[bookmark: _GoBack][bookmark: OLE_LINK95]Supplemental Materials:
[bookmark: _bookmark0]Confinements regulate capillary instabilities of fluid threads
Xiaodong Chen1, Chundong Xue3,4, Guoqing Hu2,3,4*
[bookmark: OLE_LINK17]1School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
2Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
3State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100190, China
4School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
*Email address for correspondence: ghu@zju.edu.cn; guoqing.hu@imech.ac.cn
1. [bookmark: OLE_LINK35][bookmark: OLE_LINK4]Fabrications of microfluidic devices with circular cross-sections
[bookmark: OLE_LINK5]Microfluidic devices with circular cross-section are fabricated using a rapid prototyping method [1]. Iron wires are cut and arranged on a cured Polydimethylsiloxane (PDMS) flat piece. Wires are connected by dropping a small amount of melted paraffin to gaps between the wires. The connected wires are then covered with uncured PDMS. After the PDMS is cured, the wires are pulled out from the PDMS to form networks with desired architectures. To obtain a hydrophobic surface, the microchannels are filled with Rain-X® rain repellent and then washed with deionized water. The hydrophobic treatment also improves the sharpness of the interface during high-speed imaging. The openings of the microchannels are connected with plastic tubes to form microfluidic devices (Figure S1).
[image:]
(a) (b)
[bookmark: OLE_LINK26]FIGURE S1. Photos of microfluidic devices with circular cross-sections. (a) Flow-focusing configuration. (b) Cross-flowing configuration.
2. Schematics of computational domain for axisymmetric simulations
[bookmark: OLE_LINK8][bookmark: OLE_LINK9]During the study of the critical neck shape for the axisymmetric configuration, a 2-D axisymmetric model is established to consider only a quarter of the cross-section of the configuration due to the axial symmetry and bilateral symmetry. The schematic of computational domain and the boundary conditions are shown in figure S2(a). The left and bottom boundaries are symmetric axes. The inlet (red line) and channel wall (blue line) are on the top. The outlet (green line) is on the right. A cylindrical water thread with a round end is initialized at the left of the computational domain. The oil flows in the channel from the inlet to deform the water thread. Outflow condition is imposed at the outlet.
Inspired by previous experimental study on the effect of initial droplet length to the breakup dynamics of a droplet in a T-junction channel. Since previous experiments showed that the droplet may not breakup and move to one side of the channel, the bilateral symmetry is not longer valid. We then established a 2-D axisymmetric model to consider a half of the cross-section of the configuration are shown in figure S2(b). The bottom boundary is a symmetric axis. The inlet (red line) and channel wall (blue line) are on the top. The left and right boundarie are outlet (green line) with outflow condition. A cylindrical water thread with two round ends is initialized at the centre of the computational domain. The oil flows in the channel from the inlet to deform the water thread at the center.
[image:]
(a)
[image:]
(b)
FIGURE S2. Schematics of computational domains for axisymmetric simulations with a quarter (a) and half (b) of the cross-section.
3. Measurements of mean radii from images
A MATLAB code is written to measure the two principal radii from the experimental images. Note that this code is also used to measure radii in three-dimensional simulations when the data is difficult to be extracted from simulation results. As shown in figure S3 (a), the images with shape boundaries are obtained from high-speed imaging. The boundaries are then captured by picture processing to appear as white curves in black background (figure S3 (b)). Date is extracted from the black-and-white images as demonstrated in figure S3 (c). One of the boundaries is fitted to a polynomial in order to calculate the derivatives for R2. As shown in figure S3 (d), a function written by Jacquenot [2] is used to compute the minimum distance between the two neck profiles, i.e., 2R1. See the following section for the MATLAB code. Note that some parameters need adjustment when the code is used in other situations.
[image:]
FIGURE S3. Measurements of mean radii from images. (a) A images with shape boundaries is obtained from high-speed imaging. (b) The boundaries on (a) are then captured by picture processing to appear as white curves in black background. (c) Date is extracted from the black-and-white images (b) and one of the boundaries is fitted to a polynomial in order to calculate the derivatives for R2. As shown in figure S3 (d), a function written by Jacquenot [2] is used to compute the minimum distance between the two neck profiles, i.e., 2R1. See the following section for the MATLAB code.
4. Thickness-based refinements for lubrication films
In order to capture the thin lubrication film between the droplet interface and the channel walls, a thickness-based refinement criterion developed previously is imposed near the channel walls to ensure that there are at least two grid cells at the thickness direction of the lubrication film. Figures S4(a) and (b) shows the refinement at the lubrication film in an 2D axisymmetric and 3D simulations, respectively.
[image: D:\paper\DropletBreakup\JFMRapid\thickness.tif]
(a)
[image: D:\paper\DropletBreakup\Figures\mesh.png]
(b)
FIGURE S4. Thickness-based refinements at the droplet interface to resolve the lubrication films between the droplet and the channel walls in 2D axisymmetric (a) and 3D (b) simulations
5. Grid independence study
Grid independence study is carried out for each configuration to obtain the proper interfacial mesh size to capture the breakup dynamics. Figure S5 shows the breakup dynamics captured with different grid resolutions for a confined droplet in the axisymmetric condition. As we used adaptive mesh refinement to refine the interface, the size of the background mesh is fixed to R/8 and three mesh sizes at the interface are considered, including R/16, R/32, and R/64. Figure S4 compares the droplet profiles at the same series of moments. There are obvious differences between simulations with mesh sizes of R/16 and R/32, but the droplet profiles are almost identical for the simulations with mesh sizes of R/32 and R/64.
[image:]
FIGURE S5. Side-by-side comparisons of breakup dynamics obtained from different mesh size at the interface.
6. MATLAB code for solving Eq. (3.3)
function dy=f(t,y)
dy=zeros(2,1);
dy(1)=y(2);
RR=1.5;
dy(2)= -(RR-1/(y(1)*((1+(y(2))^2)^0.5)))*(1+y(2)^2)^(3/2);
The following commonds are used to solve the equation and plot the profile.
[t,y]=ode15s(' curvature',[0:0.1:6],[1,0]);
plot(t,y(:,1),'-');
7. MATLAB code for measuring the two principal radii
% get the boundary from images
n=60;
fclose('all');
delete('Data.txt');
for i=1:n
 step1 = (i*0.10+0.00);
 step = (sprintf('%.2f', step1));
A = ([num2str(step) '.png']);
B = imread(A, 'png');
C = mat2gray(B);
imwrite(C, (['bw-' num2str(step) '.bmp']), 'bmp')
I = imread((['bw-' num2str(step) '.bmp']));
I = im2bw(I);
% plot the boundary and get data
 [c, r] = find(I);
figure;
set(gcf,'Visible','off');
plot(c,r,'.');
hold on;
% fit one boundary to a function
c_to_fit = c(r > 300 & r < 500 & c < 400);
r_to_fit = r(r > 300 & r < 500 & c < 400);
c1_to_fit = c(r > 300 & r < 500 & c > 400);
r1_to_fit = r(r > 300 & r < 500 & c > 400);
f = fit(r1_to_fit, c1_to_fit, 'poly7');
set(gcf,'Visible','off');
plot(f(min(r1_to_fit):max(r1_to_fit)),(min(r1_to_fit):max(r1_to_fit)), 'red', 'LineWidth', 3);
f1 = fit(r_to_fit, c_to_fit, 'poly7');
set(gcf,'Visible','off');
plot(f1(min(r_to_fit):max(r_to_fit)),(min(r_to_fit):max(r_to_fit)), 'red', 'LineWidth', 3);
hold on;
saveas(gcf,(['fit-' num2str(step) '.jpg']))
% find the minimum distance of the two boundary
P1.x = f(min(r1_to_fit):max(r1_to_fit));
P1.y = [min(r1_to_fit):max(r1_to_fit)]' ;
P2.x = f1(min(r_to_fit):max(r_to_fit));
P2.y = [min(r_to_fit):max(r_to_fit)]';
set(gcf,'Visible','off');
[min_d,p1x, p1y,p2x, p2y] = min_dist_between_two_polygons(P1,P2,1);
saveas(gcf,(['capture-' num2str(step) '.tif']))
% calculate the radii
 [d1,d2] = differentiate(f1,p2y);
fid=fopen('Data.txt','a+');
R1 = min_d/2;
fprintf(fid,'%g\t',step);
fprintf(fid,'%g\t',R1);
R2 = - (1+d1^2)^(3/2)/d2;
fprintf(fid,'%g\t',R2);
Rmean = 1/(1/R1+1/R2);
fprintf(fid,'%g\n',Rmean);
end
8. A sample of Gerris script for the axisymmetric simulations
10 9 GfsAxi GfsBox GfsGEdge {} {
 Global {
 #define VAR(T,min,max) (min + CLAMP(T,0.,1.)*(max - min))
 #define RHO(T) VAR(T,0.77,1.)
 #define MU(T) VAR(T,8.,1.)
 #define WE (5.859375E-007)
 #define RE 0.009375
 #define LEVEL 3
 #define LEVELT 5
 #define Rd 1
 #define Loc 0.7
 #define xl 0
 #define l0 1.30
 }
 GfsTime { end = 5 }
 GfsVariableTracerVOFHeight T
 GfsVariableCurvature K T Kmax
 GfsSourceTension T 2./WE K
 GfsSourceViscosity 2./RE*MU(T)
 GfsPhysicalParams { alpha = 1./RHO(T) }
 GfsRefine LEVEL
 GfsInitFraction { start = 0 } T ({
 double cylinder = (union (union (-(y*y + z*z - Rd*Rd), (x+xl)),-(x+xl-l0)));
 double sphere1 = ((x+xl)*(x+xl)+y*y + z*z - Rd*Rd);
 double sphere2 = ((x+xl-l0)*(x+xl-l0)+y*y + z*z - Rd*Rd);
 return intersection ((intersection (cylinder,-sphere1)), -sphere2);}) {tx = -0.5 tz = 0}

 GfsRefineSurface {return LEVELT;} ({
 double cylinder = (union (union (-(y*y + z*z - Rd*Rd), (x+xl)),-(x+xl-l0)));
 double sphere1 = ((x+xl)*(x+xl)+y*y + z*z - Rd*Rd);
 double sphere2 = ((x+xl-l0)*(x+xl-l0)+y*y + z*z - Rd*Rd);
 return intersection ((intersection (cylinder,-sphere1)), -sphere2);}) {tx = -0.5 tz = 0}
 GfsAdaptGradient { start = 0 istep = 1 } { minlevel = LEVEL maxlevel = LEVELT cmax = 1e-4 }
 GfsOutputTime { istep = 10 } stdout
 GfsOutputSimulation {step = 0.01 } t-%3.2f.gfs
}
GfsBox { bottom = Boundary left = Boundary top = Boundary{BcDirichlet U 0 BcDirichlet V -1/3.14 BcDirichlet T 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } }
GfsBox { bottom = Boundary top = Boundary { BcDirichlet U 0 BcDirichlet V 0 } right = BoundaryOutflow }
1 2 right
2 3 right
3 4 right
4 5 right
5 6 right
6 7 right
7 8 right
8 9 right
9 10 right
References:
[1] S. Ghorbanian, M. A. Qasaimeh, and D. Juncker, Chips & Tips, (Lab on a Chip) (03 May 2010).
[2] G. Jacquenot, Minimum distance between two polygons, Download from MathWorks® File Exchange: https://www.mathworks.com/matlabcentral/fileexchange/22444-minimum-distance-between-two-polygons
1

image3.emf
inlet

channel wall

outlet

symmetric axis

symmetric

axis

channel wall

outlet

oil water oil

image4.emf
0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

0100200300400500600

50

100

150

200

250

300

350

400

450 500550600Computation of the minimum distance between two polygons P1 and P2

 P1P2min_dist(P1,P2)

(a)

(b)

(c)

(d)

image5.tiff

image6.png

image7.emf
R/16

R/64 R/32

R/32

image1.emf

image2.emf
inlet

channel wall

outlet

symmetric axis

symmetric

axis

water

