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Stratification in drying films: a diffusion-diffusiophoresis model 

Supplementary Information 

S1 Derivation and Methodology 

This section provides supplementary information for Sections 1 and 2 of the main text. 

 

S1.1 Coordinate transform 

The boundary conditions at the bottom boundary, 𝜉 = 0, are 

(1 − 𝜙1 − 𝜙2) [
[𝜙1𝐾11(𝜙1,𝜙2)−

9

4
(𝜙1)2𝜙2𝐾P(𝜙1,𝜙2)]

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

𝜕𝜇2/𝜕𝜉

𝜕𝜇1/𝜕𝜉
)

+
𝜙1𝜙2𝐾12(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

𝜕𝜇1/𝜕𝜉

𝜕𝜇2/𝜕𝜉
+𝜙2)

(
Pe2

Pe1
)
3

]   

𝜕

𝜕𝜉
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)] = 0  (S1.1) 

and 

(1 − 𝜙1 − 𝜙2)  

[(
Pe1

Pe2
)
3

[
𝜙1𝜙2𝐾21(𝜙1,𝜙2)+

9

4
(
Pe2
Pe1

)𝜙1𝜙2(1−𝜙2)𝐾P(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

𝜕𝜇2/𝜕𝜉

𝜕𝜇1/𝜕𝜉
)

] +
𝜙2𝐾22(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

𝜕𝜇1/𝜕𝜉

𝜕𝜇2/𝜕𝜉
+𝜙2)

]    

𝜕

𝜕𝜉
[((

Pe2

Pe1
)
3

𝜙1 + 𝜙2) 𝑍(𝜙1, 𝜙2)] = 0. (S1.2) 

Since in the non-transformed system the top boundary is moving, the corresponding 

boundary condition at 𝜉 = 1 is more complex. Matching the diffusive flux of the particles 

with the convection induced by the moving top boundary gives 

(1 − 𝜙1 − 𝜙2) [
[𝜙1𝐾11(𝜙1,𝜙2)−

9

4
(𝜙1)2𝜙2𝐾P(𝜙1,𝜙2)]

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

𝜕𝜇2/𝜕𝜉

𝜕𝜇1/𝜕𝜉
)

+
𝜙1𝜙2𝐾12(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

𝜕𝜇1/𝜕𝜉

𝜕𝜇2/𝜕𝜉
+𝜙2)

(
Pe2

Pe1
)
3

]   

𝜕

𝜕𝜉
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)] = Pe1𝜙1(1 − 𝜏)  (S1.3) 

and 

(1 − 𝜙1 − 𝜙2)  
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[(
Pe1

Pe2
)
3

[
𝜙1𝜙2𝐾21(𝜙1,𝜙2)+

9

4
(
Pe2
Pe1

)𝜙1𝜙2(1−𝜙2)𝐾P(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

𝜕𝜇2/𝜕𝜉

𝜕𝜇1/𝜕𝜉
)

] +
𝜙2𝐾22(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

𝜕𝜇1/𝜕𝜉

𝜕𝜇2/𝜕𝜉
+𝜙2)

]    

𝜕

𝜕𝜉
[((

Pe2

Pe1
)
3

𝜙1 + 𝜙2) 𝑍(𝜙1, 𝜙2)] = Pe2𝜙2(1 − 𝜏). (S1.4) 

 

S1.2 Diffusiophoretic slip velocity 

Marbach et al. (2017) derive the diffusiophoretic slip velocity for infinite 𝑅2 and for arbitrary 

concentration of particles of type one. In the geometry of infinite 𝑅2, diffusiophoresis is the 

same effect as diffusio-osmosis, as referred to by Marbach et al. We consider a flat wall 

(component two) in contact with a solution of component one. The general result of Marbach 

et al. is 

 𝑼𝐏 = −
1

𝜂
∫ 𝑦′ [

𝑐(𝑥,𝑦′)

𝑐(𝑥,𝑦′=∞)
− 1]

∞

0
d𝑦′  

𝜕𝛱1[𝑐(𝑥,𝑦=∞)]

𝜕𝑥
, (S1.5) 

where 𝑥 and 𝑦 denote directions tangential and perpendicular, respectively, to the wall 

surface. The concentration of particles of type one is denoted by 𝑐, and the osmotic pressure 

by 𝛱1. The subscript 1 is used to distinguish the osmotic pressure in this scenario from the 

two-component mixture considered in equation (2.16) in the main text. Relating this osmotic 

pressure to the local force acting on the fluid due to the wall is the basis for the derivation of 

Marbach et al. 

This osmotic pressure is related to the chemical potential of component one via 

 
𝜕𝛱1[𝑐(𝑥,𝑦)]

𝜕𝑥
= 𝑐

𝜕𝜇1

𝜕𝑥
, (S1.6) 

from the one-component version of the Gibbs-Duhem equation. 

The concentration profile of component one used in the Asakura-Oosawa model is 

 𝑐 = 0,    𝑦 < 𝑅DP, (S1.7a) 

 𝑐 = 𝑐(𝑥, 𝑦 = ∞),  𝑦 > 𝑅DP. (S1.7b) 

Substituting equations (S1.6)–(S1.7) into (S1.5) obtains 

 𝑼𝐏 =
𝑐

𝜂

𝜕𝜇1

𝜕𝑥

1

2
𝑅DP

2 .  (S1.8) 
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Applying this result to diffusiophoresis in a two-component mixture, where 𝑐 = 𝑛1 and 𝜙1 =

𝑛1
4

3
𝜋𝑅1

3, obtains 

 𝑼𝐏 = −
3𝜙1

8𝜋𝜂

𝑅DP
2

𝑅1
3 𝛁𝜇1, (S1.9) 

as is given in equation (2.25) of the main text. 

 

S1.3 Numerical resolution 

For reproducibility, Table S1 gives the time step, ∆𝜏, and grid size, ∆𝜉, used to generate each 

figure in the main text. 

Table S1: Resolutions used to obtain the data for the figures in the main text. 

Phenomena 

included 
Figure 𝐏𝐞𝟏 𝐏𝐞𝟐 ∆𝝉 ∆𝝃 

Diffusion only 

3a 0.175 0.35 0.01 10−8 

3b 0.70 1.40 0.005 10−8 

3c 2.8 5.6 0.005 10−9 

8 10 20 0.005 10−9 

Add non-

enhanced 

diffusiophoresis 

4a 0.175 0.35 0.01 10−7 

4b 0.70 1.40 0.005 5 × 10−9 

4c 2.8 5.6 0.005 2.5 × 10−9 

Add enhanced 

diffusiophoresis 

5a 0.175 0.35 0.01 10−8 

5b 0.70 1.40 0.003̇ 10−8 

5c 2.8 5.6 0.0025 5 × 10−9 

9 10 20 0.005 10−9 
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S2 Asymptotic solution for large 𝐏𝐞 

This section provides supplementary information for Section 5 of the main text. 

 

S2.1 Diffusion 

S2.1.1 Change of variables 

To leading order in Pe2, equations (3.3) and (3.4) with 𝐾P(𝜙1, 𝜙2) = 0 become 

d𝜙1

d𝑋
[
𝑃(𝜏)

1−𝜏
−

d𝑃(𝜏)

d𝜏
] = (

Pe2

Pe1
)

1

(1−𝜏)2
d

d𝑋
[[

𝜙1𝐾11(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)
+

𝜙1𝜙2𝐾12(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
+(

Pe1
Pe2

)
3
𝜙2)

]   

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]] (S2.1) 

and 

d𝜙2

d𝑋
[
𝑃(𝜏)

1−𝜏
−

d𝑃(𝜏)

d𝜏
] =

1

(1−𝜏)2
d

d𝑋
[[

𝜙2𝐾22(𝜙1,𝜙2)

(𝜙2+(
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
)
+

𝜙1𝜙2𝐾21(𝜙1,𝜙2)

(𝜙2
d𝜇2/d𝑋

d𝜇1/d𝑋
+(

Pe2
Pe1

)
3
𝜙1)

]   

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙2 + (

Pe2

Pe1
)
3

𝜙1) 𝑍(𝜙1, 𝜙2)]].  (S2.2) 

The boundary conditions become: 

As 𝑋 → −∞,  

𝜙1 → 𝜙1(𝜏 = 0), 𝜙2 → 𝜙2(𝜏 = 0), (S2.3) 

[
𝜙1𝐾11(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)
+

𝜙1𝜙2𝐾12(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
+(

Pe1
Pe2

)
3
𝜙2)

]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]] → 0 (S2.4) 

and  

[
𝜙2𝐾22(𝜙1,𝜙2)

(𝜙2+(
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
)
+

𝜙1𝜙2𝐾21(𝜙1,𝜙2)

(𝜙2
d𝜇2/d𝑋

d𝜇1/d𝑋
+(

Pe2
Pe1

)
3
𝜙1)

]  
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(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙2 + (

Pe2

Pe1
)
3

𝜙1) 𝑍(𝜙1, 𝜙2)]] → 0.  (S2.5) 

As 𝑋 → ∞,  

𝜙1 + 𝜙2 → 𝜙m, (S2.6) 

[
𝜙1𝐾11(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)
+

𝜙1𝜙2𝐾12(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
+(

Pe1
Pe2

)
3
𝜙2)

]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]]   

→ (
Pe1

Pe2
)𝜙1,𝑋→∞(1 − 𝜏)  (S2.7) 

and 

[
𝜙2𝐾22(𝜙1,𝜙2)

(𝜙2+(
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
)
+

𝜙1𝜙2𝐾21(𝜙1,𝜙2)

(𝜙2
d𝜇2/d𝑋

d𝜇1/d𝑋
+(

Pe2
Pe1

)
3
𝜙1)

]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙2 + (

Pe2

Pe1
)
3

𝜙1) 𝑍(𝜙1, 𝜙2)]]  

→ 𝜙2,𝑋→∞(1 − 𝜏). (S2.8) 

 

S2.1.2 Solve for 𝑷(𝝉) 

Integrating (S2.1) and (S2.2) across the discontinuity from 𝑋 = −∞ to 𝑋 = ∞, with use of 

the boundary conditions, gives 

[
𝑃(𝜏)

1−𝜏
−

d𝑃(𝜏)

d𝜏
] [𝜙1,𝑋→∞ − 𝜙1,𝜏=0] =

𝜙1,𝑋→∞

(1−𝜏)
  (S2.9) 

and 

[
𝑃(𝜏)

1−𝜏
−

d𝑃(𝜏)

d𝜏
] [𝜙2,𝑋→∞ − 𝜙2,𝜏=0] =

𝜙2,𝑋→∞

(1−𝜏)
. (S2.10) 

Summing equations (S2.9) and (S2.10) and integrating, using that when 𝜏 = 0, 𝑃 = 1: 

[
𝑃(𝜏)

1−𝜏
−

d𝑃(𝜏)

d𝜏
] [𝜙m − (𝜙1,𝜏=0 + 𝜙2,𝜏=0)] =

𝜙m

(1−𝜏)
.  (S2.11) 

This can be integrated, giving 
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𝑃(𝜏) =
1−

𝜙m
𝜙𝑚−(𝜙1,𝜏=0+𝜙2,𝜏=0)

𝜏

1−𝜏
, (S2.12) 

as is stated in equation (5.1) in the main text.  

 

S2.1.3 Form differential equations for 𝑿(𝝓𝟏, 𝝓𝟐) 

Equation (S2.11) is substituted into equations (S2.1) and (S2.2): 

d𝜙1

d𝑋

𝜙m

[𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)]
= (

Pe2

Pe1
)

1

(1−𝜏)

d

d𝑋
[[

𝜙1𝐾11(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)
+

𝜙1𝜙2𝐾12(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
+(

Pe1
Pe2

)
3
𝜙2)

]   

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]] (S2.13) 

and 

d𝜙2

d𝑋

𝜙m

[𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)]
=

1

(1−𝜏)

d

d𝑋
[[

𝜙2𝐾22(𝜙1,𝜙2)

(𝜙2+(
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
)
+

𝜙1𝜙2𝐾21(𝜙1,𝜙2)

(𝜙2
d𝜇2/d𝑋

d𝜇1/d𝑋
+(

Pe2
Pe1

)
3
𝜙1)

]   

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙2 + (

Pe2

Pe1
)
3

𝜙1) 𝑍(𝜙1, 𝜙2)]].  (S2.14) 

Integrating once, from the bottom of the film to a point in the film, using boundary conditions 

(S2.3)–(S2.5), gives 

𝜙m(𝜙1−𝜙1,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

Pe2

Pe1
) (

1

1−𝜏
) [

𝜙1𝐾11(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)
+

𝜙1𝜙2𝐾12(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
+(

Pe1
Pe2

)
3
𝜙2)

]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)] (S2.15) 

and 

𝜙m(𝜙2−𝜙2,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

1

1−𝜏
) [

𝜙2𝐾22(𝜙1,𝜙2)

(𝜙2+(
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
)
+

𝜙1𝜙2𝐾21(𝜙1,𝜙2)

(𝜙2
d𝜇2/d𝑋

d𝜇1/d𝑋
+(

Pe2
Pe1

)
3
𝜙1)

]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙2 + (

Pe2

Pe1
)
3

𝜙1) 𝑍(𝜙1, 𝜙2)].  (S2.16) 
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S2.1.4 Solve for 𝝓𝟏,𝑿→∞ and 𝝓𝟐,𝑿→∞ 

If equations (S2.13) and (S2.14) are instead integrated across the entire domain of 𝑋, using 

boundary conditions (S2.3)–(S2.8), then the resulting equations are 

𝜙m(𝜙1,𝑋→∞−𝜙1,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= 𝜙1,𝑋→∞  (S2.17) 

and 

𝜙m(𝜙2,𝑋→∞−𝜙2,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= 𝜙2,𝑋→∞.   (S2.18) 

Upon rearranging, 

𝜙1,𝑋→∞ =
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
  (S2.19) 

and 

𝜙2,𝑋→∞ =
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
.  (S2.20) 

The volume fractions of components one and two at the top surface are 𝜙1,𝑋→∞ and 𝜙2,𝑋→∞, 

respectively, so numerical solutions for these can be compared with the asymptotic solutions. 

 

S2.1.5 Approximate solution for 𝝓𝟏(𝝓𝟐) 

Equations (S2.15) and (S2.16), when (
Pe2

Pe1
)
3

≫ 1, can be approximated as 

𝜙m(𝜙1−𝜙1,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

Pe2

Pe1
) (

1

1−𝜏
) [𝐾11(𝜙1, 𝜙2) +

𝜙1𝜙2𝐾12(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
)

]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)] (S2.21) 

and 

𝜙m(𝜙2−𝜙2,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

1

1−𝜏
) [

𝜙2𝐾22(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
)

+ 𝜙2𝐾21(𝜙1, 𝜙2)]  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[((

Pe1

Pe2
)
3

𝜙2 + 𝜙1) 𝑍(𝜙1, 𝜙2)], (S2.22) 

respectively. 
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Considering the case where 𝐾12(𝜙1, 𝜙2) = 𝐾21(𝜙1, 𝜙2) = 0 gives 

𝜙m(𝜙1−𝜙1,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

Pe2

Pe1
) (

1

1−𝜏
)𝐾11(𝜙1, 𝜙2)  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)] (S2.23) 

and 

𝜙m(𝜙2−𝜙2,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

1

1−𝜏
)

𝜙2𝐾22(𝜙1,𝜙2)

(𝜙1
d𝜇1/d𝑋

d𝜇2/d𝑋
)

  

(1 − 𝜙1 − 𝜙2)
d

d𝑋
[((

Pe1

Pe2
)
3

𝜙2 + 𝜙1) 𝑍(𝜙1, 𝜙2)].  (S2.24) 

Equating (S2.23) and (S2.24) results in 

(𝜙1−𝜙1,𝜏=0)

(𝜙2−𝜙2,𝜏=0)
= (

Pe2

Pe1
)

𝐾11(𝜙1,𝜙2)

𝐾22(𝜙1,𝜙2)
(
𝜙1

𝜙2

d𝜇1/d𝑋

d𝜇2/d𝑋
).  (S2.25) 

Then, using d𝜇1/d𝜇2  = d ln𝜙1/d ln𝜙2 gives 

(𝜙1−𝜙1,𝜏=0)

(𝜙2−𝜙2,𝜏=0)
= (

Pe2

Pe1
)

𝐾11(𝜙1,𝜙2)

𝐾22(𝜙1,𝜙2)
(
d𝜙1/d𝑋

d𝜙2/d𝑋
). (S2.26) 

In order to form a separable differential equation, consider the case where 𝐾11(𝜙1, 𝜙2) =

𝐾22(𝜙1, 𝜙2): 

d𝜙1/d𝑋

d𝜙2/d𝑋
= (

Pe1

Pe2
)

(𝜙1−𝜙1,𝜏=0)

(𝜙2−𝜙2,𝜏=0)
. (S2.27) 

Integrating, and using the results in equations (S2.19) and (S2.20), gives 

𝜙1−𝜙1,𝜏=0
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

= [
𝜙2−𝜙2,𝜏=0

𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙2,𝜏=0

]

Pe1
Pe2

, (S2.28) 

as is presented in the main text (equation (5.2)). 

 

S2.1.6 Solve for 𝑿(𝝓𝟏, 𝝓𝟐) 

Equation (S2.28) can be substituted into either equation (S2.23) or equation (S2.24) to find 

either 𝑋(𝜙1) or 𝑋(𝜙2), depending on which variable is eliminated. Arbitrarily, equation 
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(S2.28) is used to eliminate 𝜙2 from equation (S2.23), to find 𝑋(𝜙1). Rearranging equation 

(S2.28) for 𝜙2 gives 

𝜙2 = [
𝜙1−𝜙1,𝜏=0

𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0.   (S2.29) 

This is substituted into equation (S2.23).  

The forms of 𝐾11(𝜙1, 𝜙2) and 𝑍(𝜙1, 𝜙2) used here are 𝐾11(𝜙1, 𝜙2) = (1 − 𝜙1 − 𝜙2)
6.55 and 

𝑍(𝜙1, 𝜙2) = 𝜙m(𝜙m − 𝜙1 − 𝜙2)
−1. The resulting equation is 

𝜙m

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

Pe2

Pe1
) (

1

1−𝜏
)

1

(𝜙1−𝜙1,𝜏=0)
  

(1 − 𝜙1 − {[
𝜙1−𝜙1,𝜏=0

𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0})

7.55

   

 
d𝜙1

d𝑋

d

d𝜙1
[(𝜙1 + (

Pe1

Pe2
)
3
{[

𝜙1−𝜙1,𝜏=0
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0}) 

𝜙m (𝜙m − 𝜙1 − {[
𝜙1−𝜙1,𝜏=0

𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0})

−1

]
 
 
 

 . 

 (S2.30) 

Separating the variables and integrating gives 

(1 − 𝜏) ∫ d𝑋
𝑋

𝑋,boundary
= (

Pe2

Pe1
) {𝜙m − (𝜙1,𝜏=0 + 𝜙2,𝜏=0)} ∫

1

(𝜙1−𝜙1,𝜏=0)

𝜙1

𝜙1,boundary
  

(1 − 𝜙1 − {[
𝜙1−𝜙1,𝜏=0

𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0})

7.55

  

[(𝜙1 + (
Pe1

Pe2
)
3
{[

𝜙1−𝜙1,𝜏=0
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0})   
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(−1)(𝜙m − 𝜙1 − {[
𝜙1−𝜙1,𝜏=0

𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0})

−2

  

(−1 −
(
Pe2
Pe1

)[𝜙1−𝜙1,𝜏=0]
(
Pe2
Pe1

−1)
[

𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙2,𝜏=0]

[
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0]

Pe2
Pe1

)  

+(𝜙m − 𝜙1 − {[
𝜙1−𝜙1,𝜏=0

𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

]

Pe2
Pe1

[
𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
− 𝜙2,𝜏=0] + 𝜙2,𝜏=0})

−1

  

(1 + (
Pe1

Pe2
)
2 {[𝜙1−𝜙1,𝜏=0]

(
Pe2
Pe1

−1)
[

𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙2,𝜏=0]}

[
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0]

Pe2
Pe1

) ] d𝜙1.  (S2.31) 

 

For the boundary condition, arbitrarily set 𝑋 = 0 at (𝜙1,𝑋=0 + 𝜙2,𝑋=0) = [(𝜙1,𝜏=0 +

𝜙2,𝜏=0) + (𝜙1,𝑋→∞ + 𝜙2,𝑋→∞)]/2, where (𝜙1,𝑋→∞ + 𝜙2,𝑋→∞) is found using equation 

(S2.6): 

(𝜙1,𝑋=0 + 𝜙2,𝑋=0) =
(𝜙1,𝜏=0+𝜙2,𝜏=0)+𝜙m

2
. (S2.32) 

By using equation (S2.32) to eliminate 𝜙2,𝑋=0 from equation (S2.30), the following equation 

for 𝜙1,𝑋=0 is obtained: 

𝜙1,𝑋=0−𝜙1,𝜏=0
𝜙m𝜙1,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙1,𝜏=0

= [
(𝜙1,𝜏=0+𝜙2,𝜏=0 )+𝜙m

2
−𝜙1,𝑋=0−𝜙2,𝜏=0

𝜙m𝜙2,𝜏=0

(𝜙1,𝜏=0+𝜙2,𝜏=0)
−𝜙2,𝜏=0

]

Pe1
Pe2

. (S2.33) 

This can be solved numerically, or algebraically in special cases, for 𝜙1,𝑋=0. Hence equation 

(S2.31) can now be numerically integrated to find the left-hand side, 𝑋(1 − 𝜏), as a function 

of 𝜙1. 
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S2.2 Diffusiophoresis 

S2.2.1 Find 𝑷(𝝉) 

Using the same method as in Sections S2.1.1–S2.1.2, 𝑃(𝜏) can be shown to have the same 

form as for the diffusion-only case, equation (S2.12): Using the same change of variable as 

before, 𝑋 = [𝜉 − 𝑃(𝜏)]Pe2, to expand around this transition, to leading order in Pe2, 

analogous equations to equations (S2.1) and (S2.2) are obtained, with the inclusion of the 

diffusiophoretic flux. The boundary conditions around 𝑃(𝜏) are as in equations (S2.3)–(S2.8), 

but with the flux terms also including enhanced diffusiophoresis. Similar equations to (S2.9)–

(S2.12) can be written to obtain the same expression for 𝑃(𝜏). Physically, this is because the 

front’s position is again governed by the overall mass balance.  

  

S2.2.2 Form differential equations for 𝑿(𝝓𝟏, 𝝓𝟐) 

This section forms differential equations for 𝑋(𝜙1, 𝜙2), which can be solved to give the 

profile in the film region around 𝑃(𝜏), from the bottom of the film up to just beneath 𝑄(𝜏).  

Similarly to Section S2.1.3, equation (S2.11) is substituted into the equations formed from 

changing the variables in equations (3.3) and (3.4). Analogous equations to (S2.13) and 

(S2.14), but including the diffusiophoresis terms, result. Integrating once, from the bottom of 

the film to a point in the film, and using the boundary conditions, gives 

𝜙m(𝜙1−𝜙1,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
= (

Pe2

Pe1
)

1

(1−𝜏)
(1 − 𝜙1 − 𝜙2)  

[
[𝜙1𝐾11(𝜙1,𝜙2)−3𝜋(𝜙1)2𝜙2𝐾P(𝜙1,𝜙2)]

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)

+
𝜙1𝜙2𝐾12(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
+𝜙2)

(
Pe2

Pe1
)
3

]  

d

d𝑋
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]  (S2.34) 

and 

𝜙m(𝜙2−𝜙2,𝜏=0)

𝜙m−(𝜙1,𝜏=0+𝜙2,𝜏=0)
=

1

(1−𝜏)
(1 − 𝜙1 − 𝜙2)  

[(
Pe1

Pe2
)
3

[
𝜙1𝜙2𝐾21(𝜙1,𝜙2)+3𝜋(

Pe2
Pe1

)𝜙1𝜙2(1−𝜙2)𝐾P(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)

] +
𝜙2𝐾22(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
+𝜙2)

]  
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d

d𝑋
[((

Pe2

Pe1
)
3

𝜙1 + 𝜙2) 𝑍(𝜙1, 𝜙2)]. (S2.35) 

 

S2.2.3 Approximate solution for 𝝓𝟏(𝝓𝟐) around 𝑷(𝝉) 

As explained in the main text, the denominators of the right-hand sides of equations (S2.34) 

and (S2.35) should not be approximated further. Considering the case 𝐾12(𝜙1, 𝜙2) =

𝐾21(𝜙1, 𝜙2) = 0 and 𝐾11(𝜙1, 𝜙2) = 𝐾22(𝜙1, 𝜙2) = 𝐾P(𝜙1, 𝜙2), equating equations (S2.34) 

and (S2.35) results in  

[𝜙1−𝜙1,𝜏=0]

[𝜙2−𝜙2,𝜏=0]
=

[𝜙1−3𝜋(𝜙1)2𝜙2]

[3𝜋𝜙1𝜙2(1−𝜙2)+
(
Pe2
Pe1

)
2
𝜙2(𝜙1+(

Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋
d𝜇1/d𝑋

)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋
d𝜇2/d𝑋

+𝜙2)

]

.  (S2.36) 

Then, using 𝜕𝜇1/𝜕𝜇2  = 𝜕 ln𝜙1/𝜕 ln𝜙2 gives 

[𝜙1−𝜙1,𝜏=0]

[𝜙2−𝜙2,𝜏=0]
=

[1−3𝜋𝜙1𝜙2]

[3𝜋𝜙2(1−𝜙2)+
(
Pe2
Pe1

)
2
(1+(

Pe1
Pe2

)
3d𝜙2
d𝜙1

)

((
Pe2
Pe1

)
3dϕ1
d𝜙2

+1)

]

.  (S2.37) 

This rearranges to yield a quadratic in d𝜙1/d𝜙2: 

(
d𝜙1

d𝜙2
)
2

(
Pe2

Pe1
)
3

[[1 − 3𝜋𝜙1𝜙2] −
[𝜙1−𝜙1,𝜏=0]

[𝜙2−𝜙2,𝜏=0]
3𝜋𝜙2(1 − 𝜙2)]  

+(
d𝜙1

d𝜙2
) [− {3𝜋𝜙2(1 − 𝜙2) + (

Pe2

Pe1
)
2

}
[𝜙1−𝜙1,𝜏=0]

[𝜙2−𝜙2,𝜏=0]
+ [1 − 3𝜋𝜙1𝜙2]]  

+[− (
Pe1

Pe2
)

[𝜙1−𝜙1,𝜏=0]

[𝜙2−𝜙2,𝜏=0]
] = 0.  (S2.38) 

Note that equation (S2.38) is independent of 𝐾𝑖𝑗(𝜙1, 𝜙2), 𝐾P(𝜙1, 𝜙2), 𝑍(𝜙1, 𝜙2) and 𝜏. The 

quadratic can be solved for d𝜙1/d𝜙2, taking the positive root. The constant term in the 

quadratic needs to be included, despite its coefficient of Pe1/Pe2, in order to obtain accurate 

results. The resulting solution for d𝜙1/d𝜙2 can be integrated numerically, with a boundary 

condition. 
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S2.2.4 Find 𝝓𝟏 and 𝝓𝟐 around 𝑸(𝝉) 

Finding the values of 𝜙1 and 𝜙2 either side of the transition 𝑄(𝜏) will provide a boundary 

condition for integrating d𝜙1/d𝜙2 around 𝑃(𝜏), as well as allowing the asymptotic solution 

for the upper part of the film to be constructed. Using the change of variable 𝑌 =

[𝜉 − 𝑄(𝜏)]Pe2 to expand about this transition obtains analogous equations to equations 

(S2.1) and (S2.2), with the inclusion of the diffusiophoretic flux, 𝑌 replacing 𝑋 and 𝑄(𝜏) 

replacing 𝑃(𝜏). The boundary conditions are analogous to equations (S2.3)–(S2.8), but 

including the diffusiophoresis terms and replacing 𝑋 with 𝑌. 

It is assumed that 𝑄(𝜏) takes the form given in equation (5.3) in the main text. Then, 

integrating from 𝑌 = −∞ to a point in the film gives 

[𝜙1 − 𝜙1,𝜏=0]𝑣 = (
Pe2

Pe1
)

1

(1−𝜏)
(1 − 𝜙1 − 𝜙2)   

[
[𝜙1𝐾11(𝜙1,𝜙2)−3𝜋(𝜙1)2𝜙2𝐾P(𝜙1,𝜙2)]

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑌

d𝜇1/d𝑌
)

+
𝜙1𝜙2𝐾12(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑌

d𝜇2/d𝑌
+𝜙2)

(
Pe2

Pe1
)
3

]  

d

d𝑌
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]  (S2.39) 

and 

[𝜙2 − 𝜙2,𝜏=0]𝑣 =
1

(1−𝜏)
(1 − 𝜙1 − 𝜙2)   

[(
Pe1

Pe2
)
3

[
𝜙1𝜙2𝐾21(𝜙1,𝜙2)+3𝜋(

Pe2
Pe1

)𝜙1𝜙2(1−𝜙2)𝐾P(𝜙1,𝜙2)

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑌

d𝜇1/d𝑌
)

] +
𝜙2𝐾22(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑌

d𝜇2/d𝑌
+𝜙2)

]  

d

d𝑌
[((

Pe2

Pe1
)
3

𝜙1 + 𝜙2) 𝑍(𝜙1, 𝜙2)]. (S2.40) 

Considering the case 𝐾12(𝜙1, 𝜙2) = 𝐾21(𝜙1, 𝜙2) = 0 and 𝐾11(𝜙1, 𝜙2) = 𝐾22(𝜙1, 𝜙2) =

𝐾P(𝜙1, 𝜙2), and dividing equation (S2.39) by equation (S2.40), gives the same equation as 

(S2.35), but with 𝑌 replacing 𝑋. Then, using d𝜇1/d𝜇2  = d ln𝜙1/d ln𝜙2 gives the same 

equation as (S2.36). 

In the upper region of the film, 𝜙1 + 𝜙2 ≈ 𝜙m. Substituting 𝜙2 = 𝜙m − 𝜙1 into equation 

(S2.36) results in a quadratic equation for 𝜙1. The solution is 
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𝜙1 = − [
(
Pe1
Pe2

)

(
d𝜙1
d𝜙2

)
 + 1 +  3𝜋[𝜙1,𝜏=0 + 𝜙m(1 − 𝜙2,𝜏=0 − 2𝜙1,𝜏=0)] ± [[

(
Pe1
Pe2

)

(
d𝜙1
d𝜙2

)
]

2

  

+6𝜋
(
Pe1
Pe2

)

(
d𝜙1
d𝜙2

)
{2𝜙1,𝜏=0[𝜙1,𝜏=0 + 𝜙2,𝜏=0 − 𝜙m] + [𝜙m(1 − 𝜙2,𝜏=0) − 𝜙1,𝜏=0] + 2}    

+ 9𝜋2{[𝜙1,𝜏=0
2 + 𝜙m

2 (1 + 𝜙2,𝜏=0
2 )] + 2𝜙m[ 𝜙2,𝜏=0(𝜙1,𝜏=0 − 𝜙m) − 𝜙1,𝜏=0]}     

 + 6𝜋{[𝜙1,𝜏=0 + 𝜙m(𝜙2,𝜏=0 − 1)] + 2𝜙20[1 − 𝜙1,𝜏=0 − 𝜙2,𝜏=0]}   +  1]
1

2]  

/[6𝜋(𝜙1,𝜏=0  +  𝜙2,𝜏=0 −  1)].  (S2.41) 

Figure S1 plots the resulting root values as a function of d𝜙1/d𝜙2, for Pe2/Pe1 = 2, 

𝜙1,𝜏=0 = 𝜙2,𝜏=0 = 0.10 and 𝜙m = 0.64. 

 

 

Figure S1: Plot of the roots for 𝜙1 of equation (S2.36) as a function of d𝜙1/d𝜙2, 

with Pe2/Pe1 = 2, 𝜙1,𝜏=0 = 𝜙2,𝜏=0 = 0.10 and 𝜙m = 0.64. 
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Note that there is little change in the root values with d𝜙1/d𝜙2, except where d𝜙1/d𝜙2 is 

close to zero. This can be seen from equation (S2.41), which for small (Pe1/Pe2)/(d𝜙1/d𝜙2) 

becomes 

𝜙1~ − [ 1 +  3𝜋[𝜙1,𝜏=0 + 𝜙m(1 − 𝜙2,𝜏=0 − 2𝜙1,𝜏=0)]  

±[ 9𝜋2{[𝜙1,𝜏=0
2 + 𝜙m

2 (1 + 𝜙2,𝜏=0
2 )] + 2𝜙m[𝜙2,𝜏=0(𝜙1,𝜏=0 − 𝜙m) − 𝜙1,𝜏=0]}  

 + 6𝜋{[𝜙1,𝜏=0 + 𝜙m(𝜙2,𝜏=0 − 1)] + 2𝜙2,𝜏=0[1 − 𝜙1,𝜏=0 − 𝜙2,𝜏=0]}   +  1]
1

2]  

/[6𝜋(𝜙1,𝜏=0 + 𝜙2,𝜏=0 −  1)].  (S2.42) 

When 𝜙1,𝜏=0 = 𝜙2,𝜏=0 = 0.10 and 𝜙m = 0.64, the two roots are {0.151, 0.667}. This 

suggests that when the model is run for large Pe2/Pe1, a constraint should be added to the 

model to prevent 𝜙1 from becoming larger than 𝜙m at the top surface. As equations (3.3)–

(3.4) are written, only (𝜙1 + 𝜙2) is prevented from exceeding 𝜙m, via 𝑍(𝜙1, 𝜙2), not 𝜙1 and 

𝜙2 individually. 

By comparison with the numerical results, it can be seen that the smaller root for 𝜙1, denoted 

by 𝜙1−, corresponds to the region below 𝑄(𝜏), whilst the larger root, denoted by 𝜙1+, 

corresponds to the region above 𝑄(𝜏). Above 𝑄(𝜏), a reasonable choice of 𝜕𝜙1/𝜕𝜙2 appears 

to be around −1. For 𝜙1,𝜏=0 = 𝜙2,𝜏=0 = 0.10, 𝜙m = 0.64 and Pe2/Pe1 = 2, this suggests 

that 𝜙1+~0.593 above 𝑄(𝜏). For the root below 𝑄(𝜏), there is considerably less variation in 

its value with d𝜙1/d𝜙2 as d𝜙1/d𝜙2 approaches 0. Therefore, it is considered reasonable to 

take the solution for small (Pe1/Pe2)/(d𝜙1/d𝜙2). The numerical simulation gives values of 

𝜙1+~0.60 and 𝜙1−~0.15 above and below 𝑄(𝜏), respectively, so the roots from the 

asymptotic solution are in good agreement. 

 

S2.2.5 Solve for 𝑿(𝝓𝟏, 𝝓𝟐) around 𝑷(𝝉) 

The root 𝜙1−, and corresponding value of 𝜙2, 𝜙2− = 𝜙m − 𝜙1−, can be used as the boundary 

condition to numerically integrate d𝜙1/d𝜙2 from equation (S2.38). The resulting numerical 

solution for 𝜙1(𝜙2) can be directly compared with numerical results, or it can be used with 

either equation (S2.34) or equation (S2.35) to find 𝑋(𝜙1). For example, rearranging equation 

(S2.34) gives 
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(1 − 𝜏) ∫ d𝑋
𝑋

𝑋,boundary
= [𝜙m − (𝜙1,𝜏=0 + 𝜙2,𝜏=0)] (

Pe2

Pe1
)∫

(1−𝜙1−𝜙2)

𝜙m(𝜙1−𝜙1,𝜏=0)

𝜙1

𝜙1,boundary
  

[
[𝜙1𝐾11(𝜙1,𝜙2)−3𝜋(𝜙1)2𝜙2𝐾P(𝜙1,𝜙2)]

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑋

d𝜇1/d𝑋
)

+
𝜙1𝜙2𝐾12(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑋

d𝜇2/d𝑋
+𝜙2)

(
Pe2

Pe1
)
3

]  

d

d𝜙1
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)] d𝜙1,  (S2.43) 

where 𝜙2 is a numerical function of 𝜙1. The derivative term on the right-hand side of 

equation (S2.43) can either be evaluated numerically, or by using the chain rule and the result 

for d𝜙1/d𝜙2 from equation (S2.38). 

As for the diffusion-only case, for the boundary condition, set 𝑋 = 0 at (𝜙1,𝑋=0 + 𝜙2,𝑋=0) =

[(𝜙1,𝜏=0 + 𝜙2,𝜏=0) + (𝜙1,𝑋→∞ + 𝜙2,𝑋→∞)]/2. The value of 𝜙1 which, in conjunction with its 

corresponding value of 𝜙2, meets this condition with the smallest error is selected 

numerically as the point where 𝑋 = 0. The whole right-hand side of equation (S2.43) can 

then be numerically integrated, giving the left-hand side, 𝑋(1 − 𝜏), as a function of 𝜙1. 

 

S2.2.6 Find 𝒗 for 𝑸(𝝉) 

Now that 𝑋(𝜙1, 𝜙2) around 𝑃(𝜏) has been found, this can be used to calculate the velocity of 

the other transition, 𝑄(𝜏). This is a sharp transition in 𝜙1 and 𝜙2, so 𝑣 can be found by 

integrating either equation obtained from the changing the variables in equations (3.3) and 

(3.4) to 𝑌 across this transition. For example, integrating equation (3.3) with the change of 

variables and the top boundary condition gives 

[𝜙1+ − 𝜙1−]𝑣 = 𝜙1+ − {(
Pe2

Pe1
)

1

(1−𝜏)
[(1 − 𝜙1 − 𝜙2)   

[
[𝜙1𝐾11(𝜙1,𝜙2)−3𝜋(𝜙1)2𝜙2𝐾P(𝜙1,𝜙2)]

(𝜙1+(
Pe1
Pe2

)
3
𝜙2

d𝜇2/d𝑌

d𝜇1/d𝑌
)

+
𝜙1𝜙2𝐾12(𝜙1,𝜙2)

((
Pe2
Pe1

)
3
𝜙1

d𝜇1/d𝑌

d𝜇2/d𝑌
+𝜙2)

(
Pe2

Pe1
)
3

]  

d

d𝑌
[(𝜙1 + (

Pe1

Pe2
)
3

𝜙2) 𝑍(𝜙1, 𝜙2)]}
𝜙1−

. (S2.44) 

The values {𝜙1−, 𝜙1+} were found in Section S2.2.4. The value of the second term on the 

right-hand side of equation (S2.44) can be numerically evaluated using the solution for 

𝑋(𝜙1, 𝜙2) around 𝑃(𝜏) from Section S2.2.5. This term should be evaluated as 𝜙1 → 𝜙1− 
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from below. The non-derivative part of this term can be found directly from 𝜙1(𝜙2), with the 

denominators requiring the value of d𝜙1/d𝜙2 from equation (S2.38). The derivative part of 

this term can be found by noting that, at constant 𝜏, d/d𝑌 = d/d𝑋. The derivative term can 

then be evaluated either numerically, or using the chain rule and the value of d𝜙1/d𝜙2. Note 

that equation (S2.44) is equivalent to a mass balance on 𝜙1 across 𝑄(𝜏). 

In this manner, for the case in Figure 9 in the main text, the second term on the right-hand 

side of equation (S2.44) is calculated to be 0.074, giving a value for 𝑣 of 1.17. This is in 

excellent agreement with the numerical results, which gave 𝑣 = 1.16. Having found 

asymptotic solutions for 𝜙1−, 𝜙1+ and 𝑣 completes the construction of the solution around 

𝑄(𝜏). Combined with the asymptotic solution around 𝑃(𝜏) from Section S2.2.5, this 

completes the construction of the whole film profile. 

 

S3 Functional forms for the sedimentation coefficients 

Sections S3, S4 and S5 explore the effects of varying the sedimentation coefficients, initial 

concentration, and close-packing volume fraction, respectively. 

 

S3.1 Region of applicability 

The functional form used for the sedimentation coefficients in the examples in the main text 

is 𝐾𝑖𝑖(𝜙1, 𝜙2) = (1 − 𝜙1 − 𝜙2)
6.55. To explain the concentration range in which this 

functional form is valid, Figure S2 is plotted. Note that, as mentioned in Section 4 of the main 

text, in a bidisperse mixture, 𝜙m will generally be a function of composition, and this will in 

turn change where the solution becomes fully hydrodynamically hindered. For this reason, 

and also because 𝜙m is taken as constant in the examples in this work, Figure S2 is plotted 

for a one-component solution.  

From equations (2.13) and (2.22) in the main text, it can be seen that the particle flux for a 

one-component solution will contain a factor of 𝐾d(𝜙𝑍)/d𝜙. This is a function of the 

particle concentration, 𝜙, so Figure S2 plots 𝐾d(𝜙𝑍)/d𝜙 for different example combinations 

of functions for 𝐾(𝜙) and 𝑍(𝜙). 
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Figure S2: Plot of 𝐾d(𝜙𝑍)/d𝜙 against 𝜙 for different forms of 𝐾(𝜙) and Z(𝜙). The 

solid line represents the forms used in this present work, and is an improvement over 

𝐾 = 1; 𝑍 = 1 where 𝐾d(𝜙𝑍)/d𝜙 is less than one. 

 

The corresponding plots of 𝐾(𝜙) against 𝜙 are shown in Figure S3. 
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Figure S3: Plot of 𝐾(𝜙) against 𝜙 for different forms of 𝐾(𝜙). 

 

The functional form used in this work is not applicable near to close-packing, since as 𝜙1 +

𝜙2 → 𝜙m, the functional forms used produce 𝐾𝑖𝑖(𝜙1, 𝜙2)𝑍(𝜙1, 𝜙2) → ∞. This is not physical 

since one expects the particle motion to cease as 𝜙1 + 𝜙2 → 𝜙m. Apart from near to close-

packing, where capturing the exact particle behaviour is not so important, the expressions 

used are otherwise intended to be valid for concentrated solutions, which is important. Hence 

results are not shown for late drying times in Figures 3–9 in the main text. However, due to 

increased hydrodynamic hindrance near close-packing, it is expected that the latest results 

shown would reflect those at the end of drying.  

The functional form chosen for 𝐾𝑖𝑖(𝜙1, 𝜙2) otherwise fits the required physical constraints, 

which are equalling unity for an infinitely dilute solution, and then decreasing monotonically. 

The analytical expressions for dilute multicomponent solution provided by Batchelor (1983) 

support that the expressions used for 𝐾(𝜙1, 𝜙2) in this work are reasonable. As was stated by 

Trueman et al. (2012a), the sedimentation coefficients could be obtained experimentally for 

concentrated solution, but not analytically.  

Shown for comparison in Figure S2, the model of Zhou et al. (2017) corresponds to the line 

for 𝐾 = 1; 𝑍 = 1. With this model, 𝐾d(𝜙𝑍)/d𝜙 does not fall as the solution becomes more 

concentrated, as would be expected physically. Whilst the form used for 𝐾 in this present 
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work is not applicable quite up to close-packing, it does allow a more realistic model to be 

run to higher concentrations than the model of Zhou et al. The concentration correction factor 

𝐾d(𝜙𝑍)/d𝜙 continues to decrease until the turning point at 𝜙 = 0.48, at which 

𝐾d(𝜙𝑍)/d𝜙 = 0.014. However, this model is still an improvement over the model of Zhou 

et al. whilst 𝐾d(𝜙𝑍)/d𝜙 < 1. This is the case for 𝜙 < 0.61, beyond which this model is not 

physical. 

Since the diffusiophoretic flux has extra factor of (𝜙1, 𝜙2) compared to the diffusive flux, it 

is important to be able to model beyond the dilute region in order to probe the effect of 

diffusiophoresis. This is a motivation for extending the model of Zhou et al. to higher 

concentrations. The numerical solutions of Zhou et al. are not presented beyond early stages 

of drying, with the largest concentrations shown being around 𝜙 = 0.15. Nevertheless, 

Figure S2 shows that even by this concentration, hydrodynamic hindrance would already 

have reduced 𝐾 to significantly less than 1. 

Also shown for comparison in Figure S2 is 𝐾 = 1; 𝑍 = 𝜙/(𝜙m − 𝜙). This line shows that it 

is essential for a decreasing function for 𝐾 to be used with the osmotic pressure approach. 

Otherwise, as demonstrated here with 𝐾 = 1, the flux unphysically increases with 𝜙 at all 

concentrations, as the osmotic pressure diverges.” 

The functional form used in this work, 𝐾 = (1 − 𝜙)6.55, is just one example of a form of 𝐾 

which meets the requirements of approximating to 1 − 6.55𝜙 for dilute solution and being 

monotonically decreasing. More generally, 𝐾 of the form 𝐾 = (1 − 𝜙/𝐾factor)
6.55∗𝐾factor, 

where 𝐾factor ≥ 𝜙m to ensure non-negativity of 𝐾, will meet these requirements. Figure S2 

therefore additionally plots examples for 𝐾factor = 0.64 and 𝐾factor = 2. As 𝐾factor is 

decreased to 𝜙m, the region in 𝜙 of the form’s applicability increases slightly. However, it 

also led to increased numerical difficulties (Figure S4), due to decreased stability near close-

packing. Furthermore, Figure S3 shows that there is little difference in the plots of 𝐾 against 

𝜙 as 𝐾factor is varied. 

  

S3.2 Model results with different forms of sedimentation coefficients 

The model examples with Pe1 = 0.70 and Pe2 = 1.40 from the main text for diffusion only, 

diffusiophoresis and enhanced diffusiophoresis, were rerun with a range of 𝐾factor values. 



21 
 

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.50 1.00 1.50 2.00

D
eg

re
e 

o
f 

st
ra

ti
fi

ca
ti

o
n

, 
β

Kfactor

Diffusion only tau = 0.25taufin

Diffusion only tau = 0.50taufin

Diffusion only tau = 0.75taufin

Diffusiophoresis tau = 0.25taufin

Diffusiophoresis tau = 0.50taufin

Diffusiophoresis tau = 0.75taufin

Enhanced Diffusiophoresis tau =

0.25taufin
Enhanced Diffusiophoresis tau =

0.50taufin
Enhanced Diffusiophoresis tau =

0.75taufin

+ve: small-on-top

-ve: large-on-top

The results of degree of stratification, as defined in equation (4.1) in the main text, against 
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Figure S4: Plot of degree of stratification against 𝐾factor for Pe1 = 0.70 and      

Pe2 = 1.4. The data points for 𝐾factor = 1 correspond to Figures 3b, 4b and 5b in the 

main manuscript. Inset: zoom in on the diffusiophoresis model data points. Missing 

data points are due to numerical difficulties. 
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Figure S4 clearly demonstrates that the same qualitative behaviour is obtained, independent 

of 𝐾factor: diffusion-only obtains large-on-top stratification, increasing with time; adding 

diffusiophoresis leads to initial large-on-top stratification, followed by small-on-top 

stratification as diffusiophoresis overcomes diffusion; and enhanced diffusiophoresis 

achieves strong small-on-top stratification, increasing with time. 

 

S3.3 Onsager reciprocal relations 

This section considers the matrix of Onsager coefficients, 𝑳𝒊𝒋, which relates the chemical 

potential gradients, 𝛁𝜇𝑗, to fluxes, 𝒋𝒊 (Sear & Warren, 2017): 

𝒋𝒊 = 𝑳𝒊𝒋𝛁𝜇𝑗. (S3.2) 

By the Onsager reciprocal relations, the matrix of Onsager coefficients is symmetric, i.e. 

𝐿12 = 𝐿21 (Demirel, 2007). By comparison with equation (2.13), for the diffusion-only 

model, 

𝐿12 = −
1

6𝜋𝜂𝑅1
𝜙1𝜙2𝐾12(𝜙1, 𝜙2)  (S3.3a) 

and 

𝐿21 = −
1

6𝜋𝜂𝑅2
𝜙1𝜙2𝐾21(𝜙1, 𝜙2). (S3.3b) 

Therefore, in the diffusion-only model, whether the Onsager relations are satisfied depends on 

the functional forms used for 𝐾12(𝜙1, 𝜙2) and 𝐾21(𝜙1, 𝜙2). In using 𝐾12(𝜙1, 𝜙2) =

𝐾12(𝜙1, 𝜙2) = 0 to generate the example results in Figure 3, 𝐿12 = 𝐿21, and the Onsager 

relations are satisfied. 

In the diffusion-diffusiophoresis model, by comparison with equations (2.36) and (2.37), 

𝐿12 = −
1

6𝜋𝜂𝑅1
𝜙1𝜙2𝐾12(𝜙1, 𝜙2)  (S3.4a) 

and 

𝐿21 = −𝜙1𝜙2𝐾21(𝜙1, 𝜙2) +
3𝜙1𝜙2(1−𝜙2)𝐾P(𝜙1,𝜙2)

8𝜋𝜂𝑅1
. (S3.4b) 
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Again, satisfying the Onsager relations is dependent on the functional forms chosen for 𝐾𝑖𝑗 

and 𝐾P. The functional forms adopted for the examples in Figures 4–5 do not satisfy the 

Onsager reciprocal relations. 

 

S4 Initial concentration 

This section presents and discusses additional model results regarding the effect of varying 

the initial particle concentrations. 

The model with diffusiophoresis (as used to obtain Figure 4) was rerun with different 

combinations of 𝜙1,𝜏=0 and 𝜙2,𝜏=0, for the sets of Péclet numbers that were used in Figures 

3–5. The stratification regimes obtained with each combination are presented in Figure S5. 

The film is classified as small-on-top stratified if 𝜙1(𝜉 = 1) > 𝜙2(𝜉 = 1) at the end of 

drying, and vice versa for large-on-top stratified. Since this strength of diffusiophoresis only 

just overcomes diffusion, outside of the 𝜙1,𝜏=0-𝜙2,𝜏=0 diagonal, the final film regime is 

determined by whichever species was initially in excess. Therefore, above the diagonal, the 

film remains large-on-top stratified throughout drying, whilst, below the diagonal, the film 

remains small-on-top stratified throughout drying.  

 

 

Figure S5: Map of stratification regimes obtained as the initial concentrations are 

varied. Note that this same map was obtained for Pe1 = 0.175, Pe2 = 0.37; Pe1 = 

0.7, Pe2 = 1.4; and Pe1 = 2.8, Pe2 = 5.6. 
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Along the diagonal, at lower initial concentrations, the film begins large-on-top stratified. 

However, over the course of drying, diffusiophoresis becomes more important, and the film 

becomes small-on-top stratified. Figure S6 plots the scaled time at which the film becomes 

small-on-top stratified against the initial concentration, with 𝜙1,𝜏=0 = 𝜙2,𝜏=0. The time is 

normalised by 𝜏f, which is when all the solvent would have evaporated. From a mass balance 

on the particles, 𝜏f = 1 − [(𝜙1,τ=0 + 𝜙2,𝜏=0)/𝜙m]. This normalisation accounts for the fact 

that initially more dilute solutions will take longer to dry.  

 

 

Figure S6: Plot of the normalised time taken to achieve small-on-top stratification 

against initial solution concentration, where 𝜙1,𝜏=0 = 𝜙2,𝜏=0. 

 

At each set of Péclet numbers studied, increasing the initial concentration decreases the 

normalised time taken for the film to become small-on-top stratified. This prediction of 

increasing concentration favouring small-on-top stratification is in qualitative agreement with 

the criteria of Sear & Warren (2017) and Sear (2018), which are of the form Pe1𝜙1 ≥ 𝐶, 

where 𝐶 is a constant. In this present work, this prediction originates from the 

diffusiophoretic flux containing an extra factor of (𝜙1, 𝜙2) compared to the diffusional flux.  

In Figure S6, as the Péclet numbers are increased, the shape of the plot becomes sharper. The 

position of the transition in this curve will reflect the concentration at which diffusiophoresis 

dominates over diffusion. When drying a film with an initial concentration below this, once 
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the film reaches this critical concentration, diffusiophoresis will still have to reverse the 

established large-on-top stratification, before it can start to develop the small-on-top 

stratification.  

At all the Péclet number combinations shown in Figure S6, it appears that 𝜏/𝜏f → 1 as 

𝜙1,𝜏=0, 𝜙2,𝜏=0 → 0, since initially very dilute solutions will take a long time to reach 

concentrations at which diffusiophoresis becomes significant. Similarly, 𝜏/𝜏f ~ 0 at 

sufficiently large 𝜙1,𝜏=0, 𝜙2,𝜏=0, as diffusiophoresis dominates over diffusion from the very 

start of drying. 

 

S5 Close-packing volume fraction 

A similar study to Section S3.2 is carried out, this time varying the close-packing fraction 

between 0.52 (simple cubic) and 0.74 (cubic close-packed). Figure S7 shows the results, for 

Pe1 = 0.70 and Pe2 = 1.4, with 𝐾factor = 1, as in the main text. 
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Figure S7: Plot of degree of stratification against 𝜙m for Pe1 = 0.70 and Pe2 = 1.4. 

The data points for 𝜙m = 0.64 correspond to Figures 3b, 4b and 5b in the main 

manuscript. Inset: zoom in on the diffusiophoresis model data points. Missing data 

points are due to numerical difficulties. 

 

Figure S7 shows little variation in degree of stratification with 𝜙m, demonstrating that the 

results in the main text are not qualitatively affected by the assumed value of 𝜙m. 
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S6 Thermodynamic consistency 

This section explains the thermodynamic consistency of the approach in this work with 

respect to the Maxwell relations. Although equation (2.16) in the main text gives an 

expression for the osmotic pressure, the drying model takes inputs of the forms of 𝛁𝜇s (not 

𝛱) and 𝛁𝜇1/𝛁𝜇2. Note that the derivation of equation (2.16), 

𝛱 = −
𝜇s−𝜇s

0

𝜈s
= (

𝜙1
4

3
𝜋𝑅1

3 +
𝜙2

4

3
𝜋𝑅2

3)𝑘𝑇𝑍(𝜙1, 𝜙2),  (2.16) 

assumes that 𝜈s does not vary with 𝛱, since the osmotic pressure is derived from a Maxwell 

relation, as is described below. 

The differential relationship for the Helmholtz free energy, 𝐹, for a closed system is: 

d𝐹 = −𝑆d𝑇 − 𝑃d𝑉 + 𝜇1d𝑁1 + 𝜇2d𝑁2 + 𝜇sd𝑁s.  (S6.1) 

where 𝑆 denotes the entropy, 𝑉 denotes the total volume, 𝑃 denotes the pressure and 𝑁𝑖 

denotes the number of molecules of component 𝑖. Therefore, the forms of 𝜇1, 𝜇2, 𝜇s and 𝑃 

are all related to  𝐹 via: 

𝜇1 = (
𝜕𝐹

𝜕𝑁1
)

𝑇,𝑉,𝑁2,𝑁s

,   (S6.2a) 

𝜇2 = (
𝜕𝐹

𝜕𝑁2
)

𝑇,𝑉,𝑁1,𝑁s

,    (S6.2b) 

𝜇s = (
𝜕𝐹

𝜕𝑁s
)

𝑇,𝑉,𝑁1,𝑁2

   (S6.2c) 

and 

𝑃 = −(
𝜕𝐹

𝜕𝑉
)

𝑇,𝑁1,𝑁2,𝑁s

.   (S6.2d) 

Using equations (S6.2c) and (S6.2d) and the properties of mixed partial derivatives, one 

obtains the Maxwell relationship 

𝜕𝜇s

𝜕𝑉
|
𝑇,𝑁1,𝑁2,𝑁s

= −
𝜕𝑃

𝜕𝑁s
|
𝑇,𝑉,𝑁1,𝑁2

.   (S6.3a) 

Hence given any form of 𝐹, the above Maxwell relationship should be obeyed automatically 

by the corresponding forms of 𝛱 and 𝜇s. 



28 
 

Likewise, it can be shown that the Maxwell relationships 

𝜕𝜇1

𝜕𝑉
|
𝑇,𝑁1,𝑁2,𝑁s

= −
𝜕𝑃

𝜕𝑁1
|
𝑇,𝑉,𝑁2,𝑁s

  (S6.3b) 

and  

𝜕𝜇2

𝜕𝑉
|
𝑇,𝑁1,𝑁2,𝑁s

= −
𝜕𝑃

𝜕𝑁2
|
𝑇,𝑉,𝑁1,𝑁s

 (S6.3c) 

will be automatically satisfied by any 𝐹. 

By the triple product and chain rules, equation (6.3a) becomes 

𝜕𝑁s

𝜕𝑉
|
𝑇,𝑁1,𝑁2,𝜇s

=
𝜕𝑃

𝜕𝜇s
|
𝑇,𝑉,𝑁1,𝑁2

.   (S6.4) 

Equation (6.4) can be rearranged to give 

𝛱 = −∫ d𝑃
𝑃0−𝛱

𝑃0 = −∫
𝜕𝑁s

𝜕𝑉
|
𝑇,𝑁1,𝑁2,𝜇s

′

𝜇s

𝜇s
0 d𝜇s

′

𝑇,𝑉,𝑁1,𝑁2

,  (S6.5) 

where 𝑃0 is a reference pressure and the limits are chosen such that 𝛱 increases as the solute 

concentration increases. Note that 𝜇1increases with the concentration of solute 1. The osmotic 

pressure 𝛱 likewise increases with solute concentration. Consequently, the solvent chemical 

potential 𝜇s decreases with solute concentration. 

Assuming that 𝜕𝑉/𝜕𝑁s|𝑇,𝑁1,𝑁2,𝜇s
= constant with 𝜇s generates equation (2.16). Whilst this is 

a reasonable assumption for liquids, equation (2.16) should be considered as an approximate 

estimate for the osmotic pressure, used merely to generate an expression for 𝛁𝜇s. Without 

this assumption, the Maxwell relation (S6.3a) would be automatically satisfied. 

Note that equation (2.16) can also be derived from the differential relationship for the Gibbs 

free energy, 𝐺: 

d𝐺 = 𝑉d𝑃 − 𝑆d𝑇 + 𝜇1d𝑁1 + 𝜇2d𝑁2 + 𝜇sd𝑁s. (S6.6) 

Using the properties of mixed partial derivatives obtains 

𝜕𝜇s

𝜕𝑃
|
𝑇,𝑁1,𝑁2,𝑁s

=
𝜕𝑉

𝜕𝑁s
|
𝑇,𝑃,𝑁1,𝑁2

= 𝑉̅s,  (S6.7) 

where 𝑉̅𝑖 denotes the partial molar volume of component 𝑖. Assuming that 𝑉̅s = 𝜈s = constant 

as pressure is varied, an assumption of incompressibility, leads to equation (2.16). 
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The chosen rearrangements for 𝛁𝜇1 and 𝛁𝜇2 (in terms of 𝛁𝜇s and 𝛁𝜇1/𝛁𝜇2) in equations 

(2.20) and (2.21), which obey the Gibbs-Duhem equation, could be used to find a 

corresponding 𝐹. The corresponding form of 𝛱 will be different to equation (2.16), since we 

will not assume constant 𝜈s. This leads to a small thermodynamic inconsistency in the 

expression for 𝛱. However, this does not affect the thermodynamic consistency of the model, 

viewing it as taking 𝛁𝜇s directly as an input. 

Alternatively, 𝛱 as defined in equation (2.16) could be used to find an expression for 𝐹 

(subject to an arbitrary function of integration), and in turn 𝜇1 and 𝜇2. The resulting 

expressions for 𝜇1 from these two approaches can be compared. Any resulting difference 

would be due to assuming constant 𝜈s when deriving equation (2.16). For clarity, the one-

component case is used for this comparison. Following the relationships from Heyes & 

Santos (2016), when 𝛱 is defined as in equation (2.16), the excess chemical potential of 

component one (compared to an ideal gas), 𝜇1
ex, is given by 

𝜇1
ex/𝑘𝑇 = 𝑐(𝜙1), (S6.8) 

where  

𝜙1𝑐
′(𝜙1) = 𝑍(𝜙1) − 1.  (S6.9) 

Hence  

𝑐(𝜙1) = − ln(𝜙m − 𝜙1).  (S6.10) 

Adding on the ideal potential term, 𝜇1
id, gives: 

𝛁𝜇1

𝑘𝑇
= 𝛁𝜇1

id + 𝛁𝜇1
ex = [

1

(𝜙m−𝜙1)
+

1

𝜙1
] 𝛁𝜙1 = [

𝜙m

𝜙1(𝜙m−𝜙1)
] 𝛁𝜙1  (S6.11) 

This is plotted in Figure S8.  
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Figure S8: Plot comparing different forms of the gradient of the chemical potential of 

the solute, for a one-component solution. The method in this work defines 𝛁𝜇s. An 

alternative approach of defining 𝛱 is also shown, along with a dilute entropic 

expression. 

 

Both approaches agree well when the solution is dilute. Both diverge at close-packing, but 

with the approach in this work starting to diverge sooner. More disagreement as the solution 

becomes more concentrated would be expected, as the solution diverges from ideality, and 𝑉̅s 

varies more. Note that these two approaches are different thermodynamic models. The 

difference between them despite being based upon the same 𝑍 is due to assuming 

incompressibility in the derivation for 𝛱. 
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