Movie Captions

MOVIE 1. Stokesian Dynamics (SD) simulations. Squirmer dynamics are calculated for $\phi = 0.3$, Sq = 1, $\beta = 1$, $G_{bh} = 0$, and presented over the interval $t \in [0, 30]$.

MOVIE 2. Stokesian Dynamics (SD) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = -3$, $G_{bh} = 100$, $\alpha = 0$, and presented over the interval $t \in [0, 30]$.

MOVIE 3. Stokesian Dynamics (SD) simulations. Squirmer dynamics are calculated for $\phi = 0.7, Sq = 1, \beta = =3, G_{bh} = 100, \alpha = \pi/2$, and presented over the interval $t \in [0, 30]$.

MOVIE 4. Stokesian Dynamics (SD) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = 1$, $G_{bh} = 0$, and presented over the interval $t \in [0, 30]$.

MOVIE 5. Stokesian Dynamics (SD) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = 3$, $G_{bh} = 100$, $\alpha = 0$ and presented over the interval $t \in [0, 30]$.

MOVIE 6. Stokesian Dynamics (SD) simulations. Squirmer dynamics are calculated for $\phi = 0.7, Sq = 1, \beta = 3, G_{bh} = 100, \alpha = \pi/2$ and presented over the interval $t \in [0, 30]$.

MOVIE 7. Lubrication Theory (LT) simulations. Squirmer dynamics are calculated for $\phi = 0.3$, Sq = 1, $\beta = 1$, $G_{bh} = 0$, and presented over the interval $t \in [0, 30]$.

MOVIE 8. Lubrication Theory (LT) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = -3$, $G_{bh} = 100$, $\alpha = 0$, and presented over the interval $t \in [0, 30]$.

MOVIE 9. Lubrication Theory (LT) simulations. Squirmer dynamics are calculated for $\phi = 0.7, Sq = 1, \beta = =3, G_{bh} = 100, \alpha = \pi/2$, and presented over the interval $t \in [0, 30]$.

MOVIE 10. Lubrication Theory (LT) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = 1$, $G_{bh} = 0$, and presented over the interval $t \in [0, 30]$.

MOVIE 11, Lubrication Theory (LT) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = 3$, $G_{bh} = 100$, $\alpha = 0$ and presented over the interval $t \in [0, 30]$.

MOVIE 12. Lubrication Theory (LT) simulations. Squirmer dynamics are calculated for $\phi = 0.7$, Sq = 1, $\beta = 3$, $G_{bh} = 100$, $\alpha = \pi/2$ and presented over the interval $t \in [0, 30]$.