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S1 Determination of error bars and average RBC/bubble
positions

The error bars and average positions in the figures (such as fig. 4 (b)) are determined via the following steps:

1) We take the minimum, maximum and arithmetic mean of the centroids of all RBCs or bubbles in the system
in each time step for t > 1s or after definite margination. This gives three graphs as a function of time, once
for the set of all RBCs and once for the set of the two bubbles. See figure S1 for an illustration.

2) These time series are then averaged to obtain a mean minimal, maximal and average centroid position. See
the straight horizontal lines in figure S1.

3) This is then done for all simulations with the same set of parameters. Each of the resulting six values per
simulation (three for the RBCs and three for the bubbles) are then averaged over the different simulations
with the considered durations as weights. This gives the final minimal, maximal and average values which
are then depicted as error bars and points, respectively.

Note that this procedure is similar to the one from reference [1].

∗Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Bayreuth
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Figure S1: Illustration of the first two steps to ob-
tain the error bars and average object positions,
exemplified via the simulation from figure 4 (a)
from the main text. The jagged lines show the
minimal, maximal and average positions of the
centroids as a function of time. The straight lines
depict the corresponding temporal averages.

S2 Results with included radiation force
As explained in the main text, bubbles under the influence of ultrasound experience so-called radiation forces
[2–4]. The primary radiation force F rad pushes them usually away from the sound source, while the secondary
radiation force tends to attract the bubbles towards each other. They have been neglected in the main text.
We include the primary radiation force here explicitly in order to show that it plays only a minor role for the
parameters from the main text (which have been intentionally chosen such that isotropic margination dominates).
The remaining system setup is identical to the standard one from section 3.2, if not noted otherwise.

S2.1 Method
The primary radiation force is given by [5]

F rad = −〈V (t)∇P(t)〉t , (1)

where V (t) is the bubble volume and the pressure gradient is computed from

∇P = −kPA cos(2π f t) (2)

with the wavevector k = 2π f /c êz of the incoming acoustic wave in the positive z-direction which is perpendicular
to the vessel’s axis. f is the acoustic frequency and PA the prescribed pressure amplitude. The angular brackets
indicate the temporal average. The time evolution of the bubble volume is obtained by solving the modified
Rayleigh-Plesset equation given by reference [6, eq. (3)] for a single bubble numerically. Thus, the primary
radiation force is computed under the assumption of negligible deformation and an infinite ambient fluid reservoir.

We solve the Rayleigh-Plesset equation in MATLAB, where we include a certain pressure amplitude PA, a
surface dilatational viscosity of 1.5× 10−8 kg/s, a plasma density of ρ = 103 kg/m3, a polytropic gas exponent of
κ = 1.095 and the speed of sound c = 1480m/s [6]. We solve it for at least 16 periods with a relative tolerance of
10−12 and an absolute tolerance of 10−12R0 using the ode45 integrator. To prevent numerical artifacts, a small
finite elastic compression modulus [6] of typically χ = 0.002 N/m is included (we checked that the results are
insensitive to the exact value of χ). The remaining two parameters that need to be specified are the radii R0
and Rsoft. The solution then provides us with the constant force F rad, which is converted to a traction jump as
explained by reference [7, sec. 2.3]. Otherwise, the numerical procedure is identical to the one from the main text
where radiation forces are not included.

S2.2 Results for PA = 45 kPa

As an example, setting PA = 45 kPa, f = 1kHz and R0 = Rsoft = 2µm as in the main text leads to |F rad| ≈
1.2× 10−15 N. Examining again the case of two bubbles without RBCs in figure S2 (a), we find that contrary to
figure 8 (a) from the main manuscript some outward migration occurs. Nevertheless, the final radial position
is halved compared to full margination as observed when RBCs are included (see any graphic with RBCs, e.g.
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Figure S2: Radial positions of the centroids of two oscillating microbubbles ( f = 1kHz, Reff ∈ [1.7;2.23]µm) that are coated with lipid
molecules (γ ∈ [0.5;10]κS) for δ = 1. Primary radiation force for 45kPa included in the positive z-direction (|F rad| ≈ 1.2× 10−15 N).
(a) Without red blood cells. (b) With red blood cells (hematocrit: 16%). (c) and (d) The y- and z-coordinates of the two bubbles from (b).

figure S2 (b)). This indicates that margination due to the interactions with the RBCs is the dominating factor for
the outward migration.

Including RBCs as well as the primary radiation force F rad in the positive z-direction leads to figure S2 (b).
Obviously, UTM still occurs. If this would be primarily due to the radiation force, one would expect that the
bubbles are pushed in the direction of the force, i.e. in the positive z-direction. However, as figures S2 (c) and (d)
show, the initial margination of one bubble is in the negative y-direction and thus perpendicular to F rad.

Both examples highlight that the primary radiation force plays only a secondary role for PA = 45kPa and
f = 1kHz. For f = 10 kHz, however, we find |F rad| ≈ 10−13 N, a value which leads to a dominating influence
of the radiation force. As this goes hand in hand with the undesired one-sided agglomeration away from the
ultrasound source, we thus propose to reduce the pressure amplitude at higher frequencies in order to exploit the
isotropy of UTM. Corresponding results will be considered next.

S2.3 Results for PA = 6 kPa

Reducing the pressure amplitude to PA = 6kPa, we find for f = 1 kHz and R0 = Rsoft = 2µm a value of
|F rad| ≈ 1.5× 10−17 N. For the PA = 6kPa simulations we also extract the minimal and maximal radial excursions
(Rmin and Rmax, respectively) and thus the flux amplitudes Ai from the solution of the Rayleigh-Plesset equation.

Without RBCs, the bubbles once again migrate to the channel center as displayed in figure S3 (a), showing
that a radiation force of |F rad| ≈ 1.5× 10−17 N is indeed negligible. This is further confirmed in figure S3 (b),
where RBCs are included but the effective surface tension during the oscillations is held constant: The soft bubbles
remain in the center as expected. The same figure also shows (see the stiff bubbles) that the smaller pressure
amplitude and thus the smaller radial excursions compared to the main manuscript do not affect the margination
behavior.
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Figure S3: Radial positions of the centroids of two oscillating microbubbles ( f = 1kHz, Reff ∈ [1.96;2.03]µm, PA = 6kPa). Primary
radiation force included (|F rad| ≈ 1.5× 10−17 N). (a) Without red blood cells. Lipid-coated microbubbles, i.e. γ ∈ [0.5;10]κS with δ = 1.
(b) Margination behavior of purely soft and purely stiff oscillating microbubbles with RBCs. Two distinct simulations: The constant surface
tensions are γ= γsoft = 0.5κS (red/orange) and γ= γstiff = 10κS (black/gray). The hematocrit is fixed to 16%. The soft bubbles (γ= γsoft)
remain in the center, whereas the stiff bubbles (γ= γstiff) show margination.

We further study this case in figure S4 (a) where we show the analogous result to figure 4 (a) from the main
text. After switching on the oscillations, rapid migration within less than one second is observed. The transition in
figure S4 (b) roughly corresponds to figure 4 (b); some slight differences are observed as the realized trajectories
are different. Moreover, figure S5 highlights that the margination is still isotropic (i.e. similar to figure 6 from the

(a) Ultrasound on

R
ad

ia
l 
p
os

it
io

n
 [

µ
m

]

Time [s]

Bubbles
RBCs

Vessel
 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9 0 0.25 0.5 0.75 1.0 ∞
 0

 2

 4

 6

 8

 10(b)

A
ve

ra
g
e 

ra
d
ia

l 
p
os

it
io

n
 [

µ
m

]

Stiff/soft duration δ

Vessel
RBCs

Bubbles

Figure S4: Ultrasound-triggered margination. Primary radiation force included for oscillating bubbles ( f = 1kHz, PA = 6kPa). (a) Radial
positions of the centroids of two microbubbles coated with lipids. When the acoustic pressure is switched on at ≈ 4 s, ultrasound-triggered
margination leads to rapid migration to the vessel wall. Here, δ = 1, i.e. the bubbles are stiff for the first half of the ultrasound period and
soft during the second one with their effective surface tension varying in the range γ ∈ [0.5;10]κS. The effective radii alternate between
1.96µm and 2.03µm. The primary radiation force is |F rad| ≈ 1.5× 10−17 N. (b) Average radial positions of the oscillating bubbles and RBCs
for several different values of δ. Note that the rightmost point corresponds to the limit δ→∞ (i.e. always stiff). The primary radiation force
varies only slightly with δ (|F rad| ≈ 1.5− 1.6× 10−17 N). The determination of the error bars is explained in section S1.

main text), despite the inclusion of the radiation force.
Increasing the frequency from f = 1kHz to 10 kHz at PA = 6 kPa while the primary radiation force is included

leaves the qualitative results for the radial position unchanged but approximately halves the average asphericity,
as depicted in figure S6. This matches with the observations from the main manuscript where no radiation forces
were considered (figure 7).

S3 Parameter robustness
Ultrasound-triggered margination is a robust effect. Figures S7 and S8 show that reducing the effective surface
tension in the soft state to γsoft = 0.1κS, increasing the stiff state tension to γstiff = 25κS, or changing numerical
parameters such as the precision of the solver, the initial position or the length of the periodic vessel does not
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Figure S5: Polar plot of several bubble trajectories (i.e. as viewed from the outlet).
The figure shows the δ ≈ 0.78 and δ = 1 simulations used for figure S4 (b),
representing different system realizations. Hence, the primary radiation force
is included (for f = 1kHz and PA = 6 kPa; direction indicated by the arrow).
Trajectories only shown for t > 1 s or after definite margination. Rare short-lived
migration events to the inside occur. Each bubble in each simulation is shown in a
different color. The outer gray dashed line depicts the vessel radius.
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Figure S6: Behavior of two oscillating lipid coated microbubbles for δ = 1 with red blood cells, once for a frequency of f = 1 kHz and
once for 10kHz (two distinct simulations; the f = 1kHz curve is the simulation from figure S4 (a), but shown only from the beginning of
the oscillations). The primary radiation force for 6 kPa is included (|F rad| ≈ 1.5× 10−17 N for 1 kHz and |F rad| ≈ 1.6× 10−15 N for 10 kHz).
(a) Radial positions of the centroids. The red blood cells are shown in light gray. (b) Corresponding microbubble asphericities averaged over
consecutive time intervals of 50ms.
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affect the overall results qualitatively (i.e. margination on average is still observed). Furthermore, halving the
bubbles’ equilibrium radius or making the vessel wall stiffer does not lead to significant changes either (fig. S8).
Note that depending on the exact history, short lived migrations toward the vessel center can occur sometimes,
which are nevertheless again followed by rapid movement to the vessel walls.
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Figure S7: Radial positions of the centroids of two oscillating lipid coated microbubbles ( f = 1 kHz, PA = 45kPa) for δ = 1 with red blood
cells. Radiation forces not included. (a) The surface tension in the soft state is reduced to γsoft = 0.1κS, retaining the effect of margination
without qualitative changes (red/orange). The gray lines indicate the red blood cells. (b) Three different simulations for γsoft = 0.5κS: One
with more precise SPME parameters (cutoff errors below ® 0.001 %, i.e. one order of magnitude smaller than usual; also see section 2.5 in the
main manuscript; black/gray lines), one with the larger system from figure 2 (a) from the main text (vessel length 48µm and hematocrit
16%; dark/light green), and one with different initial positions for all particles compared to the remaining simulations (RBCs initialized in
regular arrays; purple/blue). Red blood cells omitted for clarity.
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Figure S8: Behavior of two oscillating lipid coated microbubbles for δ = 1, f = 1kHz and PA = 6kPa with red blood cells. The primary
radiation force is included (|F rad| ≈ 1.5× 10−17 N). (a) The surface tension in the stiff state is increased to γstiff = 25κS. (b) Two simulations,
once for bubbles of half the usual size (R0 = 1µm) and once for a five times stiffer vessel wall (κWall = 31.25× 106 N/m3). The qualitative
results remain unchanged in all cases.

S4 Code verification
We performed extensive testing of our code to ensure correctness of both the chosen algorithms as well as of the
implementation itself. For example, we compared the results of the single- and double-layer integrals for both the
infinite and the periodic Green’s functions with analytically known values (similar to ref. [8]). The red blood cell
model was validated by considering, amongst others, the deformation of a capsule in an infinite shear flow, as
published in reference [7] and further explored below, as well as by comparing with analytical calculations for a
diffusing particle near elastic membranes [9–14]. We also used the code to compute the shapes assumed by red
blood cells in microchannels [? ].

For further verifications we consider a single bubble in an extensional flow in figure S9. More precisely, the
flow is solved with VCO-BIM in an infinite domain (VΓ →∞) as explained in the main text with the imposed
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flow set to u∞(x ) = s (2x ,−y,−z), where s is the shear rate (for infinite domains, more general imposed flows
u∞(x ) are possible instead of only a constant flow 〈u〉Γ [15]). The bubble starts with 5120 triangles and is
refined as needed [16]. Moreover, the mean curvature is computed via Method C from ref. [7] and the mesh
stabilization routine from equation (2.72) from the main text is employed. The proper dimensionless parameter
is the capillary number Ca= sµR/γ, where µ is the dynamic viscosity of the ambient fluid, R the initial bubble
radius and γ the surface tension. For comparison with the literature, we extract the Taylor deformation parameter
D = (a− c)/(a+ c). The length of the largest half-axis a and of the smallest half-axis c of the deformed object
are computed from an ellipsoid with the same inertia tensor [17, 18]. Figure S9 (a) shows a cut through the
bubble in the z = 0 plane in the stationary state and compares it with the shapes found by Youngren and Acrivos
using an axisymmetric boundary integral method [19]. Furthermore, figure S9 (b) depicts the stationary value for
the deformation parameter D as a function of the capillary number. We compare it with the numerical results
of Youngren and Acrivos [19] and with the analytical O (Ca2) theory of Barthès-Biesel and Acrivos [20]. In both
cases very good agreement is observed. We also note that the deformation in the Ca = 0.1 case corresponds to an
asphericity of around 0.295, which is larger than any values observed for the full setup from the main text. Hence
we conclude that we obtain correct behavior within the relevant deformation range.
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Figure S9: Verification of the bubble in an infinite extensional flow. (a) Cut through the stationary 3D shape of the bubble in the z = 0 plane
for two different capillary numbers. The black lines depict the results obtained by Youngren and Acrivos using an axisymmetric boundary
integral method [19]. (b) Stationary Taylor deformation parameter D as a function of the capillary number. The black dots depict the result by
Youngren and Acrivos [19], the orange squares our results. Furthermore, we show the analytical theory of Barthès-Biesel and Acrivos as a
black line [20]. Note that it quickly diverges contrary to numerical evidence [19]. Hence, its validity appears to be limited to Ca® 0.06 where
excellent agreement is found.

In reference [7] we treated the case of a capsule in an infinite shear flow, and found very good matching with
the literature (figures 12 and 17 therein). For the periodic system we show a similar result in figure S10. Namely,
we place two flat walls with a distance h = 19R in a cubic unit cell with side lengths 20R together with an initially
spherical capsule of radius R. We implement the shear flow by prescribing the velocities u = (±sh/2,0, 0) at the
walls, whereas the top (bottom) sign corresponds to the top (bottom) wall and s is the shear rate. The capsule
is endowed not only with some shear elasticity modeled according to the neo-Hookean law (shear modulus κS
[7]), but also with some bending rigidity following the Canham-Helfrich law [21–23] (bending modulus κB,
Method C from ref. [7], flat reference state). We set the inner viscosity to be identical to the dynamic viscosity
µ of the ambient fluid. Hence, two dimensionless parameters are relevant: The capillary number Ca= sµR/κS
and the reduced bending modulus κ̂B = κB/(R2κS). As before, we extract the Taylor deformation parameter D.
See reference [7] for further details and section 3.2 in the main text for the remaining parameters. Varying the
distance between the walls does not change the results significantly compared to h = 19R. We therefore effectively
mimic an infinite system and comparisons with results from unbounded flows are appropriate. However, the
keypoint here is that we use the very same SPME code that is also employed for the simulations in the main
paper, and thereby further validate the implementation. Numerical parameters include 1280 triangles for the
capsule (which is well converged [7] and roughly corresponds to the maximal resolution used for the red blood
cells in the margination simulations) and 800 triangles per wall. The SPME error is ® 0.01% (similar to the
main simulations). Obviously, figure S10 shows that our results compare very favorably with data extracted from
Tsubota [24], proving that our code works as intended.
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Figure S10: Deformation of a single spherical capsule (endowed
with shear elasticity and bending rigidity) in a periodic system
for two different capillary numbers Ca, compared to results from
reference [24] (“model H” therein). We set κ̂B = 2/15. Since
the wall distance h is chosen sufficiently large, the data matches
very well although the values from the literature were obtained
for a capsule in an infinite (rather than a periodic) system.

S5 Dynamic mesh refinement
As outlined in the main text, we employ Rivara’s longest-edge bisection algorithm [16] in order to refine the
triangular meshes locally when objects come close to each other and at high curvature regions. Lower resolutions
are sufficient for the other regions, i.e. we coarsen the previously refined areas again in this case. Example
snapshots are shown in figure S11.

Figure S11: Example snapshots from the simulations, highlighting the dynamic mesh refinement due to close contact and high curvature
regions.
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