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SM:1. Numerical implementation

In this section, the numerical method employed in this paper is described. In Sub-
sec. SM:1.1, the governing equations are written collectively, in a manner suitable for the
implementation of the flux vector splitting (FVS) method (Toro 2009). The time-stepping
algorithm, described in Subsec. SM:1.2, is based on the explicit third order total variation
diminishing (TVD) Runge-Kutta (RK-3) algorithm introduced by Shu & Osher (1988).
The details concerning the implementation of the advection, which is performed using the
fifth-order weighted essentially non-oscillatory (WENO-5) scheme (Jiang & Shu 1996),
are given in Subsec. SM:1.3. The details concerning the implementation of the FVS (the
Jacobian matrix, its eigenvectors and its eigenvalues) are also presented therein. Finally,
Subsec. SM:1.4 discusses the implementation of the source terms. The numerical scheme
presented herein is benchmarked against the flows discussed in Sections 3, 4 and 5 of the
main text in Appendix A (also in the main text).

SM:1.1. Governing equations

The numerical implementation of the hydrodynamic equations (Eqs. (2.36), (2.41) and
(2.43)), as well as of the Cahn-Hilliard equation (Eq. (2.44)), is based on the Flux Vector
Splitting method (Toro 2009). These equations can be collectively written as:

∂U

∂t
+

∂θ[Fθ(U)]

r(1 + a cos θ)
+

∂ϕ[Fϕ(U)]

R(1 + a cos θ)
= Sinv + Svisc + SCH, (SM:1.1)

where the derivative with respect to ϕ was included for completeness (axisymmetry is
achieved by replacing all derivatives with respect to ϕ by 0). The conserved variables
U and the flux vectors Fθ(U) and Fϕ(U) appearing on the left hand side of the above
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relation satisfy:

U =


ρ

ρuθ̂

ρuϕ̂

ρe+ 1
2ρu

2

φ

 ,
Fθ(U)

1 + a cos θ
=


ρuθ̂

ρ(uθ̂)2 + Pb

ρuϕ̂uθ̂

ρhtu
θ̂

φuθ̂

 , Fϕ(U) =


ρuϕ̂

ρuϕ̂uθ̂

ρ(uϕ̂)2 + Pb

ρhtu
ϕ̂

φuϕ̂

 ,

(SM:1.2)

where ρ, uı̂ ∈ {uθ̂, uϕ̂}, Pb, e and φ are the mass density, components of the fluid velocity,
bulk pressure, specific energy and the order parameter, respectively. The total specific
enthalpy ht is written in terms of the specific enthalpy h and the fluid velocity as follows:

ht = h+
u2

2
, h = e+

Pb

ρ
. (SM:1.3)

The source function is split into three contributions, corresponding to the inviscid terms
due to the connection coefficients on the torus manifold, the viscous terms for non-perfect
fluids and the terms for multicomponent flows, as follows:

Sinv =
aρ sin θ

r(1 + a cos θ)


0

−[(uϕ̂)2 + Pb/ρ]

uϕ̂uθ̂

0
0

 , Svisc =


0

∇̂τ θ̂̂
∇̂τ ϕ̂̂

k∆T +∇ı̂(τ ı̂̂u̂)
0

 ,

SCH =


0

−∇̂Pθ̂̂κ
−∇̂Pϕ̂̂κ
−∇ı̂(Pı̂̂κu̂)
M∆µ

 . (SM:1.4)

In the non-axially symmetric case, the dynamic part of the viscous stress receives an
extra contribution compared to Eq. (2.37), as follows:

τ θ̂θ̂dyn = −τ ϕ̂ϕ̂dyn =η

[
1 + a cos θ

r

∂

∂θ

(
uθ̂

1 + a cos θ

)
− ∂ϕu

ϕ̂

R(1 + a cos θ)

]
,

τ θ̂ϕ̂dyn = τ ϕ̂θ̂dyn =η

[
1 + a cos θ

r

∂

∂θ

(
uϕ̂

1 + a cos θ

)
+

∂ϕu
θ̂

R(1 + a cos θ)

]
, (SM:1.5)

while the bulk (volumetric) part is given by:

τ θ̂θ̂bulk = τ ϕ̂ϕ̂bulk = ηv

[
∂θ[u

θ̂(1 + a cos θ)]

r(1 + a cos θ)
+

∂ϕu
ϕ̂

R(1 + a cos θ)

]
, (SM:1.6)

with τ θ̂ϕ̂bulk = τ ϕ̂θ̂bulk = 0. The divergence of τ ı̂̂ is computed via:

∇̂τ θ̂̂ =
∂θ[τ

θ̂θ̂
dyn(1 + a cos θ)2]

r(1 + a cos θ)2
+

1

r

∂τ θ̂θ̂bulk
∂θ

+
∂ϕτ

θ̂ϕ̂

R(1 + a cos θ)
,

∇̂τ ϕ̂̂ =
∂θ[τ

θ̂ϕ̂(1 + a cos θ)2]

r(1 + a cos θ)2
+

∂ϕτ
ϕ̂ϕ̂

R(1 + a cos θ)
. (SM:1.7)
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The contributions to the Cahn-Hilliard source terms are

∇̂Pθ̂̂κ = −φκ
r

∂(∆φ)

∂θ
, ∇̂Pϕ̂̂κ = − φκ∂ϕ(∆φ)

R(1 + a cos θ)
. (SM:1.8)

For the energy equation, the contribution to Svisc is computed using

∇ı̂(τ ı̂̂u̂) =
∂θ[τ

θ̂̂u̂(1 + a cos θ)]

r(1 + a cos θ)
+

∂ϕ(τ ϕ̂̂u̂)

R(1 + a cos θ)
. (SM:1.9)

A similar contribution appears in the energy equation due to the surface tension term,
where τ ı̂̂ is replaced by −Pı̂̂κ . However, we do not consider the details of the imple-
mentation of such a term, since we only consider the Cahn-Hilliard model at constant
temperature, when the energy equation is not required.

SM:1.2. Time stepping

We consider the implementation of the time stepping using the third-order total
variation diminishing (TVD) Runge-Kutta (RK-3) method introduced by (Shu & Osher
1988). We consider a discretisation of the time variable using equal time steps δt, such
that the time coordinate t after n iterations is given by:

tn = nδt. (SM:1.10)

Writing the evolution equations Eq. (SM:1.1) as

∂tU = L[U], (SM:1.11)

the conserved variables Un+1 at time tn+1 can be obtained from their values at time tn
using the following intermediate steps:

U(1)
n =Un + δt L[Un],

U(2)
n =

3

4
Un +

1

4
U(1)
n +

1

4
δt L[U(1)

n ],

Un+1 =
1

3
Un +

2

3
U(2)
n +

2

3
δt L[U(2)

n ]. (SM:1.12)

SM:1.3. Advection

In Sec. 3, it was shown that in the linearised limit, the flow corresponding to constant

ρ, Pb and e, vanishing uϕ̂ and the incompressible velocity profile uθ̂(1 + a cos θ) = const
satisfies the linearised limit of the Euler equations. The strategy for the implementation
of the advection step must be chosen such that this property is preserved also numerically.

The θ dimension is discretised using Nθ cells of equal size δθ = 2π/Nθ, centred on θs
(1 6 s 6 Nθ), where

θs =
2π

Nθ

(
s− 1

2

)
. (SM:1.13)

For 2D flows, the ϕ coordinate is similarly discretised using Nϕ equally sized cells, centred
on

ϕq =
2π

Nϕ

(
q − 1

2

)
, (SM:1.14)

where 1 6 q 6 Nϕ.
The advection is performed using a dimensionally-unsplit flux based approach, by
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writing {
∂θ[Fθ(U)]

r(1 + a cos θ)

}
s,q

=
Fθs+1/2,q − Fθs−1/2,q
r(1 + a cos θs)δθ

, (SM:1.15)

where Fθs±1/2,q represent the fluxes reconstructed at the cell interfaces. Since the factor

1 + a cos θ, is included in the fluxes, the solution uθ̂(1 + a cos θ) = const is an acceptable
numerical solution of the linearised limit of the Euler equations. Similarly, the advection
with respect to ϕ is performed using{

∂ϕ[Fϕ(U)]

R(1 + a cos θ)

}
s,q

=
Fϕs,q+1/2 − Fϕs,q−1/2
R(1 + a cos θs)δϕ

. (SM:1.16)

The flux reconstruction is performed using the fifth order weighted essentially non-
oscillatory (WENO-5) scheme proposed by Jiang & Shu (1996). The details of this
reconstruction can be found in numerous papers, so we omit them here. In order to
ensure the reconstruction of the fluxes in the upwind direction, we use the characteristic-
wise flux-splitting finite-difference scheme (Shu 1997; Zhang & MacFadyen 2006; Radice
& Rezzolla 2012). In order to use this approach, we focus on the advection with respect
to θ and introduce the Jacobian matrix Aθ ≡ Aθ(U) through:

Aθ =
1

1 + a cos θ

∂Fθ
∂U

. (SM:1.17)

At the interface (s + 1/2, q) and between the cells (s, q) and (s + 1, q), Aθs+1/2,q ≡
Aθ(Us+1/2,q) is computed using the arithmetic mean of the conserved variables to the
left and right of the interface (Shu 1997; Radice & Rezzolla 2012; Rezzolla & Zanotti
2013):

Us+1/2,q =
1

2
(Us,q + Us+1,q). (SM:1.18)

After finding the eigenvalues and eigenvectors of Aθs+1/2,q, the following decomposition
is made:

Aθs+1/2,q = Rθs+1/2,qΛ
θ
s+1/2,qL

θ
s+1/2,q, (SM:1.19)

where Rθs+1/2,q and Lθs+1/2,q are the matrices comprised of the right and left eigenvectors

of Aθs+1/2,q, and Λθs+1/2,q is a diagonal matrix containing the eigenvalues of Aθs+1/2,q,
such that

AR = RΛ, LA = ΛL, LR = I. (SM:1.20)

Then, the local characteristic fluxes Qθ
s′,q are constructed as follows:

Qθ
s′,q = Lθs+1/2,qF

θ
s′,q, (SM:1.21)

where s′ takes values between s−3 and s+3, covering the stencil employed for the WENO-
5 reconstruction for the interface at s+ 1/2. The flux reconstruction is performed at the

level of the characteristic fluxes and Qθ;as+1/2,q (1 6 a 6 5) is obtained in an upwind-biased

manner based on the sign of the a eigenvalue (Λθs+1/2,q)a,a. The right eigenvectors are
then used to obtain the fluxes corresponding to the conserved variables:

Fθs+1/2,q = Rθs+1/2,qQ
θ
s+1/2,q. (SM:1.22)

We give below the details concerning the Jacobian Aθ, its eigenvalues and its left and
right eigenvectors. Denoting by:

U = (u1, u2, u3, u4, u5)T , (SM:1.23)
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where u1 = ρ, u2 = ρuθ̂, u3 = ρuϕ̂, u4 = ρe + 1
2ρu

2 and u5 = φ, the following relations
can be found:

∂Pb

∂u1
= Pρ −

(
e

ρ
− u

2

2ρ

)
Pe,

∂Pb

∂u2
= −u

θ̂Pe
ρ

,

∂Pb

∂u3
= −u

ϕ̂Pe
ρ

,
∂Pb

∂u4
=
Pe
ρ
,

∂Pb

∂u5
= Pφ. (SM:1.24)

The notations Pρ, Pe and Pφ were introduced in Eq. (3.3). The Jacobian matrix is thus
given by:

Aθ =



0 1 0 0 0

−(uθ̂)2 + Pρ − (e− u2

2 )Peρ 2uθ̂ − uθ̂Pe
ρ −u

ϕ̂Pe
ρ

Pe
ρ Pφ

−uθ̂uϕ̂ uϕ̂ uθ̂ 0 0

−uθ̂[ht − Pρ + (e− u2

2 )Peρ ] ht − (uθ̂)2Pe
ρ −u

θ̂uϕ̂Pe
ρ

uθ̂(ρ+Pe)
ρ uθ̂Pφ

−u
θ̂φ
ρ

φ
ρ 0 0 uθ̂


.

(SM:1.25)
The eigenvalues of the Jacobian matrix Aθ can be put in the following form:

Λθ = diag(uθ̂ + cs, u
θ̂ − cs, uθ̂, uθ̂, uθ̂), (SM:1.26)

where the speed of sound cs is defined in Eq. (3.7). The right eigenvectors corresponding

to Λθ± = uθ̂ ± cs and Λθϕ = Λθe = Λθφ = uθ̂ are:

Rθ± =


1

uθ̂ ± cs
uϕ̂

ht ± uθ̂cs
φ/ρ

 , Rθϕ =


0
0
1
uϕ̂

0

 ,

Rθe =


1

uθ̂

uϕ̂

ht +
φPφ−ρc2s

Pe
0

 , Rθφ =


Pφ
Pφu

θ̂

Pφu
ϕ̂

Pφ(ht − e)
1
ρ (ePe + φPφ)− c2s

 . (SM:1.27)

The left eigenvectors satisfying Lθ;Tα Rθβ = δαβ for α, β ∈ {+,−, ϕ, e, φ} are

Lθ± =
1

2ρc2s


∓ρcsuθ̂ + ρc2s(1−∆P )

±ρcs − Peuθ̂
−Peuϕ̂
Pe
ρPφ

 , Lθϕ =


−uϕ̂

0
1
0
0

 ,

Lθe =
Pe(ρc

2
s − ePe)

ρc2sP∆


h− u2

2 −
eφPφ

ρc2s−ePe
uθ̂

uϕ̂

−1
ρePφ

ρc2s−ePe

 , Lθφ =
1

ρc2sP∆


φ(ρPρ − ePe + Pe

u2

2 )

−φPeuθ̂
−φPeuϕ̂
φPe

−ρ(ρc2s − φPφ)

 ,

(SM:1.28)
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where the following notations were introduced:

∆P =
(2h− ht)Pe + φPφ

ρc2s
= 1− ρPρ − ePe + Peu

2/2

ρc2s
, P∆ = ρc2s − ePe − φPφ.

(SM:1.29)

The Jacobian Aϕ = ∂Fϕ/∂U can be obtained by performing the simultaneous permu-
tation between the second and third lines, the second and third columns, as well as the

flip uθ̂ ↔ uϕ̂ in Aθ. It is given by:

Aϕ =



0 0 1 0 0

−uθ̂uϕ̂ uϕ̂ uθ̂ 0 0

−(uϕ̂)2 + Pρ − (e− u2

2 )Peρ −u
θ̂Pe
ρ 2uϕ̂ − uϕ̂Pe

ρ
Pe
ρ Pφ

−uϕ̂[ht − Pρ + (e− u2

2 )Peρ ] −u
θ̂uϕ̂Pe
ρ ht − (uϕ̂)2Pe

ρ
uϕ̂(ρ+Pe)

ρ uϕ̂Pφ

−u
ϕ̂φ
ρ 0 φ

ρ 0 uϕ̂

 .

(SM:1.30)
The eigenvalues of the Jacobian matrix Aϕ can be put in the following form:

Λϕ = diag(uϕ̂ + cs, u
ϕ̂ − cs, uϕ̂, uϕ̂, uϕ̂), (SM:1.31)

where the speed of sound cs is defined in Eq. (3.7). The right eigenvectors corresponding
to Λϕ± = uϕ̂ ± cs and Λϕθ = Λϕe = Λϕφ = uϕ̂ are:

Rϕ± =


1

uθ̂

uϕ̂ ± cs
ht ± uϕ̂cs
φ/ρ

 , Rϕθ =


0
1
0

uθ̂

0

 ,

Rϕe =


1

uθ̂

uϕ̂

ht +
φPφ−ρc2s

Pe
0

 , Rϕφ =


Pφ
Pφu

θ̂

Pφu
ϕ̂

Pφ(ht − e)
1
ρ (ePe + φPφ)− c2s

 . (SM:1.32)

The left eigenvectors satisfying Lϕ;Tα Rϕβ = δαβ for α, β ∈ {+,−, θ, e, φ} are

Lϕ± =
1

2ρc2s


∓ρcsuϕ̂ + ρc2s(1−∆P )

−Peuθ̂
±ρcs − Peuϕ̂

Pe
ρPφ

 , Lϕθ =


−uθ̂

1
0
0
0

 ,

Lϕe =
Pe(ρc

2
s − ePe)

ρc2sP∆


h− u2

2 −
eφPφ

ρc2s−ePe
uθ̂

uϕ̂

−1
ρePφ

ρc2s−ePe

 , Lϕ̂φ =
1

ρc2sP∆


φ(ρPρ − ePe + Pe

u2

2 )

−φPeuθ̂
−φPeuϕ̂
φPe

−ρ(ρc2s − φPφ)

 ,

(SM:1.33)

where the notations ∆P and P∆ were introduced in Eq. (SM:1.29).
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SM:1.4. Implementation of source terms

The inviscid source term, Sinv, is computed by simply evaluating all quantities at
(θ, ϕ) = (θs, ϕq).

The viscous term is computed by noting that the profile uϕ̂ ∼ (1 + a cos θ) is non-
dissipative in the linearised limit of the Navier-Stokes equations, as discussed in Sec. 4.

Thus, the components τ θ̂θ̂dyn = −τ ϕ̂ϕ̂dyn and τ θ̂ϕ̂dyn are computed as:

τ θ̂θ̂dyn;s,q =ηs,q

1 + a cos θs
r

(
∂

∂θ

uθ̂

1 + a cos θ

)
s,q

− (∂ϕu
ϕ̂)s,q

R(1 + a cos θs)

 ,
τ θ̂ϕ̂dyn;s,q =ηs,q

[
1 + a cos θs

r

(
∂

∂θ

uϕ̂

1 + a cos θ

)
s,q

+
(∂ϕu

θ)s,q
R(1 + a cos θs)

]
, (SM:1.34)

where a centred fourth-order stencil is used to compute the θ and ϕ derivatives:(
∂f

∂θ

)
s,q

=
1

12δθ
(−fs+2,q + 8fs+1,q − 8fs−1,q + fs−2,q) ,(

∂f

∂ϕ

)
s,q

=
1

12δϕ
(−fs,q+2 + 8fs,q+1 − 8fs,q−1 + fs,q−2). (SM:1.35)

The bulk viscosity term is computed as follows:

τ ı̂̂bulk;s,q = δı̂̂ηv;s

[
∂θ[u

θ̂(1 + a cos θ)]s,q
r(1 + a cos θs)

+
(∂ϕu

ϕ̂)s,q
R(1 + a cos θs)

]
, (SM:1.36)

where the derivatives are computed using Eq. (SM:1.35). The divergence of the viscous
stress τ ı̂̂ is computed as follows:

(∇̂τ θ̂̂)s,q =
∂θ[τ

θ̂θ̂
dyn(1 + a cos θ)2]s,q

r(1 + a cos θs)2
+

1

r

(
∂τ θ̂θ̂bulk
∂θ

)
s,q

+
(∂ϕτ

θ̂ϕ̂)s,q
R(1 + a cos θs)

,

(∇̂τ ϕ̂̂)s,q =
∂θ[τ

θ̂ϕ̂(1 + a cos θ)2]s,q
r(1 + a cos θs)2

+
(∂ϕτ

ϕ̂ϕ̂)s,q
R(1 + a cos θs)

. (SM:1.37)

where the stencil in Eq. (SM:1.35) is again used to compute the derivatives with respect
to θ and ϕ.

Finally, the Laplacians of the temperature, order parameter and chemical potential
can be computed as follows:

(∆f)s,q =
1

r2(1 + a cos θs)2

(
∂2f

∂χ2

)
s,q

+
1

R2(1 + a cos θs)2

(
∂2f

∂ϕ2

)
s,q

, (SM:1.38)

where the coordinate χ is defined as:

χ(θ) =

∫ θ

0

dθ

1 + a cos θ
=

2√
1− a2

arctan

[√
1− a
1 + a

tan
θ

2

]
. (SM:1.39)

In the above, the arctangent is computed such that χ is continuous at π, where χ(θ =
π) = 2π/

√
1− a2. A five-point stencil with respect to the non-equidistant coordinate χ

is employed, such that (Ambrus, et al. 2019):(
∂2f

∂χ2

)
s,q

= as;2fs+2,q + as;1fs+1,q + +as;0fs,q + as;−1fs−1,q + as;−2fs−2,q, (SM:1.40)
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where the coefficients as;k are given below:

as;±2 =
2[(χs − χs∓1)(χs − χs∓2) + (χs − χs±1)(2χs − χs∓1 − χs∓2)]

(χs±2 − χs∓2)(χs±2 − χs+1)(χs±2 − χs)(χs±2 − χs−1)
,

as;±1 =
2[(χs − χs∓1)(χs − χs∓2) + (χs − χs±2)(2χs − χs∓1 − χs∓2)]

(χs±1 − χs∓1)(χs±1 − χs+2)(χs±1 − χs)(χs±1 − χs−2)
, (SM:1.41)

while as;0 = −as;2 − as;1 − as;−1 − as;−2. The derivative with respect to ϕ appearing in
Eq. (SM:1.38) is computed using:(

∂2f

∂ϕ2

)
s,q

=
1

δϕ2

(
− 1

12
fs,q+2 +

4

3
fs,q+1 −

5

2
fs,q +

4

3
fs,q−1 −

1

12
fs,q−2

)
. (SM:1.42)
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SM:2. Stripe configurations and diffusive dynamics in Cahn-Hilliard
binary fluids: Mathematical complements

This section contains mathematical complements linking the general analysis presented
in Sections 6 and 7 of the main text to the Cahn-Hilliard model. Section SM:2.1 begins
with the analysis of the Laplace-Young pressure law, discussed for the case of general
fluids exhibiting an interface in Sec. 6 of the main text, highlighting that in the context of
the Cahn-Hilliard model, this pressure difference induces a global offset, φ0 of the order
parameter. Next, Sec. SM:2.2 shows that, under the ansatz of a hyperbolic tangent profile
of the order parameter, the conservation of the area of a stripe of the minority component
embedded in the majority component is ensured through the Cahn-Hilliard equation up
to terms of second order with respect to the ratio ξ0/r between the interface width and the
radius of the torus along the poloidal direction. Finally, under the same assumption for
the order parameter profile, Sec. SM:2.3 provides the mathematical connection between
the total free energy, introduced in Eq. (2.6) of the main text, and the total interface
length of the stripe configuration. Finally, Sec. SM:2.4 discusses the drift dynamics of
fluid stripes embedded on the torus geometry in the absence of hydrodynamics.

SM:2.1. Offset of the order parameter and Laplace pressure law

In this subsection, we consider the Laplace-Young pressure difference across the stripe
interfaces, discussed in Sec. 6 of the main text, in the context of the Cahn-Hilliard model.
Far away from the interface, the pressure tensor is diagonal, being dominated by the bulk
contribution Pb, introduced in Eq. (2.11). Considering that in equilibrium, there are in
principle no density or temperature gradients, the difference ∆P = Pin − Pout between
the pressure inside and outside the stripe, given in Eq. (6.27) of the main text for the
general case of a fluid stripe exhibiting interfaces with line tension σ, it is clear that
there must exist a deviation of the order parameter φ from the expected values, ±1,
inside and/or outside the fluid stripe. We conjecture that this difference is a global offset
of the order parameter, which we denote by φ0, which is allowed since the torus is a
periodic manifold (in the infinite Cartesian space, the order parameter must go to ±1
at infinite distances from the enclosed domain). In lack of an analytic expression for the
interface between the two components in the Cahn-Hilliard model on the torus geometry,
we take the simplistic assumption that the profile of the order parameter is well described
by a hyperbolic tangent (which is an exact solution for a flat interface on the infinite
Cartesian space), with the addition of the constant value φ0:

φ = φ0 + tanh ζ, ζ =
r

ξ0
√

2

(
|θ̃ − θc| −

∆θ

2

)
, (SM:2.1)

where θc represents the angular coordinate of the stripe centre, r∆θ represents its width
and ξ0 =

√
κ/A is the interface width in the case of the flat geometry, according to

Eq. (2.8). The notation θ̃ − θc indicates that the angular difference θ − θc takes values
between −π and π.

According to Eq. (SM:2.1), in the interior of the stripe, φ ' φ0 − 1, while outside the
stripe, φ ' φ0 + 1. Up to second order terms, the pressure difference between the inside
of the stripe and the outside of the stripe can be computed from Eq. (2.11):

∆P = −4Aφ0, (SM:2.2)

where a term of order O(φ30) was neglected.
In order to determine the value of φ0, we start by evaluating the chemical potential

µ = −Aφ(1−φ2)−κ∆φ (Eq. (2.9) in the main text), far away from the interface. Noting



10 S. Busuioc, H. Kusumaatmaja, V. E. Ambrus

that the gradient terms become negligible, µ reduces to:

µ(φ = φ0 ± 1) ' 2Aφ0

(
1± 3

2
φ0 +

1

2
φ20

)
= Aφ0(2 + φ20)± 3Aφ20, (SM:2.3)

where the upper (+) and lower (−) signs in the equation above refer to the exterior and
interior of the stripe, respectively. Since in equilibrium, the only acceptable stationary
solution corresponds to µ = const, the term ±3Aφ20 must cancel due to correction terms
to the order parameter profile which are not included in Eq. (SM:2.1). Thus, Eq. (SM:2.3)
can be regarded as a good approximation for µ only up to first order with respect to φ0.

We now consider the average value 〈µ〉 of the chemical potential. The departure of
the average value from 0 is due to the offset φ0 of the order parameter, as well as to
variations of the chemical potential around the interfaces. We conjecture that the value
of φ0 is such that these variations are minimised, which can be achieved by imposing:

〈µ〉 ' 2Aφ0. (SM:2.4)

It remains to compute 〈µ〉. Noting that the Laplacian term, κ∆φ, does not contribute to
volume integrals, 〈µ〉 reduces to:

〈µ〉 =

∫ 2π

0

dθ

2π
(1 + a cos θ)[−Aφ(1− φ)2] = 〈µ〉bulk + 〈µ〉interface ,

〈µ〉bulk 'A

∫ 2π

0

dθ

2π
(1 + a cos θ)(2φ0 + φ30 + 3φ20sgnζ),

〈µ〉interface '−A

∫ 2π

0

dθ

2π
(1 + a cos θ)

(
3φ0 + tanh ζ

cosh2 ζ
+ 3φ20

e−|ζ|sgnζ

cosh ζ

)
, (SM:2.5)

where two contributions, corresponding to bulk and interface terms, were identified in
the expression for µ. The ' signs indicate that the hyperbolic tangent approximation
given in Eq. (SM:2.1) was used for the order parameter. In deriving the split into bulk
and interface contributions, the following relation was employed:

tanh ζ = sgnζ

(
1− e−|ζ|

cosh ζ

)
. (SM:2.6)

In order to compute 〈µ〉bulk, the following integrals are required:∫ 2π

0

dθ

2π
(1 + a cos θ) =1, (SM:2.7)∫ 2π

0

dθ

2π
(1 + a cos θ)sgnζ =

∫ π

−π

dϑ

2π
[1 + a cos(ϑ+ θc)]sgn(|ϑ| −∆θ/2)

=2

∫ (2π−∆θ)/2

−∆θ/2

dς

2π

[
1 + a cos θc cos

(
∆θ

2
+ ς

)]
sgn(ς)

=1− 1

π

(
∆θ + 2a cos θc sin

∆θ

2

)
, (SM:2.8)

where the equality on the second line follows after changing the integration domain to
θc − π 6 θ 6 θc + π and changing variables to ϑ = θ− θc. On the third line, the integral
is broken into the negative and positive ϑ domains and the two contributions are added
together, after which the integration variable is changed to ς = ϑ−(∆θ/2). The result on
the last line above is just 1− 2∆A/Atotal, where Atotal = 4π2rR is the area of the torus,
while ∆A is the stripe area, given by ∆A = 2πrR[∆θ+ 2a sin(∆θ/2) cos θc] (Eq. (6.2) in
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the main text). Summing up the terms corresponding to the first set, we obtain:

〈µ〉bulk = Aφ0(2 + φ20) + 3Aφ20

(
1− 2∆A

Atotal

)
. (SM:2.9)

Comparing Eq. (SM:2.9) with Eq. (SM:2.3), it can be seen that, to first order in φ0, the
bulk contribution to 〈µ〉 matches the expected expression. Thus, the value of φ0 must be
chosen such that the interface contribution 〈µ〉interface cancels:

〈µ〉interface = 0. (SM:2.10)

In order to compute 〈µ〉interface, three integrals must be evaluated. The first one,
corresponding to the term proportional to 1/ cosh2 ζ, can be simplified as follows:∫ 2π

0

dθ

2π
(1 + a cos θ)

1

cosh2 ζ
=
ξ0
√

2

πr

∫ r(2π−∆θ)/ξ0
√
8

−r∆θ/ξ0
√
8

dζ

cosh2 ζ

×

[
1 + a cos θc cos

(
∆θ

2
+
ξ0ζ
√

2

r

)]
, (SM:2.11)

where the equality is obtained after performing the changes of variable employed in
Eq. (SM:2.8), followed by a switch to ζ = rς/ξ0

√
2. Assuming now that the interface

width is much smaller than the stripe width, i.e., 2ξ0
√

2� r∆θ, the integration domain
can be extended to infinity. In this case, the integration domain becomes symmetric
with respect to ζ and only the even terms make non-vanishing contributions. This allows

cos
(
∆θ
2 + ξ0ζ

√
2

r

)
to be replaced by cos ∆θ2 cos ξ0ζ

√
2

r . The integration with respect to ζ

can be performed by noting that:∫ ∞
−∞

dζ

cosh2 ζ
= 2,

∫ ∞
−∞

dζ

cosh2 ζ
cos(βζ) =

πβ

sinh(πβ/2)
. (SM:2.12)

Thus, we obtain:∫ 2π

0

dθ

2π
(1 + a cos θ)

1

cosh2 ζ
=
ξ0
√

8

πr

[
1 + a cos θc cos

∆θ

2

πξ0/r
√

2

sinh(πξ0/r
√

2)

]
. (SM:2.13)

The second integral to compute for the evaluation of 〈µ〉interface in Eq. (SM:2.5)
corresponds to the term proportional to tanh ζ/ cosh2 ζ, which can be simplified as
follows:∫ 2π

0

dθ

2π
(1 + a cos θ)

tanh ζ

cosh2 ζ
' aξ0

√
2

πr
cos θc

∫ ∞
−∞

tanh ζ dζ

cosh2 ζ
cos

(
∆θ

2
+
ξ0ζ
√

2

r

)
.

(SM:2.14)
Noting that the odd contributions with respect to ζ vanish, the cosine can be replaced
with [− sin(∆θ/2) sin(ξ0ζ

√
2/r)]. Using the relation:∫ ∞
−∞

tanh ζdζ

cosh2 ζ
sin(βζ) =

πβ2/2

sinh(πβ/2)
, (SM:2.15)

the following result can be obtained:∫ 2π

0

dθ

2π
(1 + a cos θ)

tanh ζ

cosh2 ζ
' −2aξ20

πr2
cos θc sin

∆θ

2

πξ0/r
√

2

sinh(πξ0/r
√

2)
. (SM:2.16)

Finally, the last integral required to compute 〈µ〉interface (SM:2.5) corresponds to the
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term proportional to e−|ζ|sgnζ/ cosh ζ. This can be simplified as follows:∫ 2π

0

dθ

2π
(1 + a cos θ)

e−|ζ|sgnζ

cosh ζ
' −2aξ0

√
2

πr
cos θc sin

∆θ

2

∫ ∞
0

e−ζdζ

cosh ζ
sin

ξ0ζ
√

2

r
.

(SM:2.17)
Noting that ∫ ∞

0

e−ζdζ

cosh ζ
sin(βζ) =

1

β

[
1− πβ/2

sinh(πβ/2)

]
, (SM:2.18)

the following result is obtained:∫ 2π

0

dθ

2π
(1 + a cos θ)

e−|ζ|sgnζ

cosh ζ
' −2a

π
cos θc sin

∆θ

2

[
1− πξ0/r

√
2

sinh(πξ0/r
√

2)

]
. (SM:2.19)

Substituting Eqs. (SM:2.13), (SM:2.16) and (SM:2.19) into Eq. (SM:2.5) shows that
the equation 〈µ〉interface = 0 can be reduced to:[(

rφ0
ξ0

)2

(1− S) +
1

3
S

]
cos θc sin

∆θ

2
− rφ0

√
2

aξ0

(
1 + a cos θc cos

∆θ

2
S
)

= 0, (SM:2.20)

where S = (πξ0/r
√

2)/ sinh(πξ0/r
√

2). The above equation is quadratic with respect
to φ0. Its solution can be expanded with respect to ξ0, yielding the leading order
contribution:

φ0 =
ξ0

3R
√

2

cos θc sin(∆θ/2)

1 + a cos θc cos(∆θ/2)
, (SM:2.21)

where a term of order O(ξ30) was neglected. Substituting the expression Eq. (SM:2.21)
for φ0 into Eq. (SM:2.2) yields Eq. (6.27) in the main text.

SM:2.2. Conservation of stripe area

As discussed in Sec. 6 of the main text, in a multicomponent fluid with immiscible
components, it is natural to expect that the area of a stripe of the minority component
embedded in the majority component is conserved. The purpose of this section is to
establish that this is indeed the case in the Cahn-Hilliard model employed in this paper
for the fluid stripe on the torus. Starting with the hyperbolic profile given in Eq. (SM:2.1),
let Φtot be the integral of φ over the whole torus:

Φtot = 2πrR

∫ 2π

0

dθ(1 + a cos θ)φ. (SM:2.22)

Noting that φ0 is a constant and employing Eq. (SM:2.6) to replace tanh ζ yields:

Φtot =Atotal (φ0 + Φbulk + Φinterface) ,

Φbulk =

∫ 2π

0

dθ

2π
(1 + a cos θ)sgnζ,

Φinterface =−
∫ 2π

0

dθ

2π
(1 + a cos θ)

e−|ζ|sgnζ

cosh ζ
. (SM:2.23)

Using Eqs. (SM:2.8) and (SM:2.19) to evaluate the integrals in the bulk and interface
terms, Φbulk and Φinterface, yields:

Φtot

Atotal
= 1− 2∆A

Atotal
+ φ0 +

2a

π
cos θc sin

∆θ

2
(1− S), (SM:2.24)



Axisymmetric flows on the torus 13

where S = (πξ0/r
√

2)/ sinh(πξ0/r
√

2).
Noting that dΦtot/dt = 0 by virtue of the Cahn-Hilliard equation (Eq. (2.12) in the

paper), it can be seen that ∆A is conserved up to O(ξ0) throughout the evolution. In
particular, taking the differential of Eq. (SM:2.24) gives:

d
∆θ

2
= dθc

a sin θc sin(∆θ/2)

1 + a cos θc cos(∆θ/2)

[
1− πξ0

6r
√

2

1− a2 cos2 θc
[1 + a cos θc cos(∆θ/2)]3

+O(ξ20)

]
.

(SM:2.25)
The second term in the square bracket represents an interface correction to the relation
given in Eq. (6.5) of the paper. This correction is typically below 1% so we ignore it
everywhere outside this section.

SM:2.3. Minimisation of free energy

We now consider the problem of establishing the minimisation criterion for the free
energy of the stripe configuration.

The free energy Ψ , introduced in Eq. (2.6) of the main text, is given for an azimuthally
symmetric configuration on the torus by:

Ψ =
π

2
rRA

∫ 2π

0

dθ(1 + a cos θ)

[
(1− φ2)2 +

2ξ20
r2

(
∂φ

∂θ

)2
]
, (SM:2.26)

where the relation κ = ξ20A was used in the second term. Inserting the hyperbolic tangent
profile, Eq. (SM:2.1), in the above expression allows Ψ to be split into two contributions,
Ψbulk and Ψinterface, as follows:

Ψ =Ψbulk + Ψinterface,

Ψbulk =
AtotalA

4

∫ 2π

0

dθ

2π
(1 + a cos θ)(4φ20 + 4φ30sgnζ + φ40),

Ψinterface =
AtotalA

2

∫ 2π

0

dθ

2π
(1 + a cos θ)

(
1

cosh4 ζ
− 2φ0 tanh ζ + 3φ20

cosh2 ζ
− 2φ30sgnζe−|ζ|

cosh ζ

)
,

(SM:2.27)

where the relation (2ξ20/r
2)(∂θφ)2 = 1/ cosh4 ζ was employed. It should be noted that

the split into bulk and interface contributions is not identical to the split with respect to
the bulk and gradient free energy densities, given in Eq. (2.6).

The term Ψbulk can be evaluated using Eqs. (SM:2.7) and (SM:2.8):

Ψbulk =
AtotalA

4
φ20

[
4 + φ20 + 4φ0

(
1− 2∆A

Atotal

)]
. (SM:2.28)

Since φ0, computed in Eq. (SM:2.21), is of order ξ0, it is clear that Ψbulk contributes
terms of order O(ξ20) to Ψ .

When evaluating the interface term, Ψinterface, the relation in Eq. (SM:2.10) can be
employed to eliminate the term proportional to tanh ζ/ cosh2 ζ from Eq. (SM:2.27):

Ψinterface =
AtotalA

2

∫ 2π

0

dθ

2π
(1 + a cos θ)

(
1

cosh4 ζ
+

3φ20
cosh2 ζ

+
4φ30sgnζe−|ζ|

cosh ζ

)
.

(SM:2.29)
Looking at Eqs. (SM:2.13) and (SM:2.19), it is clear that the last two terms above make
contributions of orders O(ξ30) and O(ξ50), respectively. Thus, the leading contribution
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comes from the first term, which can be evaluated by noting that:∫ 2π

0

dθ

2π
(1 + a cos θ)

1

cosh4 ζ
=

4ξ0
√

2

3πr

[
1 + a cos θc cos

∆θ

2

(
1 +

ξ20
2r2

)
πξ0/r

√
2

sinh(πξ0/r
√

2)

]
.

(SM:2.30)
The result above was obtained using the same techniques employed in deriving the result
in Eq. (SM:2.13), together with the following identities:∫ ∞

0

dζ

cosh4 ζ
=

2

3
,

∫ ∞
0

dζ

cosh4 ζ
cos(βζ) =

2

3

(
1 +

β2

4

)
πβ/2

sinh(πβ/2)
. (SM:2.31)

Using Eq. (SM:2.30), it can be shown that

Ψinterface =
σAtotal

πr

(
1 + a cos θc cos

∆θ

2

)
+O(ξ30), (SM:2.32)

where σ is the line tension on the flat geometry σ =
√

8κA
9 . The term in the parenthesis

can be expressed in terms of the total length of the stripe interface, `total, derived in
Eq. (6.3) of the paper. Keeping in mind that Ψbulk is of order O(ξ20), the total free energy
can be expressed as:

Ψ = σ`total +O(ξ20). (SM:2.33)

SM:2.4. Diffusive Dynamics

In this section, we are interested in analysing the dynamics of axisymmetric stripes
in the absence of hydrodynamics. That is, we consider that the evolution of the order
parameter φ is governed by the Cahn-Hilliard equation without the advection term
(setting uı̂ = 0):

∂tφ = M∆µ, ∆µ =
1

r2(1 + a cos θ)

∂

∂θ

[
(1 + a cos θ)

∂µ

∂θ

]
. (SM:2.34)

The connection between the Cahn-Hilliard equation reproduced above and the evolution
of the stripe centre θc can be made by evaluating the former on the stripe interfaces, i.e.
where θ = θ± (we refer the reader to Sec. 6 of the paper for more details on the notation
used in this section). It is clear that a quantitative analysis of the features of the diffusive
dynamics requires a precise knowledge of the interface details, which is beyond the scope
of the current work. Instead, we focus on the hyperbolic tangent model introduced in
Eq. (SM:2.1). The time derivative of φ evaluated on the two interfaces is:

∂φ

∂t

⌋
θ±

= φ̇0 ∓
rθ̇±

ξ0
√

2
, (SM:2.35)

where the time dependence of φ0 comes through θc and ∆θ in Eq. (SM:2.21). Noting
that θ± = θc ± (∆θ/2), the time evolution of θc can be analysed by subtracting ∂tφ(θ−)
and ∂tφ(θ+):

θ̇c '
ξ0M

r
√

2
[(∆µ)− − (∆µ)+] . (SM:2.36)

Considering the split µ = µb + µg given in Eq. (2.9) of the main text, where

µb = −Aφ(1− φ2), µg = −Aξ
2
0

r2

[
∂2φ

∂θ2
− a sin θ

1 + a cos θ

∂φ

∂θ

]
, (SM:2.37)
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the Laplacian (∆µ)± = (∆µb)± + (∆µg)± on the right hand side of Eq. (SM:2.36) can
be evaluated by noting that:

∆µb =− A

r2

[(
∂2φ

∂θ2
− a sin θ

1 + a cos θ

∂φ

∂θ

)
(1− 3φ2)− 6φ

(
∂φ

∂θ

)2
]
,

∆µg =− Aξ20
r4

[
∂4φ

∂θ4
− 2a sin θ

1 + a cos θ

∂3φ

∂θ3
−
[
1− 1− a2

(1 + a cos θ)2

]
∂2φ

∂θ2
+
a(1− a2) sin θ

(1 + a cos θ)3
∂φ

∂θ

]
.

(SM:2.38)

In order to assess the evolution of the stripe configuration, the following relations are
useful:

φ(θ±) = φ0,
∂φ

∂θ

⌋
θ±

= ± r

ξ0
√

2
,

∂2φ

∂θ2

⌋
θ±

= 0,

∂3φ

∂θ3

⌋
θ±

= ∓ r3

ξ30
√

2
,

∂4φ

∂θ4

⌋
θ±

= 0. (SM:2.39)

It can be shown that:

(∆µ)± = −A
r2

[
± r

ξ0
√

2

a sin θ±
1 + a cos θ±

− 3φ0r
2

ξ20
+O(ξ0)

]
. (SM:2.40)

Neglecting the O(ξ0) term, Eq. (SM:2.36) becomes:

θ̇c −
AM

rR

sin θc[cos(∆θ/2) + a cos θc]

(1 + a cos θ−)(1 + a cos θ+)
= 0. (SM:2.41)

It can be seen that the above equation governs the relaxation of θc towards the equilibrium
position, as given by Eq. (6.7) of the main text. In order to assess the dynamics of this
approach to equilibrium, it is convenient to introduce the notation:

θc = θeqc + δθ, (SM:2.42)

where θeqc is the expected equilibrium position. For small departures δθ = θ − θeqc ,
Eqs. (7.15) and (7.16) can be used to replace the second term in Eq. (SM:2.41) via:

sin θc
(
a cos θc + cos ∆θ2

)
(1 + a cos θ+)(1 + a cos θ−)

' −δθ


cos(∆θeq/2)− a

[1− a cos(∆θeq/2)]2
, ∆A < ∆Acrit,

2a sin2 θeqc
(1− a2) sin2(∆θeq/2)

, ∆A > ∆Acrit.
(SM:2.43)

such that the solution of this equation takes the form:

δθ = δθ0e
−2αµt, (SM:2.44)

where δθ0 is an integration constant, while αµ is given by:

αµ =


AM

2r2
a(cos(∆θeq/2)− a)

[1− a cos(∆θeq/2)]2
, ∆A < ∆Acrit,

2AMa2

r2(1− a2)

sin2 θeqc
sin2(∆θeq/2)

, ∆A > ∆Acrit.
(SM:2.45)

The analysis presented up until now reveals the essential features of the drift of stripe
configurations, in the absence of hydrodynamics. Eq. (SM:2.41) predicts that the stripes
approach their equilibrium position exponentially.

These features are confirmed by our numerical simulations. Figure SM:1 shows the



16 S. Busuioc, H. Kusumaatmaja, V. E. Ambrus

0

0.01

0.02

0.03

0.04

0.05

0.06

0 × 100 2 × 105 4 × 105 6 × 105 8 × 105

(a)
(θ

e
q

c
−
θ c

)/
π

t

∆A = 0.25 × ∆Acrit

∆A = 0.50 × ∆Acrit

∆A = 0.75 × ∆Acrit

Exponential fit

0

0.01

0.02

0.03

0.04

0.05

0.06

0 × 100 2 × 105 4 × 105 6 × 105 8 × 105

(b)

(θ
e
q

c
−
θ c

)/
π

t

∆A = 1.125 × ∆Acrit

∆A = 1.250 × ∆Acrit

∆A = 1.750 × ∆Acrit

Exponential fit

Figure SM:1. Time evolution of (θeqc − θc)/π for (a) stripes with areas ∆A < ∆Acrit

(equilibrating at θeqc = π); and (b) stripes with areas ∆A > ∆Acrit (equilibrating at θeqc < π),
as shown in Table 1. The dotted lines with points are obtained by fitting Eq. (SM:2.1) to the
numerical data with φ0, ξ0, θc and ∆θ as free parameters. The solid lines are obtained by
fitting Eq. (SM:2.47) to the numerical curves with αµ;emp as a free parameter, while
δθ0 = π/20. The values of αµ;emp are reported in Table 1.

∆A/∆Acrit ∆θeq/π θeqc /π αµ [Eq. (SM:2.45)] αµ;emp [Eq. (SM:2.48)] F (∆θeq; a)

0.25 0.208 1 5.54× 10−4 2.03× 10−5 2.46
0.5 0.403 1 3.46× 10−4 7.10× 10−6 1.38
0.75 0.580 1 1.46× 10−4 2.32× 10−6 1.06
1.125 0.775 0.834 2.11× 10−4 1.83× 10−6 0.581
1.25 0.810 0.763 3.74× 10−4 2.99× 10−6 0.537
1.75 0.941 0.574 7.11× 10−4 4.97× 10−6 0.469

Table 1. Numerical values for the ratio ∆A/∆Acrit of the stripe area to the critical area; of the
corresponding stripe width ∆θeq at equilibrium (in units of π); of the equilibrium position (in
units of π); of the damping coefficient αµ predicted through Eq. (SM:2.45); of the damping
coefficient αµ;emp obtained by fitting Eq. (SM:2.47) to the numerical data; and of the
coefficient F (∆θeq; a) entering in the empirical expression, Eq. (SM:2.48). The torus
parameters are r = 0.8 and R = 2, such that a = 0.4.

approach to equilibrium for stripes having various areas ∆A compared to the critical
area ∆Acrit, on a torus with r = 0.8 and R = 2 (a = 0.4). The mobility was set to
M = 2.5 × 10−3, while A = 0.5 and κ = 5 × 10−4. While the equilibrium position
corresponds to the one predicted via Eq. (SM:2.41), the damping coefficient αµ given in
Eq. (SM:2.45) is between one and two orders of magnitude larger than the one observed
numerically, as can be seen from Table 1. This discrepancy could be attributed to the fact
that some of the assumptions made in this section are not strictly valid in the present
context.

On the torus geometry, the Laplace-Beltrami operator appearing in µκ contains a term
involving a first order derivative of φ, as can be seen in Eq. (SM:2.37). When the stripe
is in equilibrium (i.e., when the stationary state is achieved), the solution of the equation
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Figure SM:2. (a) The difference between the numerical profile φnum of the order parameter and
the hyperbolic tangent approximation given in Eq. (SM:2.1); (b) Comparison between the
numerical profile for the chemical potential µ and the approximation given by Eq. (SM:2.46).
These configurations are represented at t = 20 000 for a stripe initialised using Eq. (SM:2.1)
with θc = π and ∆θ = 0.280406π. The simulation parameters are κ = 5× 10−4, A = 0.5,
M = 2.5× 10−3, r = 0.8 and R = 2.

∆µ = 0 is µ = µ0 = const, with µ0 = 2Aφ0, as discussed in Eq. (SM:2.4). Introducing
the hyperbolic tangent profile, Eq. (SM:2.1), yields:

µ = 2Aφ0 −
3A

cosh2 ζ

[
φ0 − sgn(θ − θc)

ξ0

3r
√

2

a sin θ

1 + a cos θ

]
+O(ξ20). (SM:2.46)

Thus, it can be seen that the chemical potential presents variations in the vicinity of the
interface when the order parameter profile is approximated using a hyperbolic tangent.
Figure SM:2(a) shows the difference φnum−φan between the profile of the order parameter
obtained numerically and the analytic formula, Eq. (SM:2.1), for a stripe located at
θeqc = π with ∆θ = 0.280406π. It can be seen that the order parameter presents very small
deviations from Eq. (SM:2.1) in the vicinity of the interfaces. Figure SM:2(b) shows the
chemical potential obtained from the numerical simulation compared with the analytic
expression, Eq. (SM:2.46). Even though the stripe is in equilibrium, Eq. (SM:2.46)
predicts variations around the interfaces. Eliminating the term in the parenthesis on
the right hand side of Eq. (SM:2.46) is the key to understanding the leading order term
in the problem of diffusive dynamics, however we do not further pursue this analysis here
and leave this avenue of research for future work.

The above discussion prompts us to look for an empirical expression αµ;emp for the
damping coefficient. We first check the dependence of αµ;emp on the mobility M and
surface tension σ by fitting Eq. (SM:2.44) to the numerical results for the time evolution
of the stripe centre obtained through various simulations. In the first batch of simulations,
the ratio a = r/R is fixed at a = 0.4, while r takes the values 0.8, 1.0 and 1.2. Keeping
κ = 5 × 10−4 and A = 0.5 fixed, Figs. SM:3(a) and SM:3(b), corresponding to θeqc = π
(∆θeq = 0.283π) and θeqc = 3π/4 (∆θeq = 0.817π), respectively, indicate a clear linear
dependence of αµ;emp with respect to the mobility parameter, M . In order to ensure that

the grid spacing does not exceed the interface width ξ0 =
√
κ/A ' 0.0316, the number of

nodes is taken to be Nθ = 320 (r = 0.8), 400 (r = 1.0) and 480 (r = 1.2). The time step
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Figure SM:3. Damping coefficient αµ;emp with respect to M for r = 0.8, 1.0 and 1.2 at fixed
a = r/R = 0.4, obtained by fitting Eq. (SM:2.44) to the simulation results (points). The
dashed lines represent the best linear fit of the data. The results correspond to stripes having
(a) ∆θeq ' 0.283π (θeqc = π); and (b) ∆θeq ' 0.8174π (θeqc = 3π/4).
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Figure SM:4. Damping coefficient αµ;emp with respect to σ =
√

8κA/9 for r = 0.8, a = 0.4 and

fixed ξ0 =
√
κ/A ' 0.0316, obtained by fitting Eq. (SM:2.44) to the simulation results

(points). The dashed lines represent the best linear fit of the data. The results correspond to
stripes having (a) ∆θeq ' 0.283π (θeqc = π); and (b) ∆θeq ' 0.817π (θeqc = 3π/4).

is taken to be δt = 10−3 in order to prevent the Cahn-Hilliard equation from becoming
stiff.

In the second batch of simulations, the dependence of αµ;emp on the surface tension

σ =
√

8κA
9 is examined. Keeping r = 0.8 (Nθ = 320), a = 0.4 and M = 2.5× 10−3 fixed,

κ and A are varied such that the interface width ξ0 =
√

κ
A ' 0.0316 is kept constant.

The time step is δt = 2.5× 10−3 for all simulations. It can be seen in Figs. SM:4(a) and
SM:4(b), corresponding to θeqc = π and θeqc = 3π/4, respectively, that αµ;emp presents a
linear dependence on σ. This results is in contradiction to Eq. (SM:2.45).
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Based on the above analysis, Eqs. (SM:2.41) and (SM:2.44) can be written as:

δ̇θ + 2αµ;empδθ = 0, δθ = δθ0e
−2αµ;empt, (SM:2.47)

where an empirical formula αµ;emp can be proposed by multiplying Eq. (SM:2.45) with
aσF (∆θeq, a)/Ar:

αµ;emp =


aσM

2r3
a[cos(∆θeq/2)− a]

[1− a cos(∆θeq/2)]2
× F (∆θeq, a), ∆A < ∆Acrit,

2a3σM

r3(1− a2)

sin2 θeqc
sin2(∆θeq/2)

× F (∆θeq, a), ∆A > ∆Acrit.
(SM:2.48)

In the above, F (∆θeq, a) is an unknown function that can depend (up to first order with
respect to ξ0) only on the stripe width at equilibrium (∆θeq) and on the ratio a = r/R of
the torus radii. Fitting the expression to the numerical data corresponding to Fig. SM:3
gives F (0.283π, 0.4) ' 1.84 and F (0.817π, 0.4) ' 0.53. Further values corresponding to
the stripes considered in Fig. SM:1 are summarised in Table 1.

We now turn our attention to another interesting aspect of the empirical formula,
Eq. (SM:2.48). It can be seen that the damping coefficient is expected to vanish on
both branches for critical stripes, when θeqc = π and ∆θeq = 2 arccos a. The fact that
αµ;emp vanishes when ∆A = ∆Acrit is related to the presence of the term sin θc[a cos θc+
cos(∆θ/2)] in the numerator of Eq. (SM:2.41). When αµ;emp is negligible, the higher
order terms in the expansion of sin θc[a cos θc+ cos(∆θ/2)] dominate the evolution of the
stripe towards its equilibrium position. It can already be seen in Fig. SM:1(b) that at
∆A = 1.125∆Acrit, the exponentially decaying solution presents some discrepancy with
respect to the numerical simulation. In order to explain this discrepancy, we reconsider
Eq. (SM:2.48) by including the next-to-leading order term with respect to δθ.

For close to critical stripes, centred at a distance δθ = θc − θeqc away from their
equilibrium position at θeqc = π, the width ∆θ can be found by imposing that their area,
∆A = 2πrR[∆θ + 2a sin(∆θ/2) cos θc], remains constant:

∆θ = ∆θeq −
a sin(∆θeq/2)

1− a cos(∆θeq)
δθ2 +O(δθ4). (SM:2.49)

Considering that the difference δ∆θeq = 2 arccos a − ∆θeq between the critical width
2 arccos a and the stripe width is small, Eq. (SM:2.41) reduces to:

δ̇θ + 2αµ;empδθ + α(3)
µ;empδθ

3 = 0, (SM:2.50)

where

αµ;emp =
aσM

2r3
a[cos(∆θeq/2)− a]

[1− a cos(∆θeq/2)]2
F (∆θeq, a) ' aσM

2r3
aδ∆θeq

2(1− a2)3/2
Fcrit,

α(3)
µ;emp '

aσM

2r3
2a2

(1− a2)2
Fcrit [1 +O(δ∆θeq)] , (SM:2.51)

where Fcrit ≡ F (∆θcriteq , a) and ∆θcriteq = 2 arccos a. The solution of Eq. (SM:2.50) is

δθ = δθ0e
−2αµ;empt

[
1 +

α
(3)
µ;emp

2αµ;emp
δθ20(1− e−4αµ;empt)

]−1/2
. (SM:2.52)

In the limit of the critical stripe, αµ;emp;crit = 0 and the above equation reduces to:

δθcrit = δθ0

[
1 + 2α(3)

µ;empδθ
2
0t
]−1/2

. (SM:2.53)
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Figure SM:5. Comparison between numerical results (dotted lines and points) and various
fitting formulae for the time evolution of 1− θc/π for stripes with various areas ∆A. (a)

Comparison with the mixed solution in Eq. (SM:2.52), where αµ;emp and α
(3)
µ;emp are free

parameters (shown with solid black lines); (b)–(d) Best fit curves corresponding to: the
exponential solution in Eq. (SM:2.48) with αµ;emp as a free parameter (dotted lines); the

critical solution in Eq. (SM:2.53) with α
(3)
µ;emp as a free parameter (dash-dotted lines); and the

mixed solution, fitted as for (a). The initial amplitude is always δθ0 = −π/20, expressed with
respect to the equilibrium position θeqc = π.

In order to validate the above analysis, the exponential (Eq. (SM:2.48)); critical
(Eq. (SM:2.53)); and mixed (Eq. (SM:2.52)) functional forms are fitted to numerical

results using αµ;emp; α
(3)
µ;emp; and αµ;emp and α

(3)
µ;emp as free parameters, respectively.

The initial amplitude is set to δθ0 = −π/20. Figure SM:5(a) shows the evolution of the
stripe centres for stripes having areas ∆A equal to ∆Acrit (critical stripe), 0.99∆Acrit,
0.975∆Acrit and 0.95∆Acrit. The mixed solution, Eq. (SM:2.52), shown with continuous
black lines, is fitted to the numerical results (shown with dotted lines and points), using

αµ;emp and α
(3)
µ;emp as free parameters. An excellent agreement can be seen in all cases and

the value for F obtained by comparing the fitted values with the analytic expressions
(Eq. (SM:2.51)) is around F ' 0.93. Figures SM:5(b)–SM:5(d) present comparisons
between the numerical results corresponding to three stripe areas and the exponential
(Eq. (SM:2.48)), critical (Eq. (SM:2.53)) and mixed (Eq. (SM:2.52)) solutions, fitted to
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the numerical results using the coefficients αµ;emp and α
(3)
µ;emp as free parameters. It can

be seen that for the critical stripe, shown in Fig. SM:5(b), the critical and mixed solutions
are almost overlapped with the numerical results, while the exponential solution presents
clear deviations. For the stripe with ∆A = 0.99 × ∆Acrit, neither the exponential nor
the critical solutions can be used to capture the evolution of the stripe centre, while
the mixed solution presents an excellent agreement with the numerical results. Finally,
the evolution of the centre of the stripe with ∆A = 0.95 × ∆Acrit can be seen to be
well captured by the exponential solution. From this study, we conclude that the term
sin θc[a cos θc+ cos(∆θ/2)] is indeed responsible for selecting the equilibrium position for
stripe configurations.

We end with a discussion of the dependence of the function F (∆θeq, a) on the stripe
equilibrium width ∆θeq, for three values of the torus radii ratio a = r/R, shown in
Fig. SM:6. It can be seen that F is mostly a monotonically decreasing function of ∆θeq
and a. Also, it can be seen that there is a discontinuity in F around the critical point
(where ∆θeq = 2 arccos a), which is shown using vertical dotted lines.
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SM:3. Eigenfunctions on the torus

This section contains the analytical results obtained for the eigenfunctions on a torus.
These functions are solutions of Eqs. (3.10) and (4.4) in the main text, in powers of the
radii ratio a = r/R. Both equations to be solved can be conveniently written as (Eq.
(B 1) of the main text is reproduced below):

(1 + a cos θ)

(
∂2Ψn
∂θ2

+ λ2nΨn

)
+ αa sin θ

∂Ψn
∂θ

= 0, (SM:3.1)

where α = 1 and −3 for Eqs. (3.10) and (4.4), respectively.
In the following subsections we list the results for both intermediate values of the radii

ratio 0 < a < 1 (Sec. SM:3.1), as well as for the limiting case of a = 1 (Sec. SM:3.2).
For the reader’s convenience, these expansions are compiled in the form of gnuplot files

(funcs-inv.gpl and funcs-shear.gpl) and Mathematica notebooks (funcs inv.nb

and funcs shear.nb).

SM:3.1. Eigenfunctions for 0 < a < 1

This section of the present Supplementary material contains the results obtained for the
eigenfunctions on a torus by applying the perturbative procedure detailed in Appendix
B of the main text. The results obtained for 1 6 n 6 4 are listed including terms up to
O(a9) in the following subsections, namely for fn and gn (corresponding to α = 1) are
shown in Subsec. SM:3.1.1, while Fn and Gn (corresponding to α = −3) are given in
Subsec. SM:3.1.2.

SM:3.1.1. Eigenfunctions for the inviscid case

In this subsection we list the series solutions of Eq. (SM:3.1) for the case α = 1.
The even and odd eigenfunctions corresponding to n = 1 are:

1√
2(1 + a cos θ)

(
f1/N1;c

g1/N1;s

)
=

(
cos θ
sin θ

)
− a

3

(
cos 2θ
sin 2θ

)[
1 +

(
91

−5

)
a2

288
+

(
13 877
−11 125

)
a4

82 944
+

(
2 567 969
23 887 872

− 3 564 799
23 887 872

)
a6

]

+
5 a2

32

(
cos(3θ)

sin(3θ)

)[
1 +

(
827
293

)
a2

1440
+

(
31 475
82 944

− 78 853
2 073 600

)
a4 +

(
5 727 710 809
20 901 888 000

− 510 034 981
4 180 377 600

)
a6

]

− 11 a3

144

(
cos(4θ)

sin(4θ)

)[
1 +

(
6 550
3 517

)
a2

7 920
+

(
104 013 923
20 453 915

)
a4

159 667 200

]

+
1045 a4

27648

(
cos(5θ)

sin(5θ)

)[
1 +

(
567 883
363 301

)
a2

526 680
+

(
8 367 078 469
3 047 011 141

)
a4

8 494 295 040

]

− 6061 a5

322 560

(
cos(6θ)

sin(6θ)

)[
1 +

(
162 374 671
114 550 495

)
a2

122 189 760

]

+
248 501 a6

26 542 080

(
cos(7θ)

sin(7θ)

)[
1 +

(
3 390 730 999
2 147 048 640
3 565 202 867
3 005 868 096

)
a2

]

− 2 733 511 a7

585 252 864

(
cos(8θ)

sin(8θ)

)
+

194 079 281 a8

83 235 962 880

(
cos(9θ)

sin(9θ)

)
+O(a9), (SM:3.3a)
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where the normalisation constants N1;c/s, eigenvalues λ1;c/s and integrals Ic/s;0;1 [defined
in Eq. (3.26) of the main text] are given by:

(
N1;c

N1;s

)
=1 +

a2

9
+

(
8279
5207

)
a4

165 888
+

(
237 715
25 325

)
a6

7 962 624

+

(
5 616 721 535
−2 780 766 337

)
a8

275 188 285 440
+O(a10),(

λ21;c
λ21;s

)
=1 +

(
−1
5

)
a2

12
+

(
−23
169

)
5 a4

3456
+

(
−18 821
152 485

)
a6

995 328

+

(
3 603 881
27 745 879

)
a8

286 654 464
+O(a10).

Ic;0;1 =
a√
2

+
a3

9
√

2
+

8 279 a5

165 888
√

2
+

237 715 a7

7 962 624
√

2
+O(a9),

Is;0;1 =
1√
2
− a2

18
√

2
+

2 615 a4

165 888
√

2
+

54 743 a6

2 654 208
√

2
+

4 626 289 343 a8

275 188 285 440
√

2
+O(a10)

(SM:3.3b)

The eigenfunctions corresponding to n = 2 are:

1√
2(1 + a cos θ)

(
f2/N2;c

g2/N2;s

)
=

(
cos(2θ)

sin(2θ)

)

− a

6

(
cos(θ)

sin(θ)

)[
1 +

(
1
31

)
a2

45
+

(
−14

4 936

)
a4

10 125
+

(
−121 742
10 927 933

)
a6

31 893 750

]

− 3a

10

(
cos(3θ)

sin(3θ)

)[
1 +

17

75
a2 +

(
15 238
7 363

)
a4

118 125
+

(
1 948 651
−59 999

)
a6

21 262 500

]

+
2a2

15

(
cos(4θ)

sin(4θ)

)[
1 +

2993

6300
a2 +

(
885 947
670 697

)
a4

2 835 000
+

(
417 687 269

193 033 919

)
a6

1 786 050 000

]

− 4 a3

63

(
cos(5θ)

sin(5θ)

)[
1 +

1739

2400
a2 +

(
16 841 243
30 240 000
535 009
1 120 000

)
a4

]

+
13 a4

420

(
cos(6θ)

sin(6θ)

)[
1 +

22 799

23 400
a2 +

(
15 908 203
18 427 500
57 674 437
73 710 000

)
a4

]

− 247 a5

16200

(
cos(7θ)

sin(7θ)

)(
1 +

544 253

444 600
a2
)

+
3211 a6

425 250

(
cos(8θ)

sin(8θ)

)(
1 +

218 667 527

148 348 200
a2
)

− 54 587 a7

14 553 000

(
cos(9θ)

sin(9θ)

)
+

2 347 241 a8

1 257 379 200

(
cos(10θ)

sin(10θ)

)
+O(a9), (SM:3.3c)

where the normalisation constants N2;c/s, eigenvalues λ2;c/s and integrals Ic/s;0;2 are
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given by:

(
N2;c

N2;s

)
=1 +

157 a2

900
+

(
115 979
175 979

)
a4

1 620 000
+

(
952 559 651

1 808 883 651

)
a6

23 814 000 000

+

(
977 451 802 981

1 939 193 170 981

)
a8

36 741 600 000 000
+O(a10),(

λ22;c
λ22;s

)
=4 +

2 a2

15
+

(
−8
742

)
a4

3 375
+

(
−124 262
1 206 613

)
a6

5 315 625

+

(
−23 163 359
207 817 741

)
a8

956 812 500
+O(a10),

Ic;0;2 =− a2

6
√

2
− 59 a4

1800
√

2
− 120 019 a6

9 720 000
√

2
− 2 681 403 973 a8

428 652 000 000
√

2
+O(a10),

Is;0;2 =
a

3
√

2
− 17 a3

300
√

2
− 316 241 a5

4 860 000
√

2
− 12 523 566 857 a7

214 326 000 000
√

2
+O(a9), (SM:3.3d)

The eigenfunctions corresponding to n = 3 are:

1√
2(1 + a cos θ)

(
f3/N3;c

g3/N3;s

)
=

(
cos(3θ)
sin(3θ)

)
+

7 a2

160

(
cos(θ)

sin(θ)

)[
1 +

(
12 767
39 200
34 817
39 200

)
a2 +

(
346 734 761
3 073 280 000
2 408 497 961
3 073 280 000

)
a4 +

(
474 515 843 733

12 047 257 600 000
8 371 182 426 363
12 047 257 600 000

)
a6

]

− a

5

(
cos(2θ)
sin(2θ)

)[
1 +

1811

5600
a2 +

(
24 221 269
219 520 000
62 037 019
219 520 000

)
a4 +

(
130 045 699 263
3 442 073 600 000
868 451 160 063
3 442 073 600 000

)
a6

]

− 2 a

7

(
cos(4θ)
sin(4θ)

)[
1 +

3851

15 680
a2 +

13 443 721

115 248 000
a4 +

(
21 617 854 235 051
289 134 182 400 000
17 348 607 323 051
289 134 182 400 000

)
a6

]

+
55 a2

448

(
cos(5θ)
sin(5θ)

)[
1 +

8039

16 170
a2 +

12 342 441 007

40 567 296 000
a4 +

(
170 530 641 922 939
795 119 001 600 000
157 039 154 611 189
795 119 001 600 000

)
a6

]

− 11 a3

192

(
cos(6θ)
sin(6θ)

)(
1 +

64 497

86 240
a2 +

7 496 313 861

13 522 432 000
a4
)

+
847 a4

30720

(
cos(7θ)
sin(7θ)

)(
1 +

147 961

148 225
a2 +

644 679 629 761

743 733 760 000
a4
)

− 517 a5

38 400

(
cos(8θ)
sin(8θ)

)(
1 +

5 060 071

4 053 280
a2
)

+
10 857 a6

1 638 400

(
cos(9θ)
sin(9θ)

)(
1 +

14 804 763

9 879 870
a2
)

− 13 959 a7

4 259 840

(
cos(10θ)
sin(10θ)

)
+

15 508 449 a8

9 542 041 600

(
cos(11θ)
sin(11θ)

)
+O(a9), (SM:3.3e)

where the normalisation constants N3;c/s, eigenvalues λ3;c/s and integrals Ic/s;0;3 are
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given by:(
N3;c

N3;s

)
=1 +

223 a2

1225
+

1 199 425 259

12 293 120 000
a4 +

(
32 556 442 797 593
38 910 282 928 343

)
a6

542 126 592 000 000

+

(
108 883 340 088 205 146 587
159 714 394 135 464 282 587

)
a8

2 720 174 388 019 200 000 000
+O(a10),(

λ23;c
λ23;s

)
=9 +

9 a2

70
+

1 093 707

10 976 000
a4 +

(
10 197 202 989
26 873 948 739

)
a6

215 129 600 000

+

(
220 587 681 368 967

1 900 963 265 932 167

)
a8

13 492 928 512 000 000
+O(a10),

Ic;0;3 =
7 a3

160
√

2
+

19 903 a5

896 000
√

2
+

3 315 206 799 a7

280 985 600 000
√

2
+O(a9),

Is;0;3 =− 9 a2

160
√

2
− 23 337 a4

6 272 000
√

2
+

3 392 103 609 a6

1 966 899 200 000
√

2

+
220 940 512 414 733 a8

77 102 448 640 000 000
√

2
+O(a10), (SM:3.3f )

The eigenfunctions corresponding to n = 4 are:

1√
2(1 + a cos θ)

(
f4/N4;c

g4/N4;s

)
=

(
cos(4θ)
sin(4θ)

)
− a3

72

(
cos(θ)

sin(θ)

)[
1 +

(
2 585
4 937

)
a2

4 410
+

(
60 388 801
175 032 900
190 258 009
175 032 900

)
a4

]

+
5 a2

84

(
cos(2θ)
sin(2θ)

)[
1 +

7 747

13 230
a2 +

(
180 740 759
525 098 700
256 977 311
525 098 700

)
a4 +

(
46 842 519 921 871
229 252 841 433 000
103 002 862 081 639
229 252 841 433 000

)
a6

]

− 3 a

14

(
cos(3θ)
sin(3θ)

)[
1 +

61

196
a2 +

4 266 019

23 337 720
a4 +

(
221 583 031 597
2 037 803 034 960
309 636 249 157
2 037 803 034 960

)
a6

]

− 5 a

18

(
cos(5θ)
sin(5θ)

)(
1 +

2887

11 340
a2 +

124 691 197

990 186 120
a4 +

1 879 098 654 779

24 562 804 439 250
a6
)

+
7 a2

60

(
cos(6θ)
sin(6θ)

)(
1 +

44 351

87 318
a2 +

1 377 470 434

4 332 064 275
a4 +

3 797 335 854 506

17 193 963 107 475
a6
)

− 637 a3

11880

(
cos(7θ)
sin(7θ)

)(
1 +

78 367

103 194
a2 +

2 928 027 962

5 119 712 325
a4
)

+
91 a4

3564

(
cos(8θ)
sin(8θ)

)(
1 +

260 608

257 985
a2 +

94 559 197 841

106 490 016 360
a4
)

− 49 a5

3960

(
cos(9θ)
sin(9θ)

)(
1 +

1 300 849

1 031 940
a2
)

+
259 a6

42768

(
cos(10θ)
sin(10θ)

)(
1 +

28 843 187

19 090 890
a2
)

− 1 739 a7

583 200

(
cos(11θ)
sin(11θ)

)
+

50 431 a8

34 214 400

(
cos(12θ)
sin(12θ)

)
+O(a9), (SM:3.3g)

where the normalisation constants N4;c/s, eigenvalues λ4;c/s and integrals Ic/s;0;4 are
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given by:(
N4;c

N4;s

)
=1 +

2929 a2

15876
+

1 258 094 429 a4

12 602 368 800
+

548 970 542 700 389 a6

8 069 700 018 441 600

+
a8

38 434 367 247 833 652 480 000

(
1 914 596 975 181 836 732 371
2 036 610 839 460 673 724 371

)
+O(a10),(

λ24;c
λ24;s

)
=16 +

8 a2

63
+

121 202 a4

1 250 235
+

4 494 725 731 a6

54 584 009 865

+
a8

21 664 393 515 418 500

(
1 325 696 705 088 647
1 860 620 001 765 647

)
+O(a10),

Ic;0;4 =− a4

72
√

2
− 12 235 a6

1 143 072
√

2
− 995 564 543 a8

129 624 364 800
√

2
+O(a10),

Is;0;4 =
a3

63
√

2
+

24 041 a5

5 000 940
√

2
+

1 111 027 697 a7

793 949 234 400
√

2
+O(a9), (SM:3.3h)

The diagonal elements Mn,n, defined in Eq. (5.9) of the main text, are given by:

M1,1 =
a2

3
+

25 a4

108
+

1 933 a6

10 368
+

358 273 a8

2 239 488
+O(a10),

M2,2 =
7 a2

15
+

1 853 a4

6 750
+

691 021 a6

3 543 750
+

148 782 299 a8

956 812 500
+O(a10),

M3,3 =
17 a2

35
+

60 971 a4

171 500
+

907 888 613 a6

3 361 400 000
+

11 165 274 765 073 a8

52 706 752 000 000
+O(a10). (SM:3.3i)

SM:3.1.2. Eigenvalues for the viscosity term

In this subsection we list the series solutions of Eq. (SM:3.1) for the case α = −3.

The even and odd eigenfunctions corresponding to n = 1 are:

(1 + a cos θ)3√
2

(
F1/N1;c

G1/N1;s

)
=

(
cos θ
sin θ

)
+ a

(
cos(2θ)

sin(2θ)

)[
1 +

(
31
−1

)
a2

32
+

(
4 313
−217

)
a4

5120
+

(
478 429
−19 459

)
a6

819 200

]

+
9 a2

32

(
cos(3θ)

sin(3θ)

)[
1 +

(
311
41

)
a2

160
+

(
66 883
−893

)
a4

25 600
+

(
15 933 409
−484 545

)
a6

5 734 400

]

+
a3

80

(
cos(4θ)

sin(4θ)

)[
1 +

(
354
91

)
a2

80
+

(
347 213
15 189

)
a4

35 840

]

− a4

1024

(
cos(5θ)

sin(5θ)

)[
1 +

(
1 095
297

)
a2

280
+

(
3 417 805
152 013

)
a4

501 760

]
+

27 a5

179 200

(
cos(6θ)
sin(6θ)

)[
1 +

(
5 241
1 577

)
a2

1344

]
− 51 a6

1 638 400

(
cos(7θ)
sin(7θ)

)[
1 +

(
91 581
30 595

)
a2

22 848

]
+

153 a7

20 070 400

(
cos(8θ)
sin(8θ)

)
− 53 703 a8

25 690 112 000

(
cos(9θ)
sin(9θ)

)
+O(a9), (SM:3.4a)
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where the normalisation constants and the eigenvalues are given by:(
N1;c

N1;s

)
=1 +

(
−5
1

)
a2

4
+

(
3279
207

)
a4

2048
−
(

1 169 319
3369

)
a6

819 200

+

(
2 404 438 743
−35 419 433

)
a8

1 048 576 000
+O(a10),(

χ2
1;c

χ2
1;s

)
=1 +

(
9
3

)
a2

4
+

(
207
15

)
a4

128
+

(
19 377
−1 233

)
a6

20 480

+

(
694 701
−195 411

)
a8

3 276 800
+O(a10),

Ic;1 =− 3 a√
2
− 3 a3

4
√

2
− 5325 a5

2048
√

2
+

1 143 597 a7

819 200
√

2
+O(a9),

Is;1 =
1√
2

+
a2

4
√

2
− 113 a4

2048
√

2
− 91 529 a6

819 200
√

2
− 57 927 593 a8

1 048 576 000
√

2
+O(a10), (SM:3.4b)

The eigenfunctions corresponding to n = 2 are:

(1 + a cos θ)3√
2

(
F2/N2;c

G2/N2;s

)
=

(
cos(2θ)
sin(2θ)

)
+
a

2

(
cos(θ)
sin(θ)

)[
1− 3

5
a2 −

(
33
8

)
a4

125
−
(

4 089
739

)
a6

12 500

]
+

9 a

10

(
cos(3θ)
sin(3θ)

)[
1 +

a2

25
+

279

1250
a4 +

(
28 303
9053

)
a6

87 500

]
+
a2

5

(
cos(4θ)

sin(4θ)

)[
1 +

11

25
a2 +

2504

4375
a4 +

(
1 199 683

611 683

)
a6

1 400 000

]

+
a5

140

(
cos(5θ)

sin(5θ)

)(
1 +

1 159

800
a2
)
− 9 a6

11 200

(
cos(6θ)

sin(6θ)

)(
1 +

217

150
a2
)

+
7 a7

48 000

(
cos(7θ)

sin(7θ)

)
− a8

30 000

(
cos(8θ)
sin(8θ)

)
+O(a9), (SM:3.4c)

where the normalisation constants and the eigenvalues are given by:(
N2;c

N2;s

)
=1 +

7a2

100
−
(

1 798
1 173

)
a4

10 000
−
(

362 889
6 014

)
a6

1 000 000

−
(

740 695 061
−91 714 314

)
a8

1 400 000 000
+O(a10),(

χ2
2;c

χ2
2;s

)
=4 +

6 a2

5
+

126 a4

125
+

(
7 929
4 179

)
a6

6250
+

(
52 917
10 167

)
a8

31 250
+O(a10)

Ic;2 =
3 a2

2
√

2
+

501 a4

200
√

2
+

69 711 a6

20 000
√

2
+

1 095 621 a8

250 000
√

2
+O(a10),

Is;2 =− a√
2
− 77 a3

100
√

2
− 2111 a5

5000
√

2
− 118 701 a7

1 000 000
√

2
+O(a9) (SM:3.4d)

The eigenfunctions corresponding to n = 3 are:
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(1 + a cos θ)3√
2

(
F3/N3;c

G3/N3;s

)
=

(
cos(3θ)
sin(3θ)

)
+

3 a2

160

(
cos(θ)

sin(θ)

)[
1−

(
9 691
5 600
7 941
5 600

)
a2 −

(
154 340 377
439 040 000
346 420 377
439 040 000

)
a4 −

(
1 194 270 293 747
5 163 110 400 000
3 050 731 639 997
5 163 110 400 000

)
a6

]

+
3 a

5

(
cos(2θ)

sin(2θ)

)[
1− 343

800
a2 −

(
2 276 573
2 950 323

)
a4

31 360 000
−

(
159 364 862 017
1 475 174 400 000
799 005 790 085
7 375 872 000 000

)
a6

]

+
6 a

7

(
cos(4θ)

sin(4θ)

)[
1− 817

15 680
a2 +

16 100 807

115 248 000
a4 +

(
27 121 790 334 503
289 134 182 400 000
244 516 963 701 521
2 023 939 276 800 000

)
a6

]

+
75 a2

448

(
cos(5θ)
sin(5θ)

)[
1 +

2041

7350
a2 +

6 782 829 737

18 439 680 000
a4 +

(
1 319 142 046 324 451
3 975 595 008 000 000
1 537 502 350 890 701
3 975 595 008 000 000

)
a6

]

− 5 a3

1344

(
cos(6θ)

sin(6θ)

)[
1− 27 813

39 200
a2 − 63 903 588 831

67 612 160 000
a4
]

+
a4

2048

(
cos(7θ)
sin(7θ)

)(
1− 1721

2695
a2 − 70 050 165 701

67 612 160 000
a4
)

− 19 a5

197 120

(
cos(8θ)
sin(8θ)

)(
1− 361 007

744 800
a2
)

+
589 a6

25 231 360

(
cos(9θ)
sin(9θ)

)(
1− 5 594 091

18 759 650
a2
)

− 2945 a7

459 210 752

(
cos(10θ)
sin(10θ)

)
+

35 929 a8

18 702 401 536

(
cos(11θ)
sin(11θ)

)
+O(a9), (SM:3.4e)

where the normalisation constants and the eigenvalues are given by:

(
N3;c

N3;s

)
=1 +

339 a2

2450
− 670 144 221

12 293 120 000
a4 −

(
30 708 394 950 253
41 642 251 826 503

)
a6

542 126 592 000 000

−
(

22 705 450 573 027 956 877
21 719 992 990 220 916 877

)
a8

302 241 598 668 800 000 000
+O(a10),(

χ2
3;c

χ2
3;s

)
=9 +

81 a2

70
+

10 004 067 a4

10 976 000
+

(
161 791 474 881
184 670 003 631

)
a6

215 129 600 000

+

(
9 504 660 124 760 247
10 794 030 777 176 247

)
a8

13 492 928 512 000 000
+O(a10),

Ic;3 =− 121 a3

160
√

2
− 8 624 187 a5

6 272 000
√

2
− 3 773 553 410 799 a7

1 966 899 200 000
√

2
+O(a7),

Is;3 =
99 a2

160
√

2
+

4 478 823 a4

6 272 000
√

2
+

1 363 121 741 781 a6

1 966 899 200 000
√

2

+
47 148 574 938 227 333 a8

77 102 448 640 000 000
√

2
+O(a10), (SM:3.4f )
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The eigenfunctions corresponding to n = 4 are:

(1 + a cos θ)3√
2

(
F4/N4;c

G4/N4;s

)
=

(
cos(4θ)
sin(4θ)

)
− a3

280

(
cos(θ)

sin(θ)

)[
1−

(
1 129
541

)
a2

1 470
−
(

2 592 461
3 108 431

)
a4

6 482 700

]

+
a2

28

(
cos(2θ)

sin(2θ)

)[
1− 1297

1470
a2 −

(
2 453 441
2 064 479

)
a4

6 482 700
−
(

90 110 373 169
96 485 460 349

)
a6

314 475 777 000

]

+
9 a

14

(
cos(3θ)

sin(3θ)

)[
1− 215

588
a2 − 134 431

2 593 080
a4 −

(
9 526 796 561

125 790 310 800
144 696 279 826
1 761 064 351 200

)
a6

]

+
5 a

6

(
cos(5θ)
sin(5θ)

)(
1− 17

180
a2 +

187 513

1 746 360
a4 +

5 523 205 229

77 014 476 000
a6
)

+
3 a2

20

(
cos(6θ)

sin(6θ)

)(
1 +

269

1386
a2 +

17 239 469

61 122 600
a4 +

179 351 057 909

700 831 731 600
a6
)

− 7 a3

1320

(
cos(7θ)
sin(7θ)

)(
1− 13

63
a2 − 19 194 293

72 235 800
a4
)

+
a4

1320

(
cos(8θ)

sin(8θ)

)(
1− 59

585
a2 − 3 031 739

10 319 400
a4
)

− 9 a5

57200

(
cos(9θ)
sin(9θ)

)(
1 +

17

252
a2
)

+
19 a6

480 480

(
cos(10θ)
sin(10θ)

)(
1 +

21 971

83 790
a2
)

− 57 a7

5 096 000

(
cos(11θ)
sin(11θ)

)
+

1539 a8

448 448 000

(
cos(12θ)
sin(12θ)

)
+O(a9), (SM:3.4g)

where the normalisation constants and the eigenvalues are given by:(
N4;c

N4;s

)
=1 +

283a2

1764
− 4 011 409 a4

155 584 800
− 385 712 253 103 a6

11 069 547 350 400

−
(

202 339 939 883 471 309
244 789 123 790 003 789

)
a8

5 858 004 457 831 680 000
+O(a10),(

χ2
4;c

χ2
4;s

)
=16 +

8 a2

7
+

13 598 a4

15 435
+

56 779 561 a6

74 875 185

+

(
2 197 706 056 367
2 343 263 416 007

)
a8

3 301 995 658 500
+O(a10),

Ic;4 =
27 a4

70
√

2
+

53 433 a6

68 600
√

2
+

463 131 007 a8

403 368 000
√

2
+O(a10),

Is;4 =− 12 a3

35
√

2
− 12 589 a5

25 725
√

2
− 250 425 647 a7

453 789 000
√

2
+O(a9). (SM:3.4h)

SM:3.2. Eigenfunctions for a = 1

This section discusses the analytical solutions of Eq. (SM:3.1) for the limiting case of
a = 1.
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SM:3.2.1. Eigenfunctions for the inviscid case

When a = 1, the integration weight (1 + a cos θ)−1 in Eq. (3.11) of the main text
diverges as θ → π. The even solutions must therefore be proportional to a power of
1 + cos θ. For this reason, the zeroth order even mode f0 = (1− a2)1/4, corresponding to
λ2c;n = 0, must be excluded from the set of mode solutions.

Introducing fn = (1 + a cos θ)αf̃n, we rewrite Eq. (3.15) with respect to the variable
u = (1 + cos θ)/2:

u(1− u)
d2f̃n
du2

+

(
2α− 1

2
− 2αu

)
df̃n
du

+

[
λ2c;n − α(α− 1) +

α

u

(
α− 3

2

)]
f̃n = 0.

(SM:3.8)
In order for the solution to be regular around u = 0, it is necessary for the coefficient of
u−1 to vanish. This selects the value α = 3/2 and the above equation becomes that of
the hypergeometric function (Olver et al. 2010):

u(1− u)
d2f̃

du2
+ [c− (a+ b+ 1)u]

df̃

du
− abf̃ = 0, (SM:3.9)

where c = 5
2 , a = 1 +

√
λ2c;n + 1

4 and b = 1 −
√
λ2c;n + 1

4 . Since c is not an integer, the

general solution is the linear combination

f̃ = A 2F1(a, b; c;u) +Bu1−c2F1(a− c+ 1, b− c+ 1; 2− c;u). (SM:3.10)

Since 1− c = − 3
2 , the prefactor in the second term cancels the (1 + cos θ)α factor which

allows f to have finite norm. Thus, this term must be discarded by setting B = 0. Turning
the attention now towards the first term, we note that close to u = 1, we have

2F1

(
1 + ν, 1− ν;

5

2
; 1− δu

)
=

3 cos νπ

1− 4ν2
− 3 sin νπ

2ν

√
δu+O(δu), (SM:3.11)

where
√
δu = | sin(θ/2)|. While the above expression allows the limit θ → 0 of fn to be

obtained, the derivative of fn is in general not well defined, since

lim
θ→0±

∂θ

√
1− cos θ

2
= lim
θ→0±

sin θ

4| sin(θ/2)|
, (SM:3.12)

which is ±1/2 depending on the direction from which 0 is approached. The only way
to obtain a differentiable solution is to cancel the coefficient of

√
δu, by setting ν =√

λ2 + 1/4 to an integer value n = 1, 2, . . . . This gives the following eigenfrequency
spectrum:

λ2c;n = n2 − 1

4
, (SM:3.13)

while the normalised eigenfunctions are

lim
a→1

fn(θ) =(1 + cos θ)3/2
(−1)n+1n

3

√
2(4n2 − 1)2F1

(
1 + n, 1− n;

5

2
;

1 + cos θ

2

)
=(1 + cos θ)3/2

√
2(4n2 − 1)

n−1∑
j=0

(−1)n−j−1(n+ j)!

j!(n− j − 1)!(2j + 3)!!
(1 + cos θ)j .

(SM:3.14)
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The first few functions in the set are listed below:

f1(θ) =

√
2

3
(1 + cos θ)3/2,

f2(θ) =2

√
2

15
(1 + cos θ)3/2(3 cos θ − 2),

f3(θ) =

√
2

35
(1 + cos θ)3/2(20 cos2 θ − 16 cos θ − 1),

f4(θ) =
4

3

√
2

7
(1 + cos θ)3/2(14 cos3 θ − 12 cos2 θ − 3 cos θ + 2). (SM:3.15)

The odd solutions of Eq. (3.10) in the limit a→ 1 have much simpler expressions:

gn(θ) =

√
n+ 1

n
sin(nθ) +

√
n

n+ 1
sin[(n+ 1)θ]. (SM:3.16)

The discrete eigenvalues corresponding to the odd modes gn are

λs;n =
√
n(n+ 1). (SM:3.17)

The results in Eqs. (SM:3.13) and (SM:3.17) are shown in Fig. 2 of the main text as
horizontal lines, indicating the a→ 1 limits of λc;n and λs;n for n = 1, 2 and 3.

SM:3.2.2. Eigenfunctions for the viscosity term

As in the previous subsection, Eq. (4.5) of the main text can be rewritten in the
hypergeometric form, by switching to the variable u = (1 + cos θ)/2:

u(1− u)
d2Fn
du2

+

(
7

2
− 4u

)
dFn
du

+ χ2
c;nFn =0,

u(1− u)
d2G̃n
du2

+

(
7

2
− 5u

)
dG̃n
du

+

(
χ2
s;n −

7

4

)
G̃n =0, (SM:3.18)

where G̃ is defined through

G(θ) =
sin θ√

1 + cos θ
G̃(θ). (SM:3.19)

Comparing Eq. (SM:3.18) with Eq. (SM:3.9), we find a = 3
2−
√
χ2 + 9

4 , b = 3
2 +
√
χ2 + 9

4

and c = 7/2 for Fn and a = 2 −
√
χ2 + 9

4 , b = 2 +
√
χ2 + 9

4 and c = 7/2 for Gn. Since

1 − c = −5/2 in both cases, the second solution in Eq. (SM:3.10) diverges when θ = π
and u = 0. The continuity of the solution and its derivative is guaranteed when a = −n
is a non-positive integer (n = 0, 1, . . . ), such that the allowed eigenvalues are

χ2
c;n = n(n+ 3), χ2

s;n =

(
n+

5

2

)(
n− 1

2

)
. (SM:3.20)

These limiting values for the eigenvalues are shown with horizontal lines in Fig. 8 of the
main text.

When n = 0, the odd mode is not defined, while the even mode is given by Eq. (4.7),
i.e. F0(θ) =

√
2/5. Imposing unit norm with respect to the inner product in Eq. (4.6),
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we find

Fn(θ) =
(−1)n(2n+ 3)

15

√
(n+ 1)(n+ 2)(2n+ 1)(2n+ 5)2F1

(
−n, 3 + n;

7

2
;

1 + cos θ

2

)
=(2n+ 3)

√
(2n+ 1)(2n+ 5)

(n+ 1)(n+ 2)

n∑
j=0

(−1)n−j(n+ j + 2)!(1 + cos θ)j

j!(n− j)!(2j + 5)!!
,

G̃n(θ) =
(−1)n+1(n+ 1)

15

√
2n(n+ 2)(2n+ 1)(2n+ 3)2F1

(
1− n, 3 + n;

7

2
;

1 + cos θ

2

)
=

√
2(2n+ 1)(2n+ 3)

n(n+ 2)

n−1∑
j=0

(−1)n+1−j(n+ j + 2)!(1 + cos θ)j

j!(n− j − 1)!(2j + 5)!!
,

(SM:3.21)

The first few eigenfunctions Fn(θ) and Gn(θ) are

F1(θ) =

√
2

7
(4 cos θ − 3), G1(θ) =

√
8

5

sin θ√
1 + cos θ

,

F2(θ) =
2√
15

(10 cos2 θ − 10 cos θ + 1), G2(θ) =
4√
35

sin θ√
1 + cos θ

(5 cos θ − 2),

F3(θ) =
2√
385

(112 cos3 θ − 126 cos2 θ + 6 cos θ + 13),

G3(θ) =
8√
210

sin θ√
1 + cos θ

(
14 cos2 θ − 8 cos θ − 1

)
. (SM:3.22)
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