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1. A remark on the value of the complex acoustic energy

We discuss two physically important cases: the acoustic case and the thermoacoustic

case. The acoustic case is defined by ¢) = 0. From [3.3], it follows that

L 1
O’/ (pﬁQ + _]32) dxr =0,
0 P

which is fulfilled in the following scenarios:
(i) 0=0, which, due to the momentum and energy equations, implies that % =0and
di

55 = 0. Physically, this means that the eigenfunctions are trivial in space because of the

ideal boundary conditions. Therefore, fOL (pa® + %ﬁz) dz=0, i..e, the acoustics are not
allowed to propagate;

(ii) 070 and foL (pa® + %ﬁ) dx=0 implies that there are acoustic waves propagating.
Furthermore, o, = 0 and o; # 0 because the system is conservative, or, in other words,
it is self-adjoint (Sturm-Liouville theorem). The limit @ — 0 of [3.3] generates an
indeterminate form 0/0, which, when solved by Taylor expansion, provides the acoustic
natural angular frequency o = io;.

The thermoacoustic case is defined by fOL pQdz # 0. The problem is non-self-adjoint,
hence, o, # 0 and o; # 0 and [3.3] implies that the complex acoustic energy is not
in equilibrium, i.e., fOL(ﬁﬁz + %ﬁz) dx # 0. The special thermoacoustic case in which
fo $Qdz = 0 with Q # 0 implies that the complex acoustic energy is in equilibrium, i.e.,
fOL(ﬁﬁ2 + %ﬁ) dr=0. The system is non-self-adjoint but is marginally stable because

energy gain/loss mechanisms are in balance.

The same line of reasoning can be used to show that the energy F' and Lagrangian G
are not zero in a thermoacoustic system [§3.1.1].
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2. An illustrative example for the eigenvalue integral formulae

We consider a simple example, which is amenable to analytical treatment. The variables
are non-dimensionalised such that the non-dimensional governing equations read

op
i+ — =20 2.1
ou + oz R ( )
oun
4+ — = Q. 2.2
op+5-=Q (2.2)
We consider a one-mode decomposition of the acoustic variables
p = asin(wx), (2.3)
@ = ncos(mx), (2.4)

where 7 is the non-dimensional acoustic angular frequency of the first acoustic mode. We
assume the heat release to be of the form of

Q = (at+ bp + cot + dop) 6(x — xy), a,b,c,d € R, (2.5)

By substituting the one-mode decomposition in the governing equations, we obtain

on+ar =0, (2.6)
oasin(rz) — nmsin(rx) = (an cos(wx) + basin(rx) + concos(mx) + dao sin(mz)) 6(x — ).
(2.7)

We integrate the second equation multiplied by sin(7z), which yields
oa —nm = ansin(2rx ) + 2basin®(rzy) + consin(2rx ) + 2dao sin? (7). (2.8)

The eigenproblem reads

o T
—7 —asin(2rx;) —ocsin(2rxy) o — 2bsin®(ray) —o 2d sin® (7w ;) [ Z ] = [ 0 } .

0
=A =C =B =D
(2.9)
Zeroing the determinant of the above matrix provides the dispersion relation, which reads
o(c—B—oD)+7(r+A+0C) =0, (2.10)
hence
2 2 A
0*(1—D)+o(-B+nC)+n° 1+ — | =0. (2.11)
T

The two eigenvalues are given by

B—nC+./(rC—B)2—4r2(1-D)(1+ 4
oy = \/ 20 D) ( ). (2.12)

The eigenvectors are the solutions of (2.9) when o = o1. Because the eigenfunctions are
defined up to a complex factor, we set a = 1. The eigenvector is

[ o W]H]_o :»[ZL_{_{;] (2.13)

Note that o1 # 0 even if A, B,C, D = 0, which corresponds to the natural acoustics.
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2.1. Verification of the eigenvalue integral formulae with one-mode approzrimation

By substituting the one-mode decomposition and eigenvector in the non-dimensionalized
integral complex formula [3.3], we find

J 900, p, ) do
o=
S @2+ p?) do

fOL asin(mz)(an cos(mx) + basin(rx) + concos(nz) + doasin(nz)) 6(x — ) dz

fOL (n? cos?(nx) + a? sin® x) da
_asin(mzy)(ancos(mry) + basin(may) + concos(mry) 4+ doasin(ray))
- 502+
o (ansin(2mwzy) + 2bo sin’(mxy) + consin(2rzs) + 2doasin’®(rzy))
(* + )

— - asin(2rzy) +2b sin® (7 ) — S0+ csin(2may) +o4 2d sin® (7 )

=A =B =C =D

o)
o

B (féAJrBwa’JroiD)

)
o1

(—7TO':|:A + 03B —7mo3C + Uf’tD)

= 2.14
(m2+03) (2.14)
Therefore
0=n+0% — (—-mA+04B—70+C + UiD)
A
=+01(1 = D)+ o1 (—B+nC) + 7* <1+>. (2.15)
w

This is always fulfilled because of the dispersion relation (2.11).
By substituting the one-mode decomposition and eigenvector in the non-dimensionalized
formula for the growth rate [3.4], we find

| ke ( JE 5 Q(o, p, 1) d:c)
Sy (2 +|pf2) da
Re (fOL a* sin(mx)(an cos(rx) + basin(rx) + concos(rx) + doasin(rx)) §(x — x5) dx)

fOL (|n|2 cos?(nz) + |a|? sin®(rz)) dz
Re (a* (ansin(2rzy) + 2basin®(rzy) + consin(2ra ) 4 2doasin®(rzy)))
I + laf?
Re (a*nA + |a]?B + oa*nC + |a|?0 D)
nl? + [e?
Re (—iA +B—7C + oiD)

= . (2.16)

+1

-_n
o+
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Therefore

0= Re(ai) < pu

2
= Re {W—Fai—FA B—|—7rC’—criD}
U:t O+
2
— 1-D
toup Tt m DI

= Re[oyn® +04|oL|* (1 - D)+ 0* 1A+ (=B + nC)|oy|’]
= Re(o4)m? + Re(o1)|ox*(1 — D) + Re(6*)mA+ (=B + nC)|o+|?

+1> ~ Re (—”A+B—7rc+aip)
04

—Re{g —=A+ (- B-‘r’iTC)]

||2

= Re(04)|o+*(1 — D) + Re(oy)m? (1 + 1:) + (=B +70)|ox|* (2.17)

This equality is always satisfied because Re(c*(2.11)) = 0.
By substituting the one-mode decomposition and eigenvector in the non-dimensionalized
formula for the angular frequency [3.5], we find

Im(fOpQUp, )dx)

o (a2 — [pf?) d
Im (—iA +B—nC+ oiD)
_ . (2.18)
~ o=
Therefore
71'2 s
0= Im(o) <1 - 2> —Im <A+ B - 7rC+0iD>
o4 o1

2 ™
2) +AB+7TCO'iD:|
o

=i 1

2 . T
=Im O':t—U:tiQ-i-O' ——A—-B+7nC—04D

o+ [?
[U:t|0:t| — D) —oyin?+o*mA+ (—B + 7TC)|O':|:|2]
= Im(os)|o+)*(1 — D) — Im(ox)n? (1 + A) (2.19)
T

This equality is always satisfied because Im(o*(2.11)) = 0.

3. First variation with localized sources

For localized sources, we equate the first variation of the acoustic energy with the
Lagrange multiplier

_ _ T
0F = (%) <p+,er(5(a: — xp)>V7T = 6<’y _1> /0 p;Qp dt (3.1)

P
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to the first variation of the acoustic energy without the Lagrange multiplier
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epr + dpQ) dxdt

(epQpd(x — xp) + dpQyd(x — x5)) dudt

)
\
\_/\_/
O
)ﬂ
<\<\

1
= ) (epy@p + dpsQy) dt
0

o ) /0 (pp + jngf> Q, dt. (3.2)

Because of the Riesz representation theorem, it follows that

Il
™M
/\

dp
Py =pp+ Qf Qy. (3.3)
P
Physically, dpy is the first variation of the acoustic pressure at the flame location zf
caused by a perturbation of the heat release rate at x,. This is a nonlocal effect that
would not occur if the system were self-adjoint (Qf = 0).
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