

rates of (a) $\Omega = 0.21$ rad s⁻¹ and (b) $\Omega = 0.84$ rad s⁻¹. The green iso-surface lines identify $\chi_1 = 0$. These lines enclose regions of the flow of χ_1 for the particular radial location r/d = 3.5 and for the rotation rate $\Omega = 0.21$ rad s⁻¹ only. Figures S1(a), (b) provide a more Figure S2: This figure supplements the discussion of figure 23(d) of the main article. Figure 23(d) displays the temporal development comprehensive overview. The figures illustrate the temporal development of χ_1 on the intevall $0 \le r/d \le 13$ and for two different rotation field where $\chi_1 > 0$, that is regions where the criterion for instability is satisfied. The main purpose of these figures is to show that the fluctuating behaviour of χ_1 around values $O(\chi_1 = 0)$, becomes substantially more prominent as the rotation rate increases and that is not only restricted to the particular value of r/d = 3.5 but that it extends radially outwards as far as about $r/d \approx 10$ in (b)