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Thin-film Rayleigh-Taylor instability in the
presence of a deep periodic corrugated wall

Supplementary Material

S1. Two-phase WRIBL derivation

We consider hydrodynamically active immiscible Newtonian fluids 1 and 2, with
constant properties. A heavy fluid 1 is underneath a wavy wall and a light fluid 2 is
beneath fluid 1 as shown in figure S 1. The density, viscosity and the interfacial tension
of the fluids are denoted by ρ1, ρ2, µ1, µ2 and γ. The horizontal and vertical components
of the velocity vector (v) are denoted by u and w. The bottom wavy wall is denoted
by the function f(x). This system is subjected to gravity along the z-coordinate. The
long-wave approximation is used, i.e. H � λ, where λ is the characteristic horizontal
length scale arising from the instability and H is the thickness of the bilayer thin film.

S1.1. Governing equations

Fluids 1 and 2 are hydrodynamically active and satisfy the continuity and Navier-
Stokes equations. These equations are given by

∇ · vj = 0, ρj(
∂vj

∂t
+ vj ·∇vj) = ∇ · Tj + ρjgiz (S 1.1)

Here, T j=−pjI +µj(∇vj +∇vj
T ), iz is the unit vector along the positive z direction

and I is the identity tensor. The subscripts j = 1, 2 represent fluids 1 and 2 respectively.
The interface speed U , the unit normal vector (n) and the unit tangent vector (t) are

given by

U =
∂h
∂t[

1 +
(
∂h
∂x

)2]1/2 , n =
−∂h∂x ix + iz[

1 +
(
∂h
∂x

)2]1/2 and t =
ix + ∂h

∂x iz[
1 +

(
∂h
∂x

)2]1/2 (S 1.2)

At the flat and the wavy walls, no slip and no penetration are satisfied. At the fluid-
fluid interface i.e., z = h(x, t), v1 ·n−U = 0 must hold since it is a material surface and
v1 = v2 also holds, while the interfacial force balances are given by

n ·T1 · t− n ·T2 · t = 0 and n ·T1 · n− n ·T2 · n = −γ ∇ · n (S 1.3)

To analyse the effect of the wavy wall, the governing equations are investigated in the
long wave limit.

S1.2. Long-wave model and boundary layer equations

The long-wave model is obtained using separation of length scales, where the governing
equations are made dimensionless by using the following scales denoted by the subscript
‘c’:

xc = λ, zc = H, uc = U, wc = εU, tc =
λ

U
, pjc = ρjU

2 (S 1.4)

Here ε is designated as film or long-wave parameter and is defined as ε = H/λ and U
is a characteristic velocity scale. Using the above scales the nondimensional model is
obtained. The wavy wall is represented by the f(x) = Acos(2kwx), where the amplitude,
A, of the wavy wall is scaled with the thickness, H, of the thin film. The boundary layer
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Figure S 1. Schematic of a heavy fluid overlying on a light fluid under gravity on a
corrugated surface is shown here. Here kw = π

W
, where the horizontal width of the wall is 2W .

assumption is invoked i.e., ε < 1 and upon retaining terms of O(ε), the nondimensional
model is given by

∂uj
∂x

+
∂wj
∂z

= 0 (S 1.5)

ε

(
∂uj
∂t

+ uj
∂uj
∂x

+ wj
∂uj
∂z

)
= −ε ∂pj

∂x
+

1

Rej

∂2uj
∂z2

, where Rej =
ρjUH

µj
(S 1.6)

and

−ε ∂pj
∂z

+
ε Gj
Rej

= 0, where Gj =
ρjgH

2

µjU
(S 1.7)

The above equations are obtained by considering that Rej and Gj to be of at least O(1).
At the liquid-liquid interface z = h(x, t), continuity of velocities, kinematic, tangential
and normal force balance conditions are imposed i.e.,

u1 = u2 and w1 = w2 (S 1.8)

ε
∂h

∂t
= −ε u1

∂h

∂x
+ ε w1 (S 1.9)

∂u1
∂z

= µ21
∂u2
∂z

, where µ21 =
µ2

µ1
(S 1.10)

and

−ε p1 + ε ρ21p2 =
ε2

Ca Re1

∂2h

∂x2
, where Ca =

µ1U

γ
and ρ21 =

ρ2
ρ1

(S 1.11)

The equations S 1.5-S 1.11 are referred to as the 1 + ε model. In the above equation, Ca
is taken to be at most O(ε3), this allows us to include the effect of surface curvature in
the 1 + ε model.

Integrating the vertical components of the momentum balances corresponding to each
fluid layer from the bulk of the fluids to the interface and substituting the resulting
equations into the x-momentum equations gives

ε

(
∂u1
∂t

+ u1
∂u1
∂x

+ w1
∂u1
∂z

)
= −ε ∂p1

∂x

∣∣∣∣∣
h

+
1

Re1

∂2u1
∂z2

+
ε G1

Re1

∂h

∂x
(S 1.12)
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and

ε

(
∂u2
∂t

+ u2
∂u2
∂x

+ w2
∂u2
∂z

)
= −ε ∂p2

∂x

∣∣∣∣∣
h

+
1

Re2

∂2u2
∂z2

+
ε G2

Re2

∂h

∂x
(S 1.13)

The normal force balance condition at z = h(x, t), i.e., equation S 1.11 is differentiated
in the horizontal direction and is used to express the pressure, p1, at the free surface in
the x-momentum equation in terms of pressure, p2 and the surface curvature term. This
gives

ε

(
∂u1
∂t

+ u1
∂u1
∂x

+ w1
∂u1
∂z

)
= −ερ21

∂p2
∂x

∣∣∣∣∣
h

+
1

Re1

∂2u1
∂z2

+
ε G1

Re1

∂h

∂x
+

ε3

CaRe1

∂3h

∂x3
(S 1.14)

The equations S 1.13 and S 1.14 are integrated with respect to weight functions F1 and
F2, which are defined later. The resulting equations are then added to obtain∫ h

f

ε

(
∂u1
∂t

+ u1
∂u1
∂x

+ w1
∂u1
∂z

)
F1 dz +

∫ 1

h

ερ21

(
∂u2
∂t

+ u2
∂u2
∂x

+ w2
∂u2
∂z

)
F2 dz =

−ερ21
∂p2
∂x

∣∣∣∣∣
h

(∫ h

f

F1 dz +

∫ 1

h

F2 dz

)
+

∫ h

f

1

Re1

[
∂2u1
∂z2

+ εG1
∂h

∂x

]
F1 dz

+

∫ 1

h

ρ21
Re2

[
∂2u2
∂z2

+ εG2
∂h

∂x

]
F2 dz +

∫ h

f

(
ε3

Ca Re1

∂3h

∂x3

)
F1

(S 1.15)

To obtain the final evolution equations, we apply the Weighted Residual Integral
Boundary Layer (WRIBL) method (Kalliadasis et al. 2011). To perform the integration
of the boundary layer equations, we decompose the horizontal component of the velocity
into an O(1) and O(ε) part i.e.,

uj(x, z, t) = ûj(x, z, t)︸ ︷︷ ︸
O(1)

+ ũj(x, z, t)︸ ︷︷ ︸
O(ε)

(S 1.16)

The leading order velocity ûj(x, z, t) is chosen to be parabolic along the horizontal
direction and is determined such that the following conditions are satisfied, i.e.,

û1
∣∣
f

= 0, û2
∣∣
1

= 0, û1
∣∣
h(x,t)

= û2
∣∣
h(x,t)

, and
∂û1
∂z

∣∣∣∣
h(x,t)

= µ21
∂û2
∂z

∣∣∣∣
h(x,t)

∂2û1
∂z2

= K1,
∂2û2
∂z2

= K2,

∫ h(x,t)

f

û1 dz = q1 and

∫ 1

h(x,t)

û2 dz = q2

(S 1.17)

Here K1 and K2 are obtained in terms of the flow rates, q1 and q2 using the integral
conditions. We use the Galerkin method, where the weight functions have the same
functional from as the leading order velocities. The weight functions F1 and F2, are
defined as follows

F1

∣∣
f

= 0, F2

∣∣
1

= 0, F1

∣∣
h(x,t)

= F2

∣∣
h(x,t)

, and
∂F1

∂z

∣∣∣∣
h(x,t)

= µ21
∂F2

∂z

∣∣∣∣
h(x,t)

∂2F1

∂z2
= C1,

∂2F2

∂z2
= C2

(S 1.18)

In order to eliminate pressure, p2, from equation S 1.15, we now impose the following
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condition ∫ h

f

F1 dz = −
∫ 1

h

F2 dz and C1 = 1 (S 1.19)

The equation S 1.18 along with equation S 1.19 are used in determining the complete
solution of the weight functions F1 and F2. The transverse components of velocities are
obtained from the continuity equation.

By integrating the continuity equation across respective fluid layers, we get

∂h

∂t
+
∂q1
∂x

= 0 and
∂δ

∂t
+
∂q2
∂x

= 0 (S 1.20)

where Leibniz’s integration rule and the kinematic condition are used.
The final model consists of the following dimensionless evolution equations∫ h

f

ε

(
∂û1
∂t

+ û1
∂û1
∂x

+ ŵ1
∂û1
∂z

)
F1 dz +

∫ 1

h

ερ21

(
∂û2
∂t

+ û2
∂û2
∂x

+ ŵ2
∂û2
∂z

)
F2 dz =∫ h

f

1

Re1

[
∂2û1
∂z2

+ εG1
∂h

∂x

]
F1 dz +

∫ 1

h

ρ21
Re2

[
∂2û2
∂z2

+ εG2
∂h

∂x

]
F2 dz

+

∫ h

f

(
ε3

Ca Re1

∂3h

∂x3

)
F1 dz

(S 1.21)

∂h

∂t
+
∂q1
∂x

= 0 and
∂δ

∂t
+
∂q2
∂x

= 0 (S 1.22)

The expressions for the leading order velocities and weight functions i.e., û1, û2, F1

and F2 are provided in the next section. These expressions are substituted in the above
equations to obtain the final evolution equations in terms of h, q1 and q2 alone.

S2. Calculation of leading order velocities, i.e., û1 and û2 and weight
functions, i.e., F1 and F2

The leading order velocities are obtained from the equations S 1.17 i.e.,

û1 = 3(z − f)(q1(δ − 1)(f(δ + 4µ21(z − δ)− 1) + δ

(−2δ + 4µ21(δ − z) + z + 2)− z)− µ21q2(f

−δ)2(−2δ − f + 3z))/2(δ − 1)(f − δ)3(µ21(f − δ) + δ − 1)

(S 2.1)

û2 = 3(z − 1)(q2(f − δ)(µ21f(−2δ + z + 1) + 2(µ21 − 2)

δ2 − (µ21 − 4)(z + 1)δ − 4z)− q1(δ − 1)2

(−2δ + 3z − 1))/2(δ − 1)3(f − δ)(µ21(f − δ) + δ − 1)

(S 2.2)

The weight functions are obtained by solving the governing equations S 1.18-S 1.19, i.e.,

F1 =
f(f(δ(−µ21(δ − 4) + δ − 2) + 1) + 2δ((µ21 − 1)(δ − 2)δ − 1)− µ21f

3)

2δ2(2µ21(f − 2)δ + (µ21 − 1)δ2 + 2δ + µ21f(4− 3f)− 1)

+
z(−µ21f

2(δ + 2)− (µ21 − 1)(δ − 2)δ2 + δ + 2µ21f
3)

δ2(2µ21(f − 2)δ + (µ21 − 1)δ2 + 2δ + µ21f(4− 3f)− 1)
+

z2

2δ2

(S 2.3)



Rayleigh Taylor flow from a corrugated wall 5

F2 =
(1− z)2(f − δ)2(−2f((µ21 − 2)δ + 2) + δ((µ21 − 1)δ − 2) + µ21f

2 + 3)

2(δ − 1)2δ2(2µ21(f − 2)δ + (µ21 − 1)δ2 + 2δ + µ21f(4− 3f)− 1)

+
(1− z)(f − δ)2(−2f((µ21 − 1)δ + 1) + (µ21 − 1)δ2 + µ21f

2 + 1)

(δ − 1)δ2(2µ21(f − 2)δ + (µ21 − 1)δ2 + 2δ + µ21f(4− 3f)− 1)

(S 2.4)
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