2mj + 1)

2Γ(2mj +
3
2 )

, r
(2)
j =

1

2

√√
πΓ(2mj + 1)

Γ(2mj +
3
2 )

, j > 1 (0.36)
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(Γ(·) is the gamma-function). The scaling factors r
(i)
j , i = 1, 2; j = 1, 2, 3 appear from

the normalization condition
∫ −d

−h
(v

(1)
j (z))2dz =

∫ 0

− 1
2
(v

(2)
j (x))2dx = 1, j > 1. The non-

singular sub-sets {v(1)j } and {v(2)j } with j > 2 constitute complete bases for the functions

on the intervals [−h,−d] and [− 1
2 , 0], respectively, for functions which satisfy (0.34). The

completeness follows from the classical theorem by Müntz theorem.
Elements of P and the right-hand side vector b are found explicitly via the special

functions, but the extra right-hand side vector d and matrix D have the elements

d = {0, except bk+N1+N2 = βdk, k = 1, . . . , N3} ,

D = {0, except Dk+N1+N2,2(N1+N2)+N3+j+2 = −Dk+2(N1+N2)+N3+2,N1+N2+j = 2βdkdj} ,

where

dk =

√
πΓ(mk + 1)

4r
(2)
k Γ(mk + 3

2 )
.

As explained by Faltinsen et al. (2007), the nondimensional resonance condition follows
from the equation

det ||D(Λ∗)|| = 0, Λ∗ ∈
(
0, π2 tanh

(π
2

))
, (0.37)

where D is the sub-matrix of dimension N1 +N2 +N3 + 2 found in (0.30).
The nonlinear equations (0.28) can be solved iteratively starting with ξ = 0.


