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Appendix G. Experimental data

This appendix collects the NIF experimental data used in the present study. Table 9
gives the axial shock position data—from three NIF shots—used to constrain the radia-
tion temperature boundary conditions, as described in the main paper. As implemented
in two of those NIF shots, the VISAR diagnostic returned the temporal history of shock
speed in the quartz, not just the main-shock or reshock breakout time. Those histories
were used qualitatively to improve the boundary-condition tuning process.

Table 10 gives the mixing-layer width data—from six NIF shots—used to constrain
the interface initial perturbation. The target designs for those NIF shots were nominally
identical; in particular, the nominal density of all foam components was ρL,nom =
0.085 g cm-3. However, the foam densities in the actual targets exhibited deviations
of ∼ 0–15% from the nominal value, leading to variations in the main-shock and reshock
velocities. For making comparisons with simulations using only the nominal density, we
can estimate an adjusted experimental mixing-layer width Wexp,adj, which corrects for
the off-nominal foam densities associated with the measured experimental mixing-layer
width Wexp,mea:

Wexp,adj =Wexp,mea

[
1 +
Wsim(ρL,nom)−Wsim(ρL,mea)

Wsim(ρL,mea)

]
. (G 1)

Here,Wsim is the simulated mixing-layer width, expressed as a function of foam density ρL
and obtained from a series of 1-D simulations using a tuned Reynolds-averaged turbulence
model (Morgan & Wickett 2015) to treat MH–ML mixing. Those 1-D simulations are not
detailed here, though they are based on the 1-D simulations described in the appendices
of the main paper. The quantity ρL,mea is the averaged foam density in the NIF target,
based on measured masses and volumes of the foam components. The adjustment of
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ID texp xh,exp Shock Diagnostic

N180425-003 10.7 ± 0.2 550. ± 10 Main shock VISAR
N170322-002 30.3 ± 0.1 1819. ± 50 Main shock X-ray radiography

N171024-004 (2.3) ± 0.2 4650. ± 10 Reshock VISAR (inferred)
N170322-002 30.3 ± 0.1 1735. ± 50 Reshock X-ray radiography

Table 9. Measurements of the axial shock positions xh,exp at several times texp in the Reshock
Campaign experiments. Times are in ns and positions are in µm. The measurements are from
three different NIF shots, each referenced by an identifier (ID). The first shot, a focused study
of the main drive, used the VISAR diagnostic (Celliers et al. 2004) to measure the main-shock
breakout time. The second shot, a focused study of the reshock drive, used the VISAR diagnostic
to infer the reshock breakout time, with the support of 1-D simulations not detailed here. The
third shot used X-ray radiography to measure (Huntington et al. 2020) both the main shock
and reshock positions in the foam region at a common instant in time. See the main paper
for definitions of the main-shock and reshock breakout times. Experimental uncertainties in
the values of time and position are estimates based on broad assessments of the diagnostic
techniques, and they are not based on statistical analysis of ensembles.

ID texp Wexp,mea Wexp,adj dWexp [±]

N170322-002 30.3 73. 73. 10.
N170322-003 36.3 78. 80. 12.
N161128-003 40.3 110. 120. 20.
N170220-002 42.3 116. 115. 11.
N161213-001 44.3 138. 141. 13.
N161129-001 48.3 126. 124. 12.

Table 10. Measured and adjusted values of the experimental mixing-layer width at several times
texp in the Reshock Campaign experiments. Times are in ns and widths are in µm. The data
are from six different NIF shots, each referenced by an identifier (ID). The shots used nominally
identical targets. For each time, Wexp,mea is the mixing-layer width measured using the X-ray
radiography technique of Huntington et al. (2020); Wexp,adj is the mixing-layer width adjusted
via (G 1) to approximately account for as-built densities of the foam components; and dWexp is
an estimate of experimental uncertainty in the mixing-layer widths (including contributions of
± 10 µm associated with diagnostic uncertainty and ± 0–10 µm associated with deviation of the
as-built foam densities from the nominal value). The experimental uncertainty on each time is
estimated to be ± 0.1 ns. The uncertainties reported here are estimates, and they are not based
on statistical analysis of ensembles. In the main paper, Wexp always refers to Wexp,mea.

(G 1) is crude. It does not account for two- or three-dimensional spatial variation of the
foam density across multiple blocks in the target assembly.

We provide the adjusted experimental mixing-layer widths only to illustrate the
potential impact of shot-to-shot variation in the experimental data. Pending further
analysis, the values of Wexp,adj reported in table 10 should be treated as preliminary,
unlike the values of Wexp,mea. In the main paper, Wexp always refers to the measured
data Wexp,mea.

Appendix H. Validity of the continuum assumption

This appendix provides evidence that the HED mixing layers in the present study are
reasonably described by the formalisms of fluid mechanics. To test the validity of the
continuum assumption, we estimate the Knudsen number Kn = λnn/L, where λnn is
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the mean free path for ion–ion collisions in the mixing plasmas and L is a characteristic
macroscopic length. Generally, if Kn � 1, then the continuum assumption is valid and
a full Boltzmann-equation analysis is unnecessary.

Consider a gas of identical hard-sphere particles, each with mass m. A simple relation
can be derived for the mean free path λ in such a gas as a function of its viscosity µ.
From kinetic theory, the mean free path for particle–particle collisions is (see Chapman
& Cowling (1970, (5.21.4)) and McQuarrie (2000, (16.5) and discussion))

λ =
1

π n d2
√

2
, (H 1)

where n = ρ/m is the number density, ρ is the density and d is the sphere diameter. An
analytic approximation for the viscosity is (see Chapman & Cowling (1970, (10.21.1))
and McQuarrie (2000, (16.36) and (19.25)))

µ =
5

16 d2

(
mkb T

π

)1/2

, (H 2)

where T is the temperature and kb is the Boltzmann constant (≈ 1.381 × 10-16 erg K-1).
Combining these results to eliminate d gives

λ =
16µ

5ρ

(
m

2π kb T

)1/2

. (H 3)

The expression (H 3) can be used to estimate λnn in the present study by using the
mass of a single atom for m (computable from the atomic weight), the simulated ion
temperature for T , the simulated density for ρ and the simulated viscosity for µ. We
claim that this approach gives approximate order-of-magnitude values for λnn, despite
the fact that the plasmas under consideration are not hard-sphere gases. This use of
(H 3) does partially account for HED phenomena via the viscosity model described in
the main paper. In the shocked and reshocked mixing layers, λnn ranges from ∼ 3 × 10-4

to 7 × 10-4 µm. By comparison, the mixing-layer width ranges from ∼ 4 to 200 µm, the
smallest characteristic wavelength in the initial MH–ML interface perturbation is 2 µm
and the standard deviation of the smallest initial perturbation component is ∼ 0.07 µm.
Therefore, Knudsen numbers based on various macroscopic lengths are indeed small,
supporting the claim that a continuum Navier–Stokes-based methodology is reasonable.

Appendix I. Magnetohydrodynamic phenomena

The present study did not consider magnetohydrodynamic phenomena, i.e. the cou-
pling of electric and magnetic fields with the fluid equations of motion. Magnetohy-
drodynamics can be important in turbulent flows of contemporary interest (Davidson
2015) and in HED plasmas generated at facilities like the NIF. This appendix provides
quantitative support for the neglect of magnetohydrodynamics in the present study. We
show that pressures associated with self-generated magnetic fields are small relative to
total pressures in the mixing layer. This appendix uses the Gaussian (rather than SI)
system of units.

Let Ei be the electric field, Bi the magnetic field, Ji the current density and r the
resistivity. Then the electron momentum equation can be written as a generalized Ohm’s
law, after expressing the electron fluid velocity in terms of the current density and
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neglecting electron inertia (Goldston & Rutherford 1995, (8.13)):

Ei +
1

co
εijk ujBk = rJi +

1

e ne

(
1

co
εijk JjBk −

∂pe
∂xi

)
. (I 1)

Faraday’s law is (Goldston & Rutherford 1995, (8.16))

εijk
∂Ej

∂xk
= − 1

co

∂Bi

∂t
. (I 2)

The magnetic field pressure is (Goldston & Rutherford 1995, (9.8))

p =
BiBi

8π
. (I 3)

Here, as in the main paper, e is the charge of an electron (≈ 4.803 × 10-10 statcoulombs),
ne is the electron number density, pe is the electron pressure and co is the speed of light
in a vacuum. Suppose that Bi = 0 and Ji = 0. Then an estimate for the magnetic field
self-generation rate is

∂Bi

∂t
≈ − co

e n2e
εijk

∂pe
∂xj

∂ne
∂xk

. (I 4)

We can use this relation to obtain order-of-magnitude estimates for the self-generated
magnetic field pressures associated with the first shock and reshock traversals of the
MH–ML mixing layer, using pre- and post-shock pe and ne values at the mixing-layer
edges; mixing-layer averages of local gradient scale lengths of density and total pressure;
and traversal times based on the shock velocities. We assume, conservatively, that the
gradients ∂pe/∂xj and ∂ne/∂xk are orthogonal. The procedure yields p values of ∼ 3 ×
10-5 and 0.04 Mbar for the first shock and reshock traversals, respectively. Since p is much
less than total pressures in the mixing layer (∼ 2–35 Mbar), induced magnetic fields likely
do not have a significant impact on the flow dynamics of interest.

Appendix J. Enstrophy analysis: supplementary results

To support the analysis of enstrophy in the main paper, recall the evolution equation

∂

∂t
(ρΩ) +

∂

∂xj
(ρΩ uj) =

(
ρωj Sij ωi

)
︸ ︷︷ ︸

EI

+

(
− 2 ρΩ

∂uj
∂xj

)
︸ ︷︷ ︸

EII

(J 1)

+

(
ωi

ρ
εijk

∂ρ

∂xj

∂p

∂xk

)
︸ ︷︷ ︸

EIII

+

(
ρωi εijk

∂

∂xj

[
1

ρ

∂σkl
∂xl

])
︸ ︷︷ ︸

EIV

.

Figure 23 plots early- and late-time normalized mixing-layer integrals of each term on the
right-hand side of (J 1), from all three baseline simulations. The finest-resolution results
were already presented in the main paper; they are shown again for comparison. See the
associated discussion of mesh sensitivity in the main paper. A complete derivation of
(J 1) is provided below.
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Figure 23. Evolution of the mixing-layer integrals of each term EI, ..., EIV in the enstrophy
evolution equation (J 1), normalized by bρΩc, in the three baseline simulations. The figure
headers state Nyz,2 as defined in the main paper. Figures in the left column display early-time
results before reshock, and figures in the right column display late-time results after reshock.
The ordinate limits of the left-column figures are different from those of the right-column figures.
The main paper defines the mixing-layer integral.
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Appendix K. MDTKE analysis: supplementary results

To support the analysis of MDTKE in the main paper, recall the evolution equation

∂

∂t
(K) +

∂

∂xj
(K ũj) =

(
− ρu′′i u′′j

∂ũi
∂xj

)
︸ ︷︷ ︸

TI

+

(
u′′i

[
∂σ̄ij
∂xj

− ∂p̄

∂xi

])
︸ ︷︷ ︸

TII

+

(
p′
∂u′′i
∂xi

)
︸ ︷︷ ︸

TIII

(K 1)

+

(
− ∂

∂xj

[
1
2 ρ̄

˜(u′′i u′′i u′′j )+ p′u′′j − σ′
iju

′′
i

])
︸ ︷︷ ︸

TIV

+

(
− σ′

ij

∂u′′i
∂xj

)
︸ ︷︷ ︸

TV

.

Figure 24 plots early- and late-time normalized mixing-layer integrals of each term on the
right-hand side of (K 1), from all three baseline simulations. The finest-resolution results
were already presented in the main paper; they are shown again for comparison. See the
associated discussion of mesh sensitivity in the main paper. A complete derivation of
(K 1) is provided below.
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Figure 24. Evolution of the mixing-layer integrals of each term TI, ..., TV in the MDTKE
evolution equation (K 1), normalized by bKc, in the three baseline simulations. The figure headers
state Nyz,2 as defined in the main paper. Figures in the left column display early-time results
before reshock, and figures in the right column display late-time results after reshock. The
ordinate limits of the left-column figures are different from those of the right-column figures.
The main paper defines the mixing-layer integral.
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Appendix L. Fluid mechanics fundamentals

This appendix derives several important equations used in the present study. The
exposition is based on graduate-level fluid mechanics textbooks (Aris 1962; Panton 2005),
material on compressible turbulence (Liou & Shih 1991; Andreopoulos et al. 2000; Sagaut
& Cambon 2008; Chassaing et al. 2010; Gatski & Bonnet 2013) and a mathematical
methods textbook (Riley et al. 2006). Our goal is to clearly and succinctly develop—
starting only from basic conservation laws and using consistent definitions and notation—
the key equations governing vorticity, enstrophy, the Reynolds stress tensor and MDTKE.
The derivations are intended for students or non-specialists.

L.1. Preliminaries

This appendix summarizes notation, definitions and identities from tensor mathematics
and elementary fluid mechanics. For further explanation, see Aris (1962), Panton (2005)
and Riley et al. (2006).

A vector a is written in index notation as ai. The summation convention for repeated
indices is

aiai ≡ a1a1 + a2a2 + a3a3. (L 1)

Two important tensors are the Kronecker delta δij (a symmetric second-order tensor,
also called the substitution tensor or identity tensor) and the Levi-Civita symbol εijk (an
antisymmetric third-order tensor, also called the permutation symbol or the alternating
unit tensor):

δij =

{
1 if i = j,

0 if i 6= j,
(L 2)

εijk =


+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) = (3, 2, 1), (2, 1, 3), or (1, 3, 2),

0 otherwise.

(L 3)

A tensor is symmetric if the interchange of any two indices does not change the value of
the component; a tensor is antisymmetric if the interchange of any two indices reverses
the sign of the component, while leaving its absolute value unchanged (Aris 1962, §2.61).
A useful identity is

εijk εklm = δil δjm − δim δjl. (L 4)

If a and b are vectors, then the cross product c = a× b is given by ci = εijkajbk.
Let u be the fluid velocity vector. The vorticity, expressed in index and symbolic

notation, is

ωi = εijk
∂uk
∂xj

⇐⇒ ω =∇× u. (L 5)

The symmetric deformation or rate of strain tensor is

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (L 6)
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The following identities hold, for any scalar φ (Aris 1962, §3.24):

εijk
∂

∂xj

(
∂φ

∂xk

)
= 0 ⇐⇒ ∇× (∇φ) = 0 , (L 7)

∂ωi

∂xi
=

∂

∂xi

(
εijk

∂uk
∂xj

)
= 0 ⇐⇒ ∇ · ω =∇ · (∇× u) = 0 , (L 8)

uj
∂ui
∂xj

= εijk ωjuk +
1

2

∂

∂xi
(ukuk) ⇐⇒ (u · ∇)u = ω × u + 1

2∇
(
|u|2

)
. (L 9)

Let Tij be any tensor. Following Aris (1962, §2.45) and Panton (2005, §3.6), it can be
written as a sum of symmetric and antisymmetric components:

Tij = 1
2 (Tij + Tji)︸ ︷︷ ︸

symmetric

+ 1
2 (Tij − Tji)︸ ︷︷ ︸
antisymmetric

= [Tij ]sym. + 1
2 εijk dk, dk = εklm Tlm. (L 10)

In particular, from the definitions above,

∂ui
∂xj

= Sij +
1

2
εijk εklm

∂ul
∂xm

= Sij −
1

2
εijk εklm

∂um
∂xl

= Sij − 1
2 εijk ωk. (L 11)

If Qij is a symmetric tensor and Rij is an antisymmetric tensor, then their inner product
is zero:

QijRij = 0. (L 12)

Consider any quantities a, b, c and d and any independent variable z. As noted by Liou
& Shih (1991), the following identities are useful:

a
∂

∂z
(b c) + b

∂

∂z
(a c) =

∂

∂z
(a b c) + a b

∂

∂z
(c) , (L 13)

a
∂

∂z
(b c d) + b

∂

∂z
(a c d) =

∂

∂z
(a b c d) + a b

∂

∂z
(c d) . (L 14)
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L.2. Equations of fluid motion

The continuity equation for conservation of mass is

∂ρ

∂t
+

∂

∂xj
(ρ uj) = 0, (L 15)

where ρ is the density and uj is the fluid velocity.
Define the substantial (or material) derivative as the sum of the local rate of change

and the convective change (Panton 2005, §4.3):

D(·)
Dt
≡ ∂(·)

∂t
+ uj

∂(·)
∂xj

. (L 16)

The Navier–Stokes equations for conservation of momentum (consisting of three scalar
equations, one for each coordinate index i) are

ρ
Dui
Dt

= ρ
∂ui
∂t

+ ρ uj
∂ui
∂xj

=
∂Σij

∂xj
, (L 17)

with

Σij = −p δij + σij , (L 18)

σij = 2µSij + λ
∂uk
∂xk

δij = 2µ

(
Sij −

1

3

∂uk
∂xk

δij

)
, (L 19)

where Σij is the stress tensor, p is the pressure, σij is the deviatoric viscous stress tensor,
µ is the shear viscosity and λ is the second viscosity coefficient. In (L 19), we have used the
Stokes assumption that the thermodynamic and mechanical pressures are equal, which
implies

λ = − 2
3 µ. (L 20)

For a full discussion of the Stokes assumption, see Aris (1962, §5.24), Panton (2005, §6.1)
and Gatski & Bonnet (2013, §2.2.1). Unless stated otherwise, in this supplementary
material and in the main paper, the term viscosity refers to µ. Note that µ is sometimes
called the dynamic viscosity, to distinguish it from the kinematic viscosity ν = µ/ρ
(Panton 2005, §7.7). The kinematic viscosity is also called the momentum diffusivity.

Let φ be any flow variable. From (L 15) and (L 16),

ρ
Dφ

Dt
= ρ

∂φ

∂t
+ ρ uj

∂φ

∂xj
=

[
∂

∂t
(ρ φ)− φ ∂ρ

∂t

]
+

[
∂

∂xj
(ρ φuj)− φ

∂

∂xj
(ρ uj)

]
=

∂

∂t
(ρ φ) +

∂

∂xj
(ρ φuj)− φ

[
∂ρ

∂t
+

∂

∂xj
(ρ uj)

]
=

∂

∂t
(ρ φ) +

∂

∂xj
(ρ φuj) . (L 21)

In particular,

ρ
Dui
Dt

=
∂

∂t
(ρ ui) +

∂

∂xj
(ρ uiuj) (L 22)

gives an alternate form of the Navier–Stokes equations:

∂

∂t
(ρ ui) +

∂

∂xj
(ρ uiuj) =

∂Σij

∂xj
. (L 23)
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L.3. Evolution of vorticity

Take (L 17), apply the identity (L 9) and redefine indices:

ρ
∂ui
∂t

+ ρ

[
εijk ωjuk +

1

2

∂

∂xi
(ukuk)

]
=

∂Σij

∂xj

⇓
∂uk
∂t

+ εklm ωl um = −1

2

∂

∂xk
(umum) +

1

ρ

∂Σkl

∂xl
.

Take the curl of this equation, i.e. apply the operator εijk ∂(·)k/∂xj to all terms:

εijk
∂

∂xj

(
∂uk
∂t

)
︸ ︷︷ ︸

1

+ εijk
∂

∂xj
(εklm ωl um)︸ ︷︷ ︸
2

=

−1

2
εijk

∂

∂xj

[
∂

∂xk
(umum)

]
︸ ︷︷ ︸

3

+ εijk
∂

∂xj

(
1

ρ

∂Σkl

∂xl

)
︸ ︷︷ ︸

4

.

Consider each of the numbered terms:

1 =
∂

∂t

(
εijk

∂uk
∂xj

)
=
∂ωi

∂t
,

2 =
∂

∂xj
[(δil δjm − δim δjl)ωl um] [from (L 4)]

=
∂

∂xj
(ωi uj − ωj ui)

= ωi
∂uj
∂xj

+ uj
∂ωi

∂xj
− ωj

∂ui
∂xj
− ui

∂ωj

∂xj

= ωi
∂uj
∂xj

+ uj
∂ωi

∂xj
− ωj

∂ui
∂xj

[from (L 8)] ,

3 = 0 [from (L 7)] ,

4 =
1

ρ
εijk

∂2Σkl

∂xj∂xl
− 1

ρ2
εijk

∂ρ

∂xj

∂Σkl

∂xl
.

Combining all of these results, multiplying through by ρ and rearranging terms yields an
evolution equation for vorticity (compare Gatski & Bonnet (2013, (2.11))):

ρ
Dωi

Dt
= ρ

∂ωi

∂t
+ ρ uj

∂ωi

∂xj

= ρ
∂ui
∂xj

ωj − ρ
∂uj
∂xj

ωi −
1

ρ
εijk

∂ρ

∂xj

∂Σkl

∂xl
+ εijk

∂2Σkl

∂xj∂xl
. (L 24)

The first term in the second line of (L 24) can be re-written as ρωjSij , after making
use of the identity (L 11) and noting that εijk ωj ωk = 0 from the property (L 12). Thus,
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an alternate form of the vorticity evolution equation is

ρ
Dωi

Dt
= ρ

∂ωi

∂t
+ ρ uj

∂ωi

∂xj
= ρωjSij − ρ

∂uj
∂xj

ωi + ρ εijk
∂

∂xj

(
1

ρ

∂Σkl

∂xl

)
. (L 25)

Using (L 18), the last term in (L 25) can be written as

ρ εijk
∂

∂xj

(
1

ρ

∂Σkl

∂xl

)
= ρ εijk

∂

∂xj

[
1

ρ

∂

∂xl
(−p δkl + σkl)

]

= ρ εijk

[
−1

ρ

∂

∂xj

(
∂p

∂xk

)
+

1

ρ2
∂ρ

∂xj

∂p

∂xk
+

∂

∂xj

(
1

ρ

∂σkl
∂xl

)]

= −εijk
∂

∂xj

(
∂p

∂xk

)
+

1

ρ
εijk

∂ρ

∂xj

∂p

∂xk
+ ρ εijk

∂

∂xj

(
1

ρ

∂σkl
∂xl

)

=
1

ρ
εijk

∂ρ

∂xj

∂p

∂xk
+ ρ εijk

∂

∂xj

(
1

ρ

∂σkl
∂xl

)
[from (L 7)] .

Consequently, one additional form of the vorticity evolution equation is (compare Chas-
saing et al. (2010, §6.2.1, footnote 1) and Andreopoulos et al. (2000, (12)))

ρ
Dωi

Dt
= ρ

∂ωi

∂t
+ ρ uj

∂ωi

∂xj

= ρωjSij − ρ
∂uj
∂xj

ωi +
1

ρ
εijk

∂ρ

∂xj

∂p

∂xk
+ ρ εijk

∂

∂xj

(
1

ρ

∂σkl
∂xl

)
. (L 26)

L.4. Evolution of enstrophy

Following Andreopoulos et al. (2000) and Chassaing et al. (2010), define the enstrophy

Ω = 1
2 ωiωi. (L 27)

Note that some instead define Ω without the factor of 1/2. Multiply (L 26) by ωi to
obtain

ρωi
Dωi

Dt
= ρωi

∂ωi

∂t
+ ρ uj ωi

∂ωi

∂xj

= ρωj Sij ωi − ρ
∂uj
∂xj

ωi ωi +
ωi

ρ
εijk

∂ρ

∂xj

∂p

∂xk
+ ρωi εijk

∂

∂xj

(
1

ρ

∂σkl
∂xl

)
.

Observe that ∂Ω/∂z = ωi ∂ωi/∂z for z = xj or z = t. Consequently, the following is an
evolution equation for enstrophy (compare Andreopoulos et al. (2000, (13))):

ρ
DΩi

Dt
= ρ

∂Ω

∂t
+ ρ uj

∂Ω

∂xj
(L 28)

= ρωj Sij ωi − 2 ρΩ
∂uj
∂xj

+
ωi

ρ
εijk

∂ρ

∂xj

∂p

∂xk
+ ρωi εijk

∂

∂xj

(
1

ρ

∂σkl
∂xl

)
.
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L.5. Averaging operators

This appendix reviews the concept of statistical or ensemble averaging of a flow
variable. The discussion is based principally on Chassaing et al. (2010, §§5.1–5.3) and
Gatski & Bonnet (2013, §§3.1–3.3).

Consider a flow variable φ, which in general is a function of xi and t. The Reynolds
decomposition of φ is

φ ≡ φ+ φ′, (L 29)

with φ the Reynolds average of φ and φ′ the Reynolds fluctuation of φ. The Reynolds
average (·) is defined as a mean over an ensemble of flows. However, other types of
operators are often used as surrogates for ensemble averaging in practice. For example,
time averaging might be used for a statistically steady flow, or spatial averaging might
be used for a flow that is statistically homogeneous in one or more coordinate directions.
Pope (2000, §3.8), Sagaut & Cambon (2008, §2.2.1) and Gatski & Bonnet (2013, §3.1.1)
discuss these ideas in more detail. In the present study, if the mixing layer is well-
developed, then it is reasonable to assume statistical homogeneity in the two spanwise
directions, but not in the axial direction. Hence, the present study defines the Reynolds
average as the spatial average over the two spanwise directions.

The Favre decomposition of φ is

φ ≡ φ̃+ φ′′, φ̃ ≡ ρ φ

ρ̄
, (L 30)

with φ̃ the Favre (or mass-weighted) average of φ and φ′′ the Favre (or mass-weighted)
fluctuation of φ.

Following the literature, here it is always assumed that the Reynolds-averaging oper-
ator commutes with derivatives, e.g.

∂ (·)
∂xi

≡ ∂ (·)
∂xi

. (L 31)

In general, an analogous commutativity property does not hold for the Favre-averaging
operator:

∂̃ (·)
∂xi

=
1

ρ̄

(
ρ
∂ (·)
∂xi

)
6≡ ∂

∂xi

(
ρ (·)
ρ̄

)
=
∂ (̃·)
∂xi

. (L 32)

The following identities hold:

φ = φ , φ̃ = φ̃ , φ′ = 0 , φ̃′′ = 0 , ρ φ′′ = ρ̄ φ̃′′ = 0. (L 33)

Additional properties of the averaging operators are discussed by Chassaing et al. (2010,
§5.3.5).
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L.6. Reynolds averaging of the continuity equation

Consider the continuity equation (L 15) and substitute the Favre decomposition for uj :

∂ρ

∂t
+

∂

∂xj

[
ρ
(
ũj + u′′j

)]
= 0.

Apply the Reynolds-averaging operator to both sides of this equation to obtain

0 =
∂ρ

∂t
+

∂

∂xj

[
ρ
(
ũj + u′′j

)]
=
∂ρ̄

∂t
+

∂

∂xj

(
ρ̄ ũj + ρ u′′j

)
=
∂ρ̄

∂t
+

∂

∂xj
(ρ̄ ũj) . (L 34)

L.7. Evolution of the mean momentum

From (L 23) and (L 18), the Navier–Stokes equations can be written as

∂

∂t
(ρ ui) +

∂

∂xj
(ρ uiuj) = − ∂p

∂xi
+
∂σij
∂xj

. (L 35)

Substitute the Favre decompositions for ui and uj and apply the Reynolds-averaging
operator:

∂

∂t
[ρ (ũi + u′′i )] +

∂

∂xj

[
ρ (ũi + u′′i )

(
ũj + u′′j

)]
= − ∂p

∂xi
+
∂σij
∂xj

.

The left-hand side (LHS) and right-hand side (RHS) of this equation reduce to

LHS =
∂

∂t
(ρ ũi + ρ u′′i ) +

∂

∂xj

(
ρ ũiũj + ρ ũiu′′j + ρ ũju′′i + ρ u′′i u

′′
j

)
=

∂

∂t

(
ρ̄ ũi + ρ u′′i

)
+

∂

∂xj

(
ρ̄ ũiũj + ũi ρ u′′j + ũj ρ u′′i + ρ u′′i u

′′
j

)
=

∂

∂t
(ρ̄ ũi) +

∂

∂xj

(
ρ̄ ũiũj + ρ u′′i u

′′
j

)
,

RHS = − ∂p̄

∂xi
+
∂σ̄ij
∂xj

.

Combining these results and replacing j with k gives an evolution equation for the mean
momentum ρ̄ ũi (compare Chassaing et al. (2010, (5.25)) and Sagaut & Cambon (2008,
(9.57))):

∂

∂t
(ρ̄ ũi) +

∂

∂xk
(ρ̄ ũiũk) = − ∂p̄

∂xi
+

∂

∂xk

(
σ̄ik − ρ u′′i u′′k

)
. (L 36)
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L.8. Evolution of the Reynolds stress tensor

Multiply (L 36) by ũj (Liou & Shih 1991) to obtain

ũj
∂

∂t
(ρ̄ ũi) + ũj

∂

∂xk
(ρ̄ ũiũk) = −ũj

∂p̄

∂xi
+ ũj

∂

∂xk

(
σ̄ik − ρ u′′i u′′k

)
. (L 37)

Interchange the indices i and j to obtain

ũi
∂

∂t
(ρ̄ ũj) + ũi

∂

∂xk
(ρ̄ ũj ũk) = −ũi

∂p̄

∂xj
+ ũi

∂

∂xk

(
σ̄jk − ρ u′′j u′′k

)
. (L 38)

Add (L 37) and (L 38), collect terms and apply the identities (L 13) and (L 14):[
ũj

∂

∂t
(ρ̄ ũi) + ũi

∂

∂t
(ρ̄ ũj)

]
+

[
ũj

∂

∂xk
(ρ̄ ũiũk) + ũi

∂

∂xk
(ρ̄ ũj ũk)

]
=

−
[
ũi

∂p̄

∂xj
+ ũj

∂p̄

∂xi

]
+

[
ũj

∂

∂xk

(
σ̄ik − ρ u′′i u′′k

)
+ ũi

∂

∂xk

(
σ̄jk − ρ u′′j u′′k

)]

⇓[
∂

∂t
(ρ̄ ũiũj) + ũiũj

∂ρ̄

∂t

]
+

[
∂

∂xk
(ρ̄ ũiũj ũk) + ũiũj

∂

∂xk
(ρ̄ ũk)

]
= −

[
ũi

∂p̄

∂xj
+ ũj

∂p̄

∂xi

]
+

[
ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

]
−
[
ũj

∂

∂xk

(
ρ u′′i u

′′
k

)
+ ũi

∂

∂xk

(
ρ u′′j u

′′
k

)]

⇓

∂

∂t
(ρ̄ ũiũj) +

∂

∂xk
(ρ̄ ũiũj ũk) + ũiũj

[
∂ρ̄

∂t
+

∂

∂xk
(ρ̄ ũk)

]
= −

[
ũi

∂p̄

∂xj
+ ũj

∂p̄

∂xi

]
+

[
ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

]
−
[
ũj

∂

∂xk

(
ρ u′′i u

′′
k

)
+ ũi

∂

∂xk

(
ρ u′′j u

′′
k

)]
.

Applying (L 34) gives an evolution equation for ρ̄ ũiũj :

∂

∂t
(ρ̄ ũiũj) +

∂

∂xk
(ρ̄ ũiũj ũk) = −

[
ũi

∂p̄

∂xj
+ ũj

∂p̄

∂xi

]
(L 39)

+

[
ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

]
−
[
ũj

∂

∂xk

(
ρ u′′i u

′′
k

)
+ ũi

∂

∂xk

(
ρ u′′j u

′′
k

)]
.

Next, consider again the Navier–Stokes equations (L 35). Replace j with k and multiply
by uj to obtain

uj
∂

∂t
(ρ ui) + uj

∂

∂xk
(ρ uiuk) = −uj

∂p

∂xi
+ uj

∂σik
∂xk

. (L 40)

Interchange the indices i and j to give

ui
∂

∂t
(ρ uj) + ui

∂

∂xk
(ρ ujuk) = −ui

∂p

∂xj
+ ui

∂σjk
∂xk

. (L 41)
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Following a procedure similar to the one used to obtain (L 39), add (L 40) and (L 41),
collect terms and apply the identities (L 13) and (L 14):[

uj
∂

∂t
(ρui) + ui

∂

∂t
(ρuj)

]
+

[
uj

∂

∂xk
(ρ uiuk) + ui

∂

∂xk
(ρ ujuk)

]
=

−
[
ui

∂p

∂xj
+ uj

∂p

∂xi

]
+

[
uj
∂σik
∂xk

+ ui
∂σjk
∂xk

]
⇓[

∂

∂t
(ρ uiuj) + uiuj

∂ρ

∂t

]
+

[
∂

∂xk
(ρ uiujuk) + uiuj

∂

∂xk
(ρ uk)

]
=

−
[
ui

∂p

∂xj
+ uj

∂p

∂xi

]
+

[
uj
∂σik
∂xk

+ ui
∂σjk
∂xk

]
⇓

∂

∂t
(ρ uiuj) +

∂

∂xk
(ρ uiujuk) + uiuj

[
∂ρ

∂t
+

∂

∂xk
(ρ uk)

]
=

−
[
ui

∂p

∂xj
+ uj

∂p

∂xi

]
+

[
uj
∂σik
∂xk

+ ui
∂σjk
∂xk

]
.

Applying (L 15) gives an evolution equation for ρ uiuj :

∂

∂t
(ρ uiuj) +

∂

∂xk
(ρ uiujuk) = −

[
ui

∂p

∂xj
+ uj

∂p

∂xi

]
+

[
uj
∂σik
∂xk

+ ui
∂σjk
∂xk

]
. (L 42)

Now substitute the Favre decompositions for ui, uj and uk in (L 42) and apply the
Reynolds-averaging operator:

∂

∂t

[
ρ (ũi + u′′i )

(
ũj + u′′j

)]
︸ ︷︷ ︸

5

+
∂

∂xk

[
ρ (ũi + u′′i )

(
ũj + u′′j

)
(ũk + u′′k)

]
︸ ︷︷ ︸

6

=

−
[
(ũi + u′′i )

∂p

∂xj
+
(
ũj + u′′j

) ∂p
∂xi

]
︸ ︷︷ ︸

7

+

[(
ũj + u′′j

) ∂σik
∂xk

+ (ũi + u′′i )
∂σjk
∂xk

]
︸ ︷︷ ︸

8

.
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Consider each of the numbered terms and substitute the Reynolds decompositions for p,
σik and σjk:

5 =
∂

∂t

(
ρ̄ ũiũj + ũi ρ u′′j + ũj ρ u′′i + ρ u′′i u

′′
j

)
=

∂

∂t

(
ρ̄ ũiũj + ρ u′′i u

′′
j

)
,

6 =
∂

∂xk

(
ρ̄ ũiũj ũk + ρ u′′i ũj ũk + ρ u′′j ũiũk + ρ u′′i u

′′
j ũk

)
+

∂

∂xk

(
ρ u′′k ũiũj + ρ u′′i u

′′
k ũj + ρ u′′j u

′′
k ũi + ρ u′′i u

′′
j u

′′
k

)
=

∂

∂xk

(
ρ̄ ũiũj ũk + ρ u′′i u

′′
j ũk

)
+

∂

∂xk

(
ρ u′′i u

′′
j u

′′
k

)
+

∂

∂xk

(
ρ u′′i u

′′
k ũj + ρ u′′j u

′′
k ũi

)
=

∂

∂xk

(
ρ̄ ũiũj ũk + ρ u′′i u

′′
j ũk

)
+

∂

∂xk

(
ρ u′′i u

′′
j u

′′
k

)
+

[
ρ u′′i u

′′
k

∂ũj
∂xk

+ ρ u′′j u
′′
k

∂ũi
∂xk

]
+

[
ũj

∂

∂xk

(
ρ u′′i u

′′
k

)
+ ũi

∂

∂xk

(
ρ u′′j u

′′
k

)]
,

7 = ũi
∂p̄

∂xj
+ ũj

∂p̄

∂xi
+ u′′i

∂p

∂xj
+ u′′j

∂p

∂xi

= ũi
∂p̄

∂xj
+ ũj

∂p̄

∂xi
+ u′′i

∂

∂xj
(p+ p′) + u′′j

∂

∂xi
(p+ p′)

= ũi
∂p̄

∂xj
+ ũj

∂p̄

∂xi
+ u′′i

∂p̄

∂xj
+ u′′j

∂p̄

∂xi
+ u′′i

∂p′

∂xj
+ u′′j

∂p′

∂xi

=

[
ũi

∂p̄

∂xj
+ ũj

∂p̄

∂xi

]
+

[
u′′i

∂p̄

∂xj
+ u′′j

∂p̄

∂xi

]

+

[
∂

∂xj

(
p′u′′i

)
+

∂

∂xi

(
p′u′′j

)]
−
[
p′
∂u′′i
∂xj

+ p′
∂u′′j
∂xi

]
,

8 = ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

+ u′′j
∂σik
∂xk

+ u′′i
∂σjk
∂xk

= ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

+ u′′j
∂

∂xk
(σ̄ik + σ′

ik) + u′′i
∂

∂xk

(
σ̄jk + σ′

jk

)
= ũj

∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

+ u′′j
∂σ̄ik
∂xk

+ u′′i
∂σ̄jk
∂xk

+ u′′j
∂σ′

ik

∂xk
+ u′′i

∂σ′
jk

∂xk

=

[
ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

]
+

[
u′′j

∂σ̄ik
∂xk

+ u′′i
∂σ̄jk
∂xk

]

+

[
∂

∂xk

(
σ′
iku

′′
j

)
+

∂

∂xk

(
σ′
jku

′′
i

)]
−
[
σ′
ik

∂u′′j
∂xk

+ σ′
jk

∂u′′i
∂xk

]
.
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Combine all of these results to obtain

∂

∂t

(
ρ̄ ũiũj + ρ u′′i u

′′
j

)
+

∂

∂xk

(
ρ̄ ũiũj ũk + ρ u′′i u

′′
j ũk

)
= −

[
ũi

∂p̄

∂xj
+ ũj

∂p̄

∂xi

]
+

[
ũj
∂σ̄ik
∂xk

+ ũi
∂σ̄jk
∂xk

]
−
[
ũj

∂

∂xk

(
ρ u′′i u

′′
k

)
+ ũi

∂

∂xk

(
ρ u′′j u

′′
k

)]
− ∂

∂xk

(
ρ u′′i u

′′
j u

′′
k

)
−
[
ρ u′′i u

′′
k

∂ũj
∂xk

+ ρ u′′j u
′′
k

∂ũi
∂xk

]
(L 43)

−
[
u′′i

∂p̄

∂xj
+ u′′j

∂p̄

∂xi

]
−
[
∂

∂xj

(
p′u′′i

)
+

∂

∂xi

(
p′u′′j

)]
+

[
p′
∂u′′i
∂xj

+ p′
∂u′′j
∂xi

]

+

[
u′′j

∂σ̄ik
∂xk

+ u′′i
∂σ̄jk
∂xk

]
+

[
∂

∂xk

(
σ′
iku

′′
j

)
+

∂

∂xk

(
σ′
jku

′′
i

)]

−
[
σ′
ik

∂u′′j
∂xk

+ σ′
jk

∂u′′i
∂xk

]
.

Subtracting (L 39) from (L 43) gives

∂

∂t

(
ρ u′′i u

′′
j

)
+

∂

∂xk

(
ρ u′′i u

′′
j ũk

)
= − ∂

∂xk

(
ρ u′′i u

′′
j u

′′
k

)
−
[
ρ u′′i u

′′
k

∂ũj
∂xk

+ ρ u′′j u
′′
k

∂ũi
∂xk

]

−
[
u′′i

∂p̄

∂xj
+ u′′j

∂p̄

∂xi

]
−
[
∂

∂xj

(
p′u′′i

)
+

∂

∂xi

(
p′u′′j

)]
+

[
p′
∂u′′i
∂xj

+ p′
∂u′′j
∂xi

]

+

[
u′′j

∂σ̄ik
∂xk

+ u′′i
∂σ̄jk
∂xk

]
+

[
∂

∂xk

(
σ′
iku

′′
j

)
+

∂

∂xk

(
σ′
jku

′′
i

)]

−
[
σ′
ik

∂u′′j
∂xk

+ σ′
jk

∂u′′i
∂xk

]
.

Rearranging terms yields an evolution equation for the Reynolds stress tensor ρ u′′i u
′′
j =

ρ̄ ũ′′i u
′′
j (compare Sagaut & Cambon (2008, (9.62)), Chassaing et al. (2010, (5.36) and

(11.1)) and Gatski & Bonnet (2013, (5.23) and (5.24))):

∂

∂t

(
ρ u′′i u

′′
j

)
+

∂

∂xk

(
ρ u′′i u

′′
j ũk

)
= −

[
ρ u′′i u

′′
k

∂ũj
∂xk

+ ρ u′′j u
′′
k

∂ũi
∂xk

]
(L 44)

+ p′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
− ∂

∂xk

(
ρ u′′i u

′′
j u

′′
k + δjk p′u′′i + δik p′u′′j − σ′

iku
′′
j − σ′

jku
′′
i

)
+

[
u′′i

(
∂σ̄jk
∂xk

− ∂p̄

∂xj

)
+ u′′j

(
∂σ̄ik
∂xk

− ∂p̄

∂xi

)]
−
[
σ′
ik

∂u′′j
∂xk

+ σ′
jk

∂u′′i
∂xk

]
.

L.9. Evolution of MDTKE

Define the local turbulent kinetic energy (LTKE)

I = 1
2 u

′′
i u

′′
i , (L 45)
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and the mean density-weighted turbulent kinetic energy (MDTKE)

K = 1
2 ρ u

′′
i u

′′
i = 1

2 ρ̄ ũ
′′
i u

′′
i = ρ̄ Ĩ. (L 46)

Set i = j in (L 44), performing a tensor contraction:

∂

∂t

(
ρ u′′i u

′′
i

)
+

∂

∂xk

(
ρ u′′i u

′′
i ũk

)
= −2 ρ u′′i u

′′
k

∂ũi
∂xk

+ 2 p′
∂u′′i
∂xi

− ∂

∂xk

(
ρ u′′i u

′′
i u

′′
k + 2 δik p′u′′i − 2σ′

iku
′′
i

)
+ 2u′′i

(
∂σ̄ik
∂xk

− ∂p̄

∂xi

)
− 2σ′

ik

∂u′′i
∂xk

.

With (L 46), redefining indices yields an evolution equation for MDTKE (compare
Chassaing et al. (2010, (10.52)) and Gatski & Bonnet (2013, (5.25) and (5.26))):

∂

∂t
(K) +

∂

∂xj
(K ũj) = −ρ u′′i u′′j

∂ũi
∂xj

+ u′′i

(
∂σ̄ij
∂xj

− ∂p̄

∂xi

)
+ p′

∂u′′i
∂xi

(L 47)

− ∂

∂xj

[
1
2 ρ̄

˜(u′′i u′′i u′′j )+ p′u′′j − σ′
iju

′′
i

]
− σ′

ij

∂u′′i
∂xj

.

L.10. Computational considerations for MDTKE

When analyzing terms on the right-hand side of (L 47) in the mixing layers of the
present study, we find that numerical results are generally smoother when they are
computed from Reynolds averages of gradients, instead of gradients of Reynolds averages,
of the flow variables. (However, the two approaches do give comparable results, and they
are analytically equivalent in the infinite-resolution limit.) For example, we compute the
mean velocity gradient via

∂ũi
∂xj

=
1

ρ̄

(
ρ
∂ui
∂xj

+ ui
∂ρ

∂xj
− ũi

∂ρ

∂xj

)
.

Also, for analysis of (L 47), it is convenient to express Reynolds and Favre averages of
fluctuations in terms of Reynolds averages of flow variables computed directly in the
simulation. The following identities are helpful:

ũi =
ρ ui
ρ̄

, u′′i = ui − ũi = ui − ũi ,

ρ u′′i u
′′
j = ρ (ui − ũi) (uj − ũj) = ρ uiuj − ρ ui

ρ uj
ρ̄
− ρ uj

ρ ui
ρ̄

+ ρ̄
ρ ui
ρ̄

ρ uj
ρ̄

= ρ uiuj −
(ρ ui) (ρ uj)

ρ̄
, K =

1

2

[
ρ uiui −

(ρ ui) (ρ ui)

ρ̄

]
,

1
2 ρ̄

˜(u′′i u′′i u′′j ) = 1
2 ρ u

′′
i u

′′
i u

′′
j = 1

2 ρ (ui − ũi) (ui − ũi) (uj − ũj)

= 1
2

(
ρ uiuiuj − ũj ρ uiui − ũi ρ uiuj + ũiũj ρ ui

− ũi ρ uiuj + ũiũj ρ ui + ũiũi ρ uj − ρ̄ ũiũiũj
)

= 1
2 ρ uiuiuj − 1

2 ũj ρ uiui − ũi ρ uiuj + ρ̄ ũiũiũj ,
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p′u′′j = p′ (uj − ũj) = (p− p̄)uj − p′ ũj = puj − p̄ uj ,

p′
∂u′′i
∂xi

= (p− p̄) ∂

∂xi
(ui − ũi) = p

∂ui
∂xi
− p̄ ∂ũi

∂xi
− p̄ ∂ui

∂xi
+ p̄

∂ũi
∂xi

= p
∂ui
∂xi
− p̄ ∂ui

∂xi
,

σ′
iju

′′
i = (σij − σ̄ij) (ui − ũi) = σijui − σ̄ij ũi − σ̄ijui + σ̄ij ũi = σijui − σ̄ijui ,

σ′
ij

∂u′′i
∂xj

= (σij − σ̄ij)
∂

∂xj
(ui − ũi) = σij

∂ui
∂xj
− σ̄ij

∂ũi
∂xj
− σ̄ij

∂ui
∂xj

+ σ̄ij
∂ũi
∂xj

= σij
∂ui
∂xj
− σ̄ij

∂ui
∂xj

.
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