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A. Experimental methods

1. Fabrication and device

We fabricated our device using three-mask photolithography processes on top of a 100
mm diameter Borofloat wafer. We first deposited three parallel electrodes at a distance
of 5 mm apart, using electron-beam physical vapor deposition. Outer electrodes are
connected to a single contact pad, whereas the inner electrode is connected to a separate
pad. The electrodes are composed of four layers - 300 Å titanium, 1000 Å platinum, 200
Å titanium, 1000 Å nickel, with the last layer (nickel) added in order to allow soldering
of electrodes to the contact pads. We then deposited a 3 µm insulating oxide layer using
plasma-enhanced chemical vapor deposition over the entire wafer area, except for a 10
mm long and 5 mm wide rectangular area exposing a short segment of the electrodes and
serving as the actuation area. The third layer in the fabrication process was a mechanical
support for the membrane’s frame, determining the height of the Hele-Shaw chamber. We
used SU8 photoresist to fabricate four 100 µm circular pillars with a diameter of 2 mm
located at the four corners of the frame. The elastic sheet used in our device is made of
low-density polyethylene (LDPE), which we first stretched manually over a large (14×10
cm) auxiliary frame. We then glued the pre-stretched sheet to the experimental frame
(4×4 cm) and cut off the residual elastic sheet. Using Hooke’s law we can obtain a rough
estimation of the resulting tension. Under the assumption of isotropic pre-stretching, the
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Figure S1. (a) Raw fluorescence image of the elastic sheet patterned with fluorescent
microbeads. (b) During the sheet’s deformation, at each time point we capture z stacks of images
from which we obtain the three-dimensional point spread function (PSF) of the microbeads. The
center of each PSF provides the location of bead associated with it.

tension T̃ scales linearly with the in-plane strain estrain

T̃ ∼ ẼYh̃m
1− ν estrain. (A.1)

The Young’s modulus of LDPE found in the literature is ∼ 0.3 GPa, and thus for a 12
µm thick LDPE sheet, taking ν = 0.5 and assuming that estrain is 10−3−10−2, we obtain
a rough estimation for tension as T̃ ∼ 7200estrain = 7.2− 72 Pa m.

2. Experimental procedure

As shown in figure S1(a), we patterned the external side of the membrane by dehy-
drating an aqueous solution in an oven at a temperature of 85◦ C. We diluted a 0.5 ml
aqueous solution consisting of deionized (DI) water and microbeads (initially containing
1 % solids, Fluoro-Max red fluorescent polymer microspheres, 2 µm diameter, Thermo
Fisher Scientific, USA), at a ratio of 1:1500.

To fill the chamber with water, we first covered the electrodes with Kapton tape
to protect them, and then used a corona-discharge wand (BD-20V, Electro-Technic
Products, USA) on the glass substrate to improve the wetting, then placed 1 ml of
deionized water (viscosity µ̃ = 10−3 Pa s and permittivity ε̃ = 7.08 · 10−10 F m−1) at
the center of the chamber. We then placed the membrane (bounded by its rigid frame)
on top of the pillars to create the microfluidic chamber. Finally, we connected the side
electrodes to the output of a power source (Keithley 2230, Tektronix, USA), and the
center electrode to its ground. We note that in our experiments the value of the zeta
potential of the surfaces is not precisely known. While the zeta potential of the bottom
glass substrate can be estimated approximately as −70 mV (Sze et al. 2003), the zeta
potential of the LDPE elastic sheet is unknown, yet it is expected to be of O(±25 mV),
as this is the typical value found in the electrokinetic literature (Hunter 2000).

3. Measurements and analysis

To image the beads, we used a laser scanning confocal (LSM 510 META, Zeiss, Ger-
many) connected to an upright motorized microscope (Axio Imager Z1, Zeiss, Germany),
equipped with 20X 0.8 NA objective, and argon laser (488 nm) illumination. We focused
on an area of 200 by 200 µm at the center of the membrane, where we expect to obtain
maximum deformation. We then initiated a voltage of 15 V (resulting in an electric field
of 3000 V m−1) on the electrodes, and recorded vertical image stacks at a frame rate of 23
s between stacks, and 42 z-slices at a distance of 0.75 µm from one another within each
stack, thus capturing the three-dimensional point spread function (PSF) of the beads,



3

as shown in figure S1(b). After 15 min we turned off the electric field, and continued
imaging the membrane for an additional 15 min. To determine the location of the beads,
we tracked the centers of the beads using the autoregressive mode in Imaris (Oxford
Instruments, England). At every time point, we reported the average vertical positions
of all the beads within the field of view, together with 95 % confidence bars based on
Student’s t-distribution for the mean value across 6 repeats.

B. Derivation of Green’s functions solutions in rectangular domain

Sixth-order diffusion equations are encountered in various problems involving vis-
cous–elastic interactions, such as viscous peeling (Hosoi & Mahadevan 2004), elasto-
hydrodynamic wakes (Arutkin et al. 2017) and wrinkles (Kodio et al. 2017). However, to
the best of our knowledge, the general solution of (2.13) with finite boundary conditions
(2.15)–(2.16) in terms of Green’s function has not been presented yet.

The Green’s equation for the differential operator in (2.13) is given by

∂g

∂t
− λ∇6

‖g +∇4
‖g = δ(x− ξ)δ(y − η)δ(t), (B.1)

subject to the boundary conditions (2.15)–(2.16) and the initial condition g(x, y, t = 0) =
0, where δ is Dirac’s delta function.

We employ the finite sine transform with respect to x and y (Miles 1971),

Gm,n(t) ,
∫ lm

0

∫ wm

0

g(x, y, t) sin

(
πmx

lm

)
sin

(
πny

wm

)
dydx, (B.2)

where the inverse transform is given as (Miles 1971)

g(x, y, t) ,
4

lmwm

∞∑
m,n=1

Gm,n(t) sin

(
πmx

lm

)
sin

(
πny

wm

)
. (B.3)

Applying the finite sine transform (B.2) on (B.1) and using (2.15)–(2.16) yields

dGm,n(t)

dt
+ F (m,n;λ)Gm,n(t) = sin

(
πmξ

lm

)
sin

(
πnη

wm

)
δ(t), (B.4)

where function F (m,n;λ) is

F (m,n;λ) =

((
πm

lm

)2

+

(
πn

wm

)2
)2 [

λ

((
πm

lm

)2

+

(
πn

wm

)2
)

+ 1

]
. (B.5)

Solving (B.4) together with initial condition Gm,n(t = 0) = 0, we obtain

Gm,n(t) = sin

(
πmξ

lm

)
sin

(
πnη

wm

)
e−F (m,n;λ)t. (B.6)

Substituting (B.6) into (B.3) provides the corresponding Green’s function

g(x, y; ξ, η, t) =
4

lmwm

∞∑
m,n=1

sin

(
πmξ

lm

)
sin

(
πnη

wm

)
ϕ(x, y, t;m,n), (B.7)

where function ϕ(x, y, t;m,n) is given by

ϕ(x, y, t;m,n) = sin

(
πmx

lm

)
sin

(
πny

wm

)
e−F (m,n;λ)t = χ(x, y;m,n)e−F (m,n;λ)t. (B.8)
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Figure S2. Green’s-functions shapes along the x̂ axis for different times, describing the
deformation due to a localized impulse (B.10) applied at the center of the configuration either
(a) through the non-uniform slip velocity in the fluid or (b) through the pressure applied directly
to the elastic sheet. All calculations were performed using λ = 10−3 and lm = wm = π.

The deformation field is thus obtained by convolving the forcing with the Green’s function
(B.7), yielding

d(x, y, t) =

∫ t

0

∫ lm

0

∫ wm

0

(
−∇ξ,η · fF +∇2

ξ,ηfE
)
g(x, y; ξ, η, t− τ)dηdξdτ. (B.9)

To provide more physical insight on the effect of driving forces on the resulting deforma-
tions, we further derive an explicit expression for the Green’s functions resulting from
the localized impulse

fFx = fE = δ(x− x0)δ(y − y0)δ(t), (B.10)

acting either on the fluid or the elastic plate. Substituting (B.10) into (B.9) and using
the identity

∫
F (y)δ(n) (y − x) dy = (−1)nF (n)(x) yields a general solution for the

deformation field explicitly in terms of the external forces

d(x, y, t) =

∫ t

0

∫
(fF (ξ, η, τ) · gF (x, y; ξ, η, t− τ) + fE(ξ, η, τ)gE(x, y; ξ, η, t− τ)) dηdξdτ,

(B.11)
where gF = ∇ξ,ηg and gE = ∇2

ξ,ηg. The expressions for gFx = gF · x̂ and gE read

gFx = ∇ξ,η · [gx̂] =
4π

l2mwm

∞∑
m,n=1

m cos

(
πmξ

lm

)
sin

(
πnη

wm

)
ϕ(x, y, t;m,n), (B.12)

gE = − 4π2

l3mw
3
m

∞∑
m,n=1

(
l2mn

2 + w2
mm

2
)

sin

(
πmξ

lm

)
sin

(
πnη

wm

)
ϕ(x, y, t;m,n). (B.13)

For the purpose of illustration, in all of the following figures that are based on double
series solutions, we truncate the series at m = n = 100. Figures S2(a) and S2(b) present
the Green’s functions (B.12) and (B.13), respectively, showing the deformations resulting
from a localized impulse (B.10) applied at the center of the configuration, either through
the non-uniform slip velocity in the x̂ direction or through the pressure applied directly
to the elastic sheet in the ẑ direction.

C. Verification of analytical results presented in §§ 3-4

We performed dynamic numerical simulations to verify the analytical results obtained
in §§ 3-4. Since in this study our main focus was on the tension-dominant regime, we
set λ = 0 in the governing equation (2.14) and solved numerically the two-dimensional
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Figure S3. Comparison of numerical simulation results (dashed lines) and analytical solution
(3.2) (solid lines) for the time-evolution of the deformation, resulting from a square-shape
actuation fFx suddenly applied at the center of the configuration. (a) Time-evolution of the
deformation profile along the x̂ axis for y = π/2. (b) Time-evolution of the deformation profile
along the ŷ axis for x = 3π/4. Black dashed lines represent the numerical solution, while
solid gray and red lines represent the time-dependent and steady-state analytical solutions,
respectively. The numerical results are in very good agreement with the analytical solution. All
calculations were performed using lm = wm = π, cx = cy = π/2 and L = π/10.

fourth-order evolution equation containing only the tension term,

∂d

∂t
+∇4

‖d = −∇‖ · fF +∇2
‖fE . (C.1)

We first discretized spatial derivatives in (C.1) using a second-order central difference
approximation with uniform grid spacing. Next, following Witelski & Bowen (2003) we
implemented an alternating-direction-implicit (ADI) scheme, which employs operator
splitting methods requiring the solution of two one-dimensional problems that result in
considerable increase in efficiency. The resulting ADI scheme is unconditionally stable and
first-order accurate in time due to the presence of mixed derivatives. In our simulations,
we used 101×101 uniformly distributed grid points. Additionally, we performed grid
sensitivity tests by increasing the number of grid points to 201×201 and 301×301, and
established grid independence.

For illustration, in figure S3 we present the comparison of the analytical solution
(solid lines) and numerically determined profile (dashed lines) for the deformation field,
resulting from a square-shaped actuation, given by (3.1), suddenly applied at t = 0. The
numerical results for the time-evolution of the deformation are in very good agreement
with the analytical solution (3.2), as can be seen in figure S3 where the numerical and
analytical solutions are almost indistinguishable for all times.

D. Asymptotic analysis for weak nonlinearity due to induced tension

We here derive the governing equations and the appropriate boundary conditions
at the leading and first order, and provide closed-form solutions for the leading-order
deformation and the first-order correction for the tension.

1. Leading-order deformation field in an axisymmetric geometry

At the leading order, tension is uniform and the deformation field is governed by a
fourth-order diffusion equation containing a source term that depends on the driving
forces with the corresponding boundary conditions

∂d(0)

∂t
+∇4

rd
(0) = −∇r · fF +∇2

rfE , (D.1)
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∂d(0)

∂r
= 0 and lim

r→0
r
∂

∂r

[
1

r

∂

∂r

(
r
∂d(0)

∂r

)]
= 0 at r = 0, (D.2)

d(0) = 0 and
∂

∂r

[
r
∂d(0)

∂r

]
= 0 at r = Rm. (D.3)

We note that (D.1) is a counterpart of (C.1) in the limit λ → 0, in an axisymmetric
geometry. Similarly to section B, we can derive the general solution of (D.1)–(D.3) in
terms of Green’s functions. The corresponding Green’s equation of (D.1) is

∂g

∂t
+

1

r

∂

∂r

[
r
∂

∂r

[
1

r

∂

∂r

[
r
∂g

∂r

]]]
=
δ(r − ξ)

r
δ(t), (D.4)

subject to the boundary conditions (D.2)–(D.3) and the initial condition g(r, ξ, t = 0) =
0. To derive the solution for (D.4), we employ the finite Hankel transform with respect
to r (Poularikas 2010)

Gn(t) ,
∫ Rm

0

rg(r, t)J0

(
χnr

Rm

)
dr, (D.5)

where χn is the nth root of J0 (χn) = 0 and the inverse transform is (Poularikas 2010)

g(r, t) ,
2

R2
m

∞∑
n=1

Gn(t)

J1 (χn)
2 J0

(
χnr

Rm

)
. (D.6)

Applying the finite Hankel transform (D.5) on (D.4) and using (D.2)–(D.3) yields

dGn(t)

dt
+

(
χn
Rm

)4

Gn(t) = J0

(
χnξ

Rm

)
δ(t). (D.7)

Solving (D.7) together with the initial condition Gn(t = 0) = 0, we obtain

Gn(t) = J0

(
χnξ

Rm

)
exp

(
− χ

4
n

R4
m

t

)
. (D.8)

Substituting (D.8) into (D.6) yields the Green’s function for the axisymmetric case

g(r; ξ, t) =
2

R2
m

∞∑
n=1

1

J1 (χn)
2 J0

(
χnξ

Rm

)
J0

(
χnr

Rm

)
exp

(
− χ

4
n

R4
m

t

)
, (D.9)

and the deformation field is obtained by convolving the forcing with the Green’s function
(D.9), resulting in

d(0)(r, t) =

∫ t

0

∫ Rm

0

[−∇ξ · fF (ξ, τ) +∇2
ξfE(ξ, τ)]ξg(r; ξ, t− τ)dξdτ. (D.10)

We further can express the resulting deformation field explicitly in terms of the driving
forces

d(0)(r, t) =

∫ t

0

∫ Rm

0

ξ[fF (ξ, τ)gF (r; ξ, t− τ) + fE(ξ, τ)gE(r; ξ, t− τ)]dξdτ, (D.11)

where gF and gE are the Green’s functions resulting from the impulse force fF = fE =
δ(r − r0)δ(t)/r applied at r = r0,

gF (r; ξ, t) = − 2

R3
m

∞∑
n=1

χn

J1 (χn)
2 J1

(
χnξ

Rm

)
J0

(
χnr

Rm

)
exp

(
− χ

4
n

R4
m

t

)
, (D.12)
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gE(r; ξ, t) = − 2

R4
m

∞∑
n=1

χ2
n

J1 (χn)
2 J0

(
χnξ

Rm

)
J0

(
χnr

Rm

)
exp

(
− χ

4
n

R4
m

t

)
. (D.13)

2. First-order correction for tension field in an axisymmetric geometry

At the first order, O(α), the tension is spatially non-uniform and time-varying and is
obtained through

1

r

∂

∂r

(
r3
∂T

(1)
r

∂r

)
= −1

2

(
∂d(0)

∂r

)2

, (D.14)

accompanied by the following boundary conditions

∂T
(1)
r

∂r
= 0 at r = 0 and r

∂T
(1)
r

∂r
+ (1− ν)T (1)

r = 0 at r = Rm. (D.15a, b)

The boundary condition (D.15b) implies that T
(1)
r (r, t) does not contribute to the radial

displacement at r = Rm. Integrating (D.14) with respect to r and applying (D.15a) yields

∂T
(1)
r

∂r
= −1

2

1

r3

∫ r

0

ξ

(
∂d(0)

∂ξ

)2

dξ. (D.16)

Integrating once again (D.16) and using (D.15b), we obtain a closed-form expression for
the first-order correction of the tension

T (1)
r (r, t) = T (1)

r (Rm, t) +
1

2

∫ Rm

r

1

ρ3

[∫ ρ

0

ξ

(
∂d(0)

∂ξ

)2

dξ

]
dρ, (D.17)

where

T (1)
r (Rm, t) =

1

2(1− ν)R2
m

∫ Rm

0

ξ

(
∂d(0)

∂ξ

)2

dξ. (D.18)

Some physical insight on behavior of first-order correction can be obtained by inspecting

(D.17) without requiring an exact solution. From (D.16) it follows that T
(1)
r monotonically

decreases for r > 0 and thus attains maximal value at the center of the membrane. Fur-
thermore, since the integrands appearing in (D.17) and (D.18) as well as the integration
interval are non-negative, the first-order tension field is also non-negative, implying that

T
(1)
r contributes to the increase of total tension and in turn to the decrease of the resulting

deformation.

Secondly, due to the nonlinear quadratic term, appearing in (D.17), which corresponds
to leading-order Gaussian curvature and involves in general an infinite series of Bessel

functions, the double integration in calculating T
(1)
r (r, t) usually seems to require nu-

merical computations. However, in the case when the leading-order deformation can be
expressed in terms of simple functions and the integrations in (D.17) can be performed,
(D.17) provides the closed-form analytical solution for the tension correction.

3. First-order correction for deformation field in an axisymmetric geometry

The first-order deformation field is described by the inhomogeneous fourth-order
diffusion equation

∂d(1)

∂t
+∇4

rd
(1) = −∇2

r[∇r · (T (1)
r ∇rd

(0))], (D.19)
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Figure S4. Cross validation of the two numerical methods, showing the scaled maximum
deformation βdmax = d̃max/h̃0 as a function of the parameter β, for α = 0. Black dots represent
the solution of the state-state boundary value problem (6.4)–(6.5) and gray dots represent the
state-state solution of the dynamic simulation. All calculations were performed using Vr = −2,
ν = 0.5 and Rm = 2.

supplemented with the following boundary conditions

∂d(1)

∂r
= 0 and lim

r→0
r
∂

∂r

[
1

r

∂

∂r

(
r

(
∂d(1)

∂r
− T (1)

r

∂d(0)

∂r

))]
= 0 at r = 0, (D.20)

d(1) = 0 and
∂

∂r

[
r
∂d(1)

∂r

]
= − ∂

∂r

[
rT (1)

r

∂d(0)

∂r

]
at r = Rm. (D.21)

We note that the source term in (D.19) arises from the internal tension formed in
the elastic sheet due to the leading-order deformation. As opposed to leading-order
deformation where the general solution can be readily determined using Green’s functions
(D.12) and (D.13), and despite the linearity, it is difficult to obtain a closed-form solution
for (D.19), owing to the source term and the inhomogeneous boundary conditions, both

involving multiplication of d(0)(r, t) and T
(1)
r (r, t). We also note that for time-independent

external forcing the steady-state deformation and tension distributions depend solely
on the spatial coordinate and (D.19) can be greatly simplified to yield a closed-form
expression for the first-order deformation field

d(1)s (r) =

∫ Rm

r

T (1)
r,s

dd
(0)
s

dξ
dξ, (D.22)

where the subscript s denotes the steady state.

E. Details of numerical methods and their cross validation

The numerical results presented in § 6 were obtained using two numerical methods. In
the first method, which was used to study the effect of hydrodynamic nonlinearity (h3) on
the transient behavior and the magnitude of deformation, we assumed the case of strong
pre-stretching, i.e. Tr = 1, and solved numerically the nonlinear evolution equation (6.5).
We first discretized spatial derivatives in (6.5) using a second-order central difference
approximation with uniform grid spacing, leading to a series of ordinary differential
equations for the evolution of di(t) = d(ri, t). We then integrated forward in time the
resulting set of ordinary differential equations using MATLAB’s routine ode45.

The second numerical method was employed to explore the effect of nonlinearity on
the steady-state behavior, in which we solved numerically the corresponding steady-state
boundary value problem (6.4)–(6.5) subject to the six boundary conditions (6.6)–(6.8)
using MATLAB’s routine bvp4c. We obtained the numerical solutions by beginning with
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very small values of α and β, and using the leading-order asymptotic solution (6.12) for
deformation and Tr = 1 for tension as initial guesses. Solutions for other values of α and
β are then computed through numerical continuation.

We first validated our time-dependent (first method) and boundary value (second
method) numerical solvers by comparison with the leading-order asymptotic solution
(6.12) in figures 8(a) and 7(c), respectively, showing very good agreement. As an ad-
ditional cross validation, figure S4 presents βdmax as a function of the parameter β,
for α = 0, determined from the two numerical methods, showing very good agreement
between the results. Gray dots correspond to the value of βdmax obtained from the
dynamic simulation at t = 2.5, where the system reached a steady state, as shown
in figure 8(c), and black dots correspond to the results obtained from the state-state
boundary value problem (6.4)–(6.5).
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