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1 Weakly compressible hollow vortex row

In these supplementary materials to the paper, “The effect of core size on compressible
hollow vortex streets” by D. G. Crowdy & V. S. Krishnamurthy, the solution for a
weakly compressible single row of hollow vortices as computed by Ardalan et al [1] is
rederived using the new mathematical approach – based on the Imai-Lamla method
and conformal mapping – used in the main body of the paper. This derivation differs
from the original approach of Ardalan et al [1] and is of interest in its own right.

Let the centroids of the hollow vortices, in a complex z = x+iy plane, be at x = nL
where n is any integer and L is the period of the arrangement. By the periodicity of
the row, it is enough to consider a single period window. The notation ∞+ is used to
denote the region of the period window as y → +∞, while ∞− denotes the region as
y → −∞. Figure 1 shows a schematic.

Unlike the original derivation Baker et al [2] using hodograph variables, Crowdy and
Green [6] retrieved the incompressible solution using conformal mapping ideas. Let the
unit ζ-disc be transplanted, by the conformal map z = z0(ζ), to a single period window
of the vortex row containing a single hollow vortex. Since the boundary of the hollow
vortex is unknown a priori, the challenge is to find the functional form of this conformal
mapping; mathematically, this is a free boundary problem. The point ζ = ia maps to
∞+ and −ia maps to ∞−. Crowdy & Green [6] show that the incompressible flow
solution can be given in the parametric form

f = f0(ζ) =
iLU

2π
log

(
ζ2 + a2

ζ2 + 1/a2

)
, (1)

z = z0(ζ) =
L

π

[
tan−1(ζ/a)− a2 tan−1(aζ)

]
. (2)

For given L, the map (2) depends on the single parameter a which reflects the size
of each hollow vortex in the row. It is shown in [6] that the solution (1) and (2) is
equivalent to that found by Baker, Saffman & Sheffield [2].

1.1 Rayleigh-Jansen expansion

We now construct the first order term in a Rayleigh-Jansen expansion about this incom-
pressible leading order solution. Following [1] we seek weakly compressible solutions for
which the circulation of the vortices, the period of the arrangement and constant fluid
speed on the boundary take the same values as in the incompressible case.

The new ingredient in our approach is, in addition to expanding the complex po-
tential as in

f(z, z) = f0(z) +M2f1(z, z) + . . . ,

ξ(z, z) = ξ0(z) +M2ξ1(z, z) + . . . .
(3)
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Figure 1: Three periods of a period-L row of hollow vortices.

we will also seek an expansion of a modified conformal mapping function

z = z0(ζ) +M2z1(ζ) + . . . , (4)

where the first order modification of the mapping, z1(ζ), must be found.
The first order correction of the complex potential in (3) is

f1(z, z) =
1

4V 2
0

ξ0(z)I(z) + g(z), (5)

where

I(z) =

∫ z (df0
dz̃

)2

dz̃, ξ0(z) =
df0
dz
. (6)

This correction can be written in terms of the new parameter ζ variable instead of z.
On substitution of (2) into (5) it can be readily shown that

f1 =
iULζ

4πa

[
tan−1(ζ/a)− 1

a2
tan−1(aζ)

]
+G(ζ), (7)

where G(ζ) is to be found. It is not analytic in the unit disc, and it need not be single-
valued there, but it must nevertheless be chosen in order to make the velocity field
single-valued because encircling either of the two points ±ia corresponds to moving to
a neighbouring period window (where the velocity field must be identical owing to the
required periodicity). Since

tan−1(ζ) =
i

2
log

[
1− iζ

1 + iζ

]
, tan−1(ζ) = − i

2
log

[
1 + iζ

1− iζ

]
(8)
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then we must pick

G(ζ) = − iULζ

4πa

[
tan−1(ζ/a)

]
+ G̃(ζ), (9)

where G̃(ζ) is single-valued and analytic in the fluid region. Hence

f1 =
iULζ

4πa

[
tan−1(ζ/a)− tan−1(ζ/a)− 1

a2
tan−1(aζ)

]
+ G̃(ζ). (10)

The mathematical problem has now been reduced to finding two unknown analytic
functions of ζ, namely G̃(ζ) and z1(ζ). We will show that the function G̃(ζ) is deter-
mined by imposing the streamline condition on the vortex boundary; once G̃(ζ) has
been found, z1(ζ) is determined from the Bernoulli condition on the vortex boundary.

This general feature remains true in the later Rayleigh-Jansen analysis of the vortex
streets. Moreover, it turns out that G̃(ζ) and z1(ζ) both satisfy a standard boundary
value problem known as a Schwarz problem [4, 5]: that is, the problem of finding an
analytic function in the unit ζ-disc given either its real, or imaginary, part on the
boundary. The general solution of such a problem is given, in principle, by the Poisson
integral formula for the unit disc [5]. However, in the analysis to follow, it turns out
that we are able to avoid the need for the Poisson integral formula since the required
solutions are available by inspection after use of some trigonometric identities.

1.2 Streamline condition

The condition that the hollow vortex boundary is a streamline, meaning that the
streamfunction is constant on the hollow vortex boundary, implies the following condi-
tions on the first order correction:

Im[f1] = 0, or Re[if1] = 0. (11)

Hence, on |ζ| = 1 which corresponds to the vortex boundary, and on use of (10), we
require that

Re[iG̃(ζ)] = Re

{
ULζ

4πa

[
tan−1(ζ/a)− tan−1(ζ/a)− 1

a2
tan−1(aζ)

]}
=
UL

4πa

{
Re
[
ζ tan−1(ζ/a)

]
− Re

[
ζ tan−1(ζ/a)

]
− 1

a2
Re
[
ζ tan−1(aζ)

]}
=
UL

4πa

{
Re
[
ζ tan−1(1/ζa)

]
− Re

[
ζ tan−1(ζ/a)

]
− 1

a2
Re
[
ζ tan−1(aζ)

]}
=
UL

4πa

{
Re
[
ζ cot−1(ζa)

]
− Re

[
1

ζ
cot−1(ζa)

]
− 1

a2
Re

[
1

ζ
tan−1(aζ)

]}
,

(12)

where, in the various steps above, we have used the fact that the real part of a complex
number is the real part of its conjugate, that ζ = 1/ζ on |ζ| = 1, as well as the identity

tan−1(1/x) = cot−1(x). (13)
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Now
cot−1(x) =

π

2
− tan−1(x) (14)

hence

Re[iG̃(ζ)] =
UL

4πa

{
Re

[(
ζ − 1

ζ

)[π
2
− tan−1(ζa)

]]
− 1

a2
Re

[
1

ζ
tan−1(aζ)

]}
=
UL

4πa

{
Re

[(
1

ζ
− ζ − 1

a2ζ

)
tan−1(aζ)

]}
.

(15)

The crucial observation is that the function in the square brackets on the right hand
side is analytic inside the unit disc and this is precisely the requirement imposed on
G̃(ζ). Hence we conclude that, up to an unimportant constant,

G̃(ζ) =
iUL

4πa

[
ζ +

1

a2ζ
− 1

ζ

]
tan−1(ζa). (16)

It follows from (10) that

f1 =
iULζ

4πa

[
tan−1(ζ/a)− tan−1(ζ/a)− 1

a2
tan−1(aζ)

+

[
1 +

1

a2ζ2
− 1

ζ2

]
tan−1(ζa)

]
.

(17)

It is clear that, by the various manipulations above, we have avoided any need for the
Poisson integral formula. We also have

ξ =
∂

∂z
(f + f) = ξ0(ζ) +M2

[
1

z′0(ζ)

∂

∂ζ
(f1 + f1)− ξ0(ζ)

z′1(ζ)

z′0(ζ)

]
+ . . . (18)

and, on comparison with (3), we identify

ξ1 =
1

z′0(ζ)

∂

∂ζ
(f1 + f1)− ξ0(ζ)

z′1(ζ)

z′0(ζ)
= ξ0(ζ)

[
1

f ′0(ζ)

∂

∂ζ
(f1 + f1)−

z′1(ζ)

z′0(ζ)

]
. (19)

1.3 Bernoulli condition

We have yet to determine the perturbed vortex shape, or indeed the fluid speed, and
both follow by imposing the Bernoulli condition which takes the form

|ξ|2 = q20, (20)

where, following Ardalan et al [1], it is assumed that the speed of the fluid on the vortex
boundary is unchanged at leading order. Hence

(ξ0 +M2ξ1 + . . . )(ξ0 +M2ξ1 + . . . ) = q20 (21)
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implying
Re[ξ1ξ0] = 0. (22)

But, from (19),

ξ1ξ0 = |ξ0|2
[

1

f ′0(ζ)

∂

∂ζ
(f1 + f1)−

z′1(ζ)

z′0(ζ)

]
. (23)

Now, after some algebra using (17) we find

∂

∂ζ
(f1 + f1) =

iUL

4πa

[
tan−1(ζ/a)− tan−1(ζ/a)− 1

a2
tan−1(aζ)

+

[
1 +

1

a2ζ2
− 1

ζ2

]
tan−1(ζa)

]
+

iUL

4πa

[
− aζ

ζ2 + a2
+

(
aζ +

1

aζ
− a

ζ

)
1

1 + a2ζ2

]
+

iUL(1− a4)ζ2ζ
4πa2(ζ2 + a2)(1 + ζ2a2)

.

(24)

Since |ξ0|2 = q20 is constant on the boundary the Bernoulli condition is equivalent to

Re

[
z′1(ζ)

z′0(ζ)

]
= Re

[
1

f ′0(ζ)

∂

∂ζ
(f1 + f1)

]
. (25)

On use of (24) this can be written as

Re

[
z′1(ζ)

z′0(ζ)

]
=Re

{
(ζ2 + a2)(ζ2a2 + 1)

4a(1− a4)ζ

[
tan−1(ζ/a)

− tan−1(ζ/a)− 1

a2
tan−1(aζ) +

(
1 +

1

a2ζ2
− 1

ζ2

)
tan−1(ζa)

]
+

ζζ

4a2
− (1 + a2ζ2)

4(1− a4)
+

(ζ2 + a2)

4(1− a4)

(
1 +

1

a2ζ2
− 1

ζ2

)}
.

(26)

Since z′0(ζ) cannot vanish in |ζ| < 1 and since z′1(ζ) is analytic there, (26) is a second
instance of a Schwarz problem in the unit disc for the analytic function in square
brackets on the left hand side. While the solution can be written down using the
Poisson integral formula, once again we are able to avoid use of this and to find the
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solution by inspection. Using similar manipulations as in §1.2, we can rewrite (26) as

Re

[
z′1(ζ)

z′0(ζ)

]
= Re

{
(ζ2 + a2)(ζ2a2 + 1)

4a(1− a4)ζ
cot−1(ζa)

}
− Re

{
(ζ2 + a2)(ζ2a2 + 1)

4a(1− a4)ζ3
cot−1(ζa)

}
− Re

{
(ζ2 + a2)(ζ2a2 + 1)

4(1− a4)a3ζ3
tan−1(ζa)

}
+ Re

{
(ζ2 + a2)(ζ2a2 + 1)

4a(1− a4)ζ

(
1 +

1

ζ2
− 1

ζ2a2

)
tan−1(ζa)

}
+

1

4(1− a4)
Re

[
(ζ2 + a2)

[
1 +

1

a2ζ2
− 1

ζ2

]]
− 1

4(1− a4)
Re(1 + a2ζ2),

(27)

where we have neglected a constant on the right hand side since retaining it is equivalent
to adding a multiple of z0 to z1, which is undesirable since we assume a priori that the
leading order incompressible solution is fixed. On cancelling a term, reordering, and on
use of (14), we find

Re

[
z′1(ζ)

z′0(ζ)

]
= Re

{
(ζ2 + a2)(ζ2a2 + 1)

4a(1− a4)ζ
(
cot−1(ζa)− tan−1(ζa)

)}
− Re

{
(ζ2 + a2)(ζ2a2 + 1)

4a(1− a4)ζ3
(π

2
− tan−1(ζa)

)}
+ Re

{
(ζ2 + a2)(ζ2a2 + 1)

4(1− a4)a3ζ3
tan−1(ζa)

}
− Re

{
(ζ2 + a2)(ζ2a2 + 1)

2a3(1− a4)ζ3
tan−1(ζa)

}
+

1

4(1− a4)
Re

[
(ζ2 + a2)

[
1 +

1

a2ζ2
− 1

ζ2

]]
− 1

4(1− a4)
Re(1 + a2ζ2)

(28)

which leads to further cancellations and the conclusion that

z′1(ζ)

z′0(ζ)
=

1

2(1 + a2)ζ2
− (ζ2 + a2)(1 + ζ2a2)

2(1 + a2)a3ζ3
tan−1(ζa), (29)

where we notice that the singularity at ζ = 0 is removable. A further integration leads
to

z1(ζ) =
L(1− a2)

4π

[(
1− a2ζ2

) tan−1(aζ)

a2ζ2
− 1

aζ

]
. (30)
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On back substitution of (29) into (19) and use of (24), we find

ξ1 = ξ0

[
(ζ2 + a2)(1 + ζ2a2)

4a(1− a4)ζ

{
tan−1(ζ/a)− tan−1(ζ/a)− 1

a2
tan−1(ζa)

+

(
1− 1

ζ2
+

1

ζ2a2

)
tan−1(ζa)

}]
+ ξ0

[
− 1

2(1 + a2)ζ2
+

ζζ

4a2
− (1 + a2ζ2)

4(1− a4)
+

(ζ2 + a2)

4(1− a4)

[
1 +

1

a2ζ2
− 1

ζ2

]]
.

(31)

Crucially, the combination of terms involving tan−1 are exactly that appearing in (17)
so that we conclude

ξ1(ζ, ζ) = t0(ζ)f1(ζ, ζ) + t1(ζ, ζ) (32)

where

t0(ζ) =
π

aLζ(1− a4)
(ζ2 + a2)(1 + ζ2a2),

t1(ζ, ζ) =
iU

4a2

[
ζ2ζ

a
− aζ(1 + a2ζ2)

1− a4

]
− iU(ζ2 + a2)

2a3ζ(1 + a2)

+
iU(ζ2 + a2)(1 + a2ζ2 − a2)

4a3ζ(1− a4)
.

(33)

This completes our analysis.
Using quite different techniques Ardalan et al [1] find

f̃ = f̃0(ξ) +M2f̃1(ξ, ξ),+ . . . , (34)

where we use tildes to denote their solution and

ψ0 ≡ Im[f̃0(ξ)], ψ1 ≡ Im[f̃1(ξ, ξ)] (35)

are given explicitly in their paper. In the present notation,

ξ = ξ0 +M2ξ1 + . . . (36)

so that

f̃ = f̃0(ξ0 +M2ξ1 + . . . ) +M2f̃1(ξ0 +M2ξ1 + . . . ) + . . .

= f̃0(ξ0) +M2
[
ξ1f̃
′
0(ξ0) + f̃1(ξ0, ξ0)

]
+ . . .

(37)

If the solutions are to coincide, we must have

f1 = ξ1f̃
′
0(ξ0) + f̃1(ξ0, ξ0). (38)
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But from (32) it follows that

f1(ζ, ζ) =
ξ1(ζ, ζ)

t0(ζ)
− t1(ζ, ζ)

t0(ζ)
. (39)

With the normalizations

U = a, L =
4π

a
, (40)

which ensures that the leading order solutions are identical, it can be verified that

1

t0
= f̃ ′0(ξ0), ψ1 = Im[f̃1(ξ0, ξ0)] = Im

[
−t1
t0

]
(41)

thereby confirming that the first-order corrections found by the two independent meth-
ods are also identical.

We have demonstrated that a conformal mapping approach, coupled with the Imai-
Lamla formulation, faithfully retrieves the results of [1].

It should be noted that our approach offers the advantage that an explicit form
(30) for the perturbed shape of the vortices is available; in [1] this was given up to a
quadrature.
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