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This supplementary document presents a suite of bifurcation diagrams and accom-
panying numerical solutions in order to illustrate the method of assessing the natures
of stability of the steady state proposed in §2.2 of the paper. The method is based on
evaluating the function V (x) defined by (3.3), and using its sign to infer the nature of
local stability. If the gradient of V at the steady state is negative, then it is an attractor.
If instead it is positive, then it is a repeller.

Each example involves the illustrative bedrock profile,

b(x) = −βm + α(x− xm) tanh [k(x− xm)] . (1)

representing a localised topographic maximum or minimum, depending on whether α <

0 or α > 0. The topographic maximum is set as xm = −103, and the sharpness parameter
k = 10−3. For each example, I vary the slope scale α and reference ocean depth βm,
assume linear rheology, n = 1, and a calving position at xC = 0.

In examples (a) to (c), distributed accumulation is neglected downstream of the ice
divide, with a localised input of dimensionless flux equal to unity. In example (d), a
large-scale non-zero distribution is assumed with no-flux at the ice divide.

Example 1

For this example, I set α = 10−3, βm = 3.2, and xD = −2× 103, with a localised input
flux equal to unity at the ice divide. The bifurcation diagram showing the variation
of steady states against the dimensionless shear drag parameter S is shown in figure
(a). Red represents regions where V < 0, light green represents regions where V > 0
and dark green represents regions where secondary grounding affects the steady state.
For values of S < 5.0 × 10−4, there is a pair of steady states: an attractor along the
positively sloped region downstream (x . 400), and a repeller in the upstream region
(x & 400). For S > 5.0 × 10−4, there are no steady states and the grounding-line
advances unconditionally to long times.

1



The two steady states for S = 4.5 × 10−4 are shown in figures (b, c). Four time-
dependent numerical solutions determined using my Lagrangian solver of the full un-
simplified initial-value problem are shown in figure (d). The solutions were each initiated
with grounding-line positions slightly upstream and downstream of the steady states.
The numerical solutions confirm the natures of local stability for each steady state in-
ferred from the directionof sign switches in V .

Example 2

For this example, I set the same specifications as example 1, except with the slightly
shallower ocean depth βm = 2.8, and xD = −2 × 103. Interestingly, the bifurcation
diagram shown in figure (a) is qualitatively different. There is a single, stable steady
state occurring for all S > 9 × 10−5. The steady state for S = 10−4 is shown in figure
b. The inferred nature of stability is indicated in figure (c) by two numerical solutions
of the full unsimplified model.

Example 3

For this example, I set α = −10−3, βm = 3.2, and xD = −2 × 103, producing a profile
with a topographic maximum in the bed profile. The stability portrait of figure 3(a)
indicates two steady states for S > 4.4× 10−4 and unconditional retreat otherwise. The
downstream steady state, arising for x & −1500, is an attractor, while the upstream
steady state, arising for x . −1500, is a repeller. The stable steady state for S = 5×10−4

is shown in figure 3(b) and the nature of its stability verified in figure 4(b).

Example 4

For this example, I set α = −10−3, βm = 3 and xD = −103. In contrast to the cases
above, I assume the distributed accumulation

F (x) = F0

[

1−

(

x− xD

xD

)2
]

, (2)

where F0 = 2×10−3 is a dimensionless reference rate of accumulation, which is illustrated
in figure 4(b). The stability portrait of figure 4(a) shows a single repelling steady state
for S < 6.7 × 10−4 and unconditional advance for S > 6.7× 10−4. The steady state for
S = 5 × 10−4 is shown in figure 4(b). The inferred nature of its stability is confirmed
by the time-dependent numerical solutions of the full simplified model shown in figure
4(c).



Figure 1: Example 1, given by α = 10−3, βm = 3.2, and xD = −2 × 103. Panel (a)
shows the bifurcation diagram with colour indicating the sign of the stability variable
V . Panel (b) shows the profiles of the two steady states occurring for S = 4.5 × 10−4.
Panel (c) shows the grounding line evolution predicted by numerical solutions of the full
model, confirming the stability properties inferred from the bifurcation diagram: the
downstream state is a repeller while the upstream state is an attractor.



Figure 2: Example 2, given by α = 10−3, βm = 2.8 and xD = −2 × 103. Panel (a)
shows the bifurcation diagram with colour indicating the sign of the stability variable
V . Panel (b) shows the profile of the steady state occurring for S = 10−3. Panel (c)
shows the grounding-line evolution predicted by numerical solutions of the full model,
confirming that the steady state is a repeller



Figure 3: Example 3, given by α = −10−3, βm = 3.2 and xD = −2 × 103. Panel (a)
shows the bifurcation diagram with colour indicating the sign of the stability variable
V . Panel (b) shows the profile of the steady state occurring for S = 5× 10−4. Panel (c)
shows the grounding-line evolution predicted by numerical solutions of the full model,
confirming that the steady state is an attractor.



Figure 4: Example 4, given by α = −10−3, βm = 3 and xD = −103. This example
involves a distributed accumulation field specified by (2), which is illustrated in panel (b).
Panel (a) shows the bifurcation diagram with colour indicating the sign of the stability
variable V . Panel (b) shows the accumulation field (upper plot) and the profile of the
steady state occurring for S = 5×10−4 (lower plot). Panel (c) shows the grounding-line
evolution predicted by numerical solutions of the full model, confirming that the steady
state is a repeller.


