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Appendix A. Verification of the numerical strategies

In this study, the immerse boundary method, which could possibly introduce non-
physical contaminations in the near-wake field, is adopted. One would argue that the
immersed boundary method can lead to inaccurate prediction of the near-wall dynamics.
Also, it is hard to fully resolve the near-wall boundary layer (i.e. viscous sublayer) by
current state-of-the-art DNS. Thus, we need to compare our DNSs against previous
studies for validation. However, there are few experimental and numerical data available,
if not none, with which we could directly compare our simulation results of dual-wake
flow. In contrast, lots of numerical or experimental investigations of turbulent flows
past a bluffbody (i.e. single square cylinder) have been carried out. To further validate
our simulation strategies, therefore, we perform an extra direct numerical simulation
on the wake behind a single square cylinder, which is actually a basic element of the
arrays of cylinders considered and access various statistics against both numerical and
experimental data. Note that except for the numbers of the mesh nodes and the resulting
size of the simulation domain, the other geometrics parameters (e.g. inlet Reynolds
number, streamwise thickness, distributions of mesh sizes, namely, resolutions AX, AY
and AZ) and simulation settings (e.g. spatial and temporal discretization schemes,
immerse boundary method and boundary conditions) are the exactly same as those in
the simulations of dual-wake flows. The details of the verification simulation are given in
Table 1.

Despite the scatter in the reported experimental and numerical results, it can be seen
from figure 1 that the streamwise evolutions of various velocity statistics (i.e. Ug, Upps,
Urms and Wy, ) along the centreline are roughly in accord with those in previous studies.

To further investigate the fluid dynamics on the solid surfaces, the distributions of the
(P_Pin)
(pUZ,)
denote flow density and inlet mean pressure, respectively, are plotted in figure 2. Again

our pressure data are in good agreement with previous investigations. Both figures 1
and 2 confirm that the numerical results of a single wake are in close agreement with
those in previous both experimental and numerical studies. Considering the fact that in
the cases of wake-interactions virtually the same numerical strategies and parameters are

pressure coefficient C), = 2 on four sides of the square cylinder, where p and P,
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Case ReTO Ld/To Xbar/TO LX/TO Ly/To Lz/TO NX Ny NZ At/(To/Uln)
WEF 2500 6 8 35 15 5 801 346 100 0.0045

TABLE 1. Geometric and numerical details of the validation simulation
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FIGURE 1. Centreline evolutions of (a) Uc/Uin; (b) Urms/Uin; (¢) Vems/Uin and (d) Wypms/Uin
in the turbulent flow behind a single square cylinder. The corresponding data from previous
experiments by Lee & Kim (2001a,b), Hu, Zhou & Dalton (2006), Lyn et al. (1995) and Durao,
Heitor & Pereira (1988) (denoted by open symbols) and simulation by Portela, Papadakis &
Vassilicos (2017) (denoted by filled symbols) are also plotted for comparison.

adopted, we may safely draw the conclusion that our DNS results in the main text are
reliable.

Appendix B. Confinement effects imposed by domain size

In § 2, we demonstrate that the ratios of Ly /b meet the criterion introduced by
Redford, Castro & Coleman (2012) for all three cases considered (Lq/To = 4, 6 and
8). To further investigate the possible confinements proposed by the domain size, the

streamwise evolutions of Ty/U;,dU/dx(x,1/2Ly) and M = fi{i;{y U?dy are plotted
in figure 3 for all three cases. The values of the x derivative of the mean streamwise
velocity at the domain boundary (i.e. Y/Ly = 1/2) for all three cases are considerately
smaller in the downstream region (below approximately U, /Ty x 107%). A non-negligible
variable of the mean velocity U is detected in the upstream region, which is associated
with the corresponding large velocity deficit imposed by the solid bars. With increasing
distance, however, the derivative of the mean velocity U at the boundary (i.e. Y = 1/2Ly)
continually decreases. A similar observation about the derivative of U at the domain edge

was already reported in Dairay, Obligado & Vassilicos (2015). It is well-established that in
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FIGURE 2. Distributions of the mean pressure coefficient C}, over the four sides (i.e. A-B, B-C,
C-D and D-A sides) of the single square cylinder. The open symbols correspond to experimental
data (Chen & Liu 1999; Bearman & Obasaju 1982; Mizota & Okajima 1981), whereas the filled
symbols denote numerical data (Portela et al. 2017; Trias, Gorobets & Oliva 2015).
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FIGURE 3. Streamwise evolution of (a) Tyo/UsndU/dx(x,1/2Ly) and (b) M/UZ Ty for all three
cases considered.

Case ReTO Ld/To Xbar/TO LX/TO Ly/To Lz/TO NX Ny NZ At/(To/Um)
WI6L 2500 6 8 35 48 5 801 1104 100 0.0045

TABLE 2. Geometric and numerical details of the auxiliary simulation case

the far shear flows, M = [ _%%ZY U?dy=const. Figure 3(b) confirms that the momentum

M is indeed well-conserved in the far-field.

Moreover, another simulation with a larger vertical size of the simulation domain (i.e.
Ly /Ty = 48) is performed to quantitatively assess the influence of the boundary setting,.
Except for the size of the vertical size Ly and the corresponding number Ny, the other
parameters of the auxiliary simulation are the same as those in the case WI6, as can be
seen from Table 2. Figure 4 shows the vertical profiles of U,,/U;, at X/Ty, = 26 for the
two different simulations. Although the velocities of the ambient flow at the boundaries
(i.e. Y/Ly = £1/2) are somewhat different, the lateral sizes of the wakes are almost
identical. This observation actually echoes our previous assertion that for the simulation
with Ly /Ty = 30 the growth of the wakes is unlikely to be suppressed by the constrain
proposed by the simulation domain. Figure 5 show the centreline evolutions of the mean
streamwise velocity and the rms velocity, where it can be clearly seen that the influences
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FIGURE 4. Vertical distribution of Uy, /Usin at a far downstream location (i.e. X/Ty = 26) for
the two simulations with different vertical sizes (i.e. Ly /To = 30 and Lq/To = 46).
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FIGURE 5. Streamwise evolution of (a) the normalized mean velocity Uc /Ui, and (b) the
normalized rms velocity Urms/Usn along the centreline.

of the domain size on the centreline statistics are considerably small. Finally, we may
safely draw the conclusion that the confinement effects are weak.

Appendix C. Statistical convergence

The statistics are averaged over 2 x 10° time steps (or equivalently 128 vortex shedding
periods) and the quasi-homogeneous Z direction. Owing to the strong vortex shedding
in the near field region (e.g. X/Ty = 6), it can be highly demanding to secure adequate
statistical convergence of the second-order structure function (Ju?(At)). One could
argue that the absence of the 2/3 power-law may stem from the lack of the statistical
convergence. Consequently, it becomes necessary to compute the second-order structure
function based on different selections of time steps to confirm that the exponents of
(u’?(At)) are indeed independent of time steps used in the average (or possess a weak
dependence on the number of time steps). Figure 6 shows the second-order structure
function (du’?(At)) at X/Ty = 6 along the centreline by using different numbers of time
steps (i.e. Ny = 4x10% 1.2x10% and 2x 10°). It is clear that the peak values of (§u'?(At))
are not exactly the same, indicating a lack of full convergence. However, for all three time
steps the exponents of (Ju'?(At)) are quite similar to each other, that is, the appearance
of the large power-law exponent 1 is independent of the lack of convergence.
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FIGURE 6. Second-order structure function 5u'2 AQ at X/To = 6 along the centreline

corresponding to different time steps (i.e. Ns = 4 x 10*, 1.2 x 10° and 2 x 10°) and averaged
over Z direction for the case with Ly/To = 6. (a) shown on a logarithmic-logarithmic scale;
(b) shown on a linear-linear scale. The dashed lines corresponds to functions with different
power-law exponents (i.e. 2/3, 1 and 2).

Appendix D. Verification of the filtering processes

By decomposing the full streamwise velocity fluctuation «" into three different compo-
nents, the corresponding decomposition in the form of the Fourier series is

u'(t) = ul (t) + ul (t) + ul(t Z éretft 4 Z érettt 4 Z éretlt, (D1)
I>fn Ji<f<fn f<fi

Substituting «'(t) = vl () + u/(t) + v, (t) into the second-order structure function
(u'?(At)) yields

(W' (t + At) — /' (1)?) = (SuZ(At) + du?(At) + du?(At)

20 (¢ 4 Af) — ol (6) (L (¢ + A) — (1) Do)
+2(ul (6 + At) — ul (b)) (ul (t + At) — ul(t)
+2(ul(t + At) — ul (t))(ul (t + At) — u(t)).
The decomposition of the fourth term on the right-hand of the above equation is
2((ul (t + At) — ul () (ul (t + At) — ul (1)) = 2(ul (t + At)(ul,(t + At)) (D3)

— 20l (t 4+ AL (1)) — 2 (Dl (¢ + A1) + 20l ()l (1).

Parseval’s identity implies that (g(£)h(t)) = Y grh_ s, where g(t) = 3. g/t and h(t) =
f f

Zﬁfeif . Considering decomposition of the velocity components in the form of the

Fourier series (see Eq. (B1)), for the production terms on the right-hand of Eq. (B3)
the corresponding interact of the Fourier component sets is always empty. Consequently,
the productions of the filtered functions in Eq.(B3) are orthogonal, i.e. (uX (t+ At)u’,(t+
At)) = (Wl (t + At)ul (1)) = (ul (t)ul(t + At)) = (ul (t)ul (t)) = 0. Similarly, the fifth
and sixth terms on the right-hand of Eq. (B2) also vanish, leading to the following
relation:

(6u?(At)) = (SuZ(At)) + (Su2(At)) + (Su2(At)). (D4)
Similarly, one can also prove that
(GuZ(At)) = (6uZ ,(At)) + (0u’Z ,(At)). (D5)

In § 4, the full streamwise velocity fluctuation v’ is decomposed into three different
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FIGURE 7. Time-traces of the sum of the filtered signals (u% + ul, + u’)/Usn, the full signals
u' /U, and the resulting residual term R /Uiy, .

components (i.e. ul, u_, and u’ corresponding, respectively, to low-, intermediate- and
high-frequency components). The lower cutoff and higher cutoff frequencies are 0.2 and
0.8, respectively. In our work, high-order bidirectional Butterworth filters are adopted,
which could efficiently remove the undesired components and the wanted frequency ranges
remain virtually intact as shown in figures 12(a)-15(a) in the main text.

Figure 7 shows the time-traces of the full signals u’/Uj,, the sum of the filtered
components (vl +ul_, +u’)/Usy, and the residual balance R /Usy,. The profiles of u' /Uy,
and (ul +u/_+u’)/U;, are close enough to be collapsed together. Furthermore, including
in the TF1 and TF2, the magnitude of R/U;, within the whole time frame plotted is
considerably small, lending further credence to the filters used.

The main conclusion reached in this work concerning the appearance of the —5/3
scaling law and the extreme events strongly depend on the filtering process. Obviously,
for computation the full velocity fluctuation u’ can be expressed in the form of

u =ul +ul, +ul + R, (D6)

where R is the residual balance term, which allows us to further evaluate the filtering
process (i.e. the level of signal delay and distortion introduced by the filters). The
three velocity components u’, u/, and u/, are orthogonal to each other. Therefore,
if high-fidelity filters are used, we could have the relation (du'?(At)) = (Su2(At)) +
(6u2(At)) + (5u’2(At)). For a final assessment of the quality of the filters chosen, we
examine (6u'?(At))/UZ2, and (Ju2(At) + du2(At) + du2(At)) /U2, versus AtU;, /Ty at
X /Ty = 6 and 26. Very close balances between (du'?(At))/UZ,) and (u’2(At)+6u/?(At)+
Su2(At)) /U2, at X/Ty = 6 and 26 are reached (for economy of space not shown herein).
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