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A. Nonlinear terms in the disturbance equations

The nonlinear terms @, @j, U, V and W which appear on the right-hand sides of the disturbance equations

(2.19) are given by
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B. Expansion of disturbance equations

We first describe the time scalings employed in a derivation of amplitude equations near criticality. From
the general time-dependent linear stability results (§3), we know that the real part of the growth rate o
is proportional to Rac; — Ra%j; that is, in view of the expansions (2.23¢), the rate at which the critical
disturbances evolve is slow. For a pitchfork bifurcation to rolls or squares (§4.1), we find Ralcvl = RaéQ =0 so
that the difference Rac; — Ra%j = O(€?), and therefore employ a slow time scale 7 = ¢?t. For a transcritical
bifurcation to hexagons (§4.2), we anticipate that Rac; — Raocj = O(e) in general, implying an appropriate
time scale 7 = et. A consistent derivation of the evolution amplitude equations in this case requires the use of
the method of multiple scales involving both O(e) and O(€?) time scales, as described in e.g. Fujimura (1991)
and Kuske & Milewski (1999). However, for a special case where the hexagonal bifurcation in nearly vertical,
it is appropriate to consider modulations over the time scale 7 = €2t only, as in the pitchfork case. This special
case is particularly interesting since the bifurcation to rolls is then supercritical, allowing transitions to stable
states through secondary bifurcations. This is the procedure followed in §4.2.

With this scaling employed, the set of linear equations which arise from substituting the expansions (2.23)

into the nonlinear system (2.19), (2.16) and (2.17) is
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Expressions for @2, U2 and V? will not be needed explicitly.



C. Adjoint problem

The linear stability problem for the neutrally-stable real modes may be represented succinctly as

Lo’ = 0, (C.1a)

" =0 at z=0,1, (C.1b)

where the linear differential operator, from (B.1b) and (B.le), is written as
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and ¢° = [C? , 09, wo] T. This system of equations is not self-adjoint, and it is necessary to calculate the adjoint

eigensolution explicitly. The inner product is defined by

(¥, 0) = /0 e /0 i /0 1wT*-¢dxdydz,

where k1 and ko are chosen so as the range of horizontal integration extends over a period of the integrand.
V3

For squares k1 = kg = ; for hexagons k1 = *5°7 and ko = %77.

The adjoint problem is found to take the form

Ligf = o, (C.30)

=0 at 2=0,1, (C.30)

where LT = LT and ¢f = [C}L, Cg, wa] T. The adjoint boundary conditions (C.3b) ensure that the adjoint solution
satisfies (¢!, Lgp®) = (LT, ¢°), as deduced on integration by parts. For a single roll with a single horizontal

wavevector k, the adjoint eigenfunction ¢! is given by
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in conjunction with (3.5). Now the inhomogeneous linear problems arising at higher orders have a solution



provided

(I, FFY =0 for n=1,2,...,

where the components of F* = [@’f, (9’5, Wk] T are determined from the nonlinear terms in (2.19b,¢,f) as detailed

in Appendix B.

D. A summary of the O(¢) solutions

D.1. Roll/square interaction

With Ratq = Rat, = 0, an O(e) correction to the eigensolution is *
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* We could add to (D.1) a complementary solution with the same form as ¢° but the amplitudes A;(r) replaced by another
undetermined amplitudes, say B;(7). This solution, however, has no influence on a derivation of amplitude equations at O(e?), and
hence is omitted.
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Expressions for C3°, C3' and C1? follow from (D.3a—c) on using the symmetry between the indices 1 and 2.

The remaining quantities are given by
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and v (z) = u!'(2) and v'?(z) = u'?(2). To minimize the verbiage we have introduced a shorthand notation
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In writing these results, we have made repeated use of the relation m; + ms = 1 and the result (3.5).

D.2. Roll/hexagon interaction

An O(e') correction to the eigensolution is
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Here C’}O, 0}2, w'® and w'? have the same form as in the roll/square case (Appendix D.1) but with K replaced

by Ki., and
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Expressions for C33 and C3* follow from (D.9a, b) on using the symmetry between the indices 1 and 2. The

remaining quantities are given by
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and v'3(2) = u'3(z) and v'*(2) = u'*(2). In writing these results, we have made repeated use of the relation

mi1 +mo = 1 and the result (3.5).

E. Coefficients in the amplitude equations

E.1. Roll/square interaction

The coefficients of the cubic terms in (4.6) are
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Here O, L, #, # and J are defined in (D.6), while % = LelRa%2 + LegRa%l.
E.2. Roll/hexagon interaction
The coefficients of the cubic terms in (4.16) are
4 OR 2 0*%? 10172 O% LR
C:6W4ﬁ%+2ﬂ4y—98ﬂ- Q—QL 5 — 01w 32—1—27?472
3 I%2(1-9) 2 121-9) 30 12(1-9) Irl1—-o)
o o L L L Ley) O
—471'4 MK —67r4 74 +27T4(m1 €2 + mo 261)3% B 27T4 (m1 es + mo 621) %, (E.2a)
1-9 I'l—o) (1—®) Ir(l—o)
923774 16407 1872 5872 ORU 872 O%U 187 LRU
d= OX T ORT — —
518 + 259 + 185 259 (1 —(13)2 185 1—@ + 185 (1 —45)2
1190547t O 659372 0°%* 607797  ORT 23047t L%

T (197 259 [2(1-0)7 3108 I2(1—a) 259 I'(1_0)?
5t LOR* | 58wt LRT 237t ORM  18n LRT 63wt O 52 ORT
T (-0)P 29I (1-9)° 2 1-6 185 1-& 2 I'(1-9) 259 I'(1-9)
n 164074 (m1L62 + mgLel).,?% B 230474 (mlLeg +m2L61) OR

259 (1—d)> 259 I'(1-ao)?

(E.2b)

Here 0, &, M, # and T are defined in (D.6), while % = Lej Ra%, + LeaRa,.
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FIGURE S1: Parameter regimes for roll/square interaction. (a) m; = 0.01, ma = 0.99, (b) m; = 0.97,
mg = 0.03. The remaining parameter values are the same as those for figure 5.
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