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1. Supplementary section S1: Numerical method

1.1. Weak formulation

The governing equations (2.2) and (2.1) combined with (2.4) and (2.6) are solved numer-

ically using the finite element solver FreeFem++ (Hecht 2012). The weak formulation of

equations (2.1,2.2) reads:

∫

Ω

q∇ · udΩ = 0 , (1.1)

∫

Ω

(∂tu + (u ·∇)u) · v dΩ =

∫

Ω

(p∇ · v − τ : ∇v) dΩ (1.2)

+

∫

∂Ω

v · (−pI + τ ) · n d∂Ω.

where Ω is the volume occupied by the fluid and ∂Ω is its boundary. Given the axisym-

metry of the problem, cylindrical coordinates are used and the integration over θ yields

the factor 2π so that dΩ = 2πrdrdz and d∂Ω = 2πrdl, where dl is the length of an ele-

mentary segment of the 2D boundary ∂D in the axial-radial plane. In what follows, the
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common factor 2π will be left out and a 2D formulation is obtained. In this formulation,

n is the unit vector normal to the boundaries, pointing outward of the rectangle D. The

test functions q and v are associated to the pressure p and the velocity u, respectively. I

stands for the identity tensor. The surface term is zero for all the three types of boundary

conditions specified in the previous section.

1.2. Time and space discretization

Discretizing the time derivative term by a first order backward Euler scheme and treating

the nonlinear inertial terms and the nonlinear viscosity explicitly (Jenny et al. 2015), we

get

∫

D

q∇ · un+1rdrdz = 0 , (1.3)

∫

D

[un+1

∆t
· v − pn+1∇ · v + µ(un)γ̇(un+1) : ∇v

]

rdrdz = (1.4)

∫

D

[(un

∆t
− (un ·∇)un

)

· v
]

rdrdz .

For the space discretization of equations (1.3) and (1.4), a triangular mesh with 40×40L

identical rectangles in the domain D, each of them is divided into two triangles of equal

area is used. A convergence test has also been performed with 60× 60L rectangles. The

finite element spaces used to discretize the velocity and the pressure are the Inf-Sup stable

Taylor-Hood finite elements P2P1, i.e. quadratic continuous functions for velocity trial

and test functions and piecewise continuous linear functions for pressure trial and test

functions. The resulting algebraic system is solved with an iterative Uzawa Conjugate

Gradient algorithm with a Cahouet-Chabart preconditionner (Hecht 2012; Cahouet &

Chabard 1988). The matrix inversions are performed with the UMFPack solver embedded

in FreeFem++. During the transient stages, the time step must satisfy the CFL condition

to insure the accuracy and the numerical stability. In our simulations, the time step ∆ t
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always verifies ∆ t ≤
h

umax
, where h is the smallest equivalent diameter of mesh elements

and umax is the maximum value of the norm of u.

Concerning the initial conditions, the flow field at t = 0 is given by specifying the initial

values of the velocity components in the entire domain. We have used the Couette flow

solution of a Carreau fluid between infinite cylinders as initial conditions at a Reynolds

number below the critical value. This Couette flow solution determined numerically has

been first regularized to take into account the singularity in the azimuthal velocity at the

lower surface. A continuation method is then used where each new simulation is started

with the permanent regime solution corresponding to the closest set of parameters as

initial condition.

In the case of axial periodic boundary conditions, the initial condition is a velocity field

which corresponds to divergence-free rolls:

u′(r, z, t = 0) = A0 (u
′

rer + u′

zez) , (1.5)

where A0 is the initial amplitude of the perturbation, and

u′

r = cos(kz) (r − r1)
2
(r − r2)

2
, (1.6)

u′

z = − sin(kz) (r − r1) (r − r2)
4r − 2 (r1 + r2) +

(r−r1)(r−r2)
r

k
. (1.7)

The shear-thinning behavior of the Carreau model (2.6) depends on the shear-thinning

index nc and the dimensionless constant time λ. Shear-thinning effects increase either by

increasing λ or by decreasing nc. Here, we have fixed λ = 200 and the numerical results

are presented for nc = 0.5 and nc = 0.2. For nc = 0.5, Taylor vortices fill all the annular

space, whereas for nc = 0.2, Taylor vortices are strongly squeezed against the inner wall.

One can also recall that when λ ≥ 30, this parameter has practically no effect on the

base flow as well as on the size of vortices (Alibenyahia et al. 2012; Topayev et al. 2019).
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2. Supplementary section S2: Validation of the numerical method

2.1. Comparison with linear theory

Taylor-Couette configuration with periodic boundary conditions is used as a model to

approximate infinite cylinders. To determine the threshold of the primary bifurcation,

we compute the transient evolution of the velocity, starting with initial conditions (1.5)-

(1.7), with a very small amplitude A0 = 10−6. For a Newtonian fluid and a radius ratio

η = 0.4, we compute the time evolution of the flow at Re = 68.08 and Re = 68.5, i.e.

around the value of the critical Reynolds number Rec = 68.296542 (Alibenyahia et al.

2012; Topayev et al. 2019). From exponential fits of the time series, we extract the linear

growth rates σ(Re = 68.08) = −0.086391 and σ(Re = 68.5) = 0.081148. A linear fit

between these values provides a critical value Rec = 68.2972 very close to that given in

the literature.

A similar result was obtained for a shear-thinning fluid. For instance, for a Carreau fluid

with nc = 0.5, λ = 100 and η = 0.4, the linear stability analysis (Alibenyahia et al.

2012; Topayev et al. 2019) gives Rec = 3.5770645. Using the same initial condition as

previously, linear growth-rates are computed using the method of Sec. 1 at two Reynolds

numbers around Rec. After exponential fits, we obtain σ(Re = 3.5663) = −0.0075602

and σ(Re = 3.5871) = 0.0064292. A linear fit between these two values leads to a critical

Reynolds number of Rec = 3.5775708 very close to that given predicted by the linear

theory for infinite cylinders(Topayev et al. 2019).

2.2. Comparison with weakly nonlinear theory

In table T1 the torque obtained using the method of Sec. 1 for a Newtonian fluid at

η = 0.5 is compared with the weakly nonlinear stability calculations of Davey (1962)

and those of Topayev et al. (2019). Here the torque T has been non-dimensionalized by



Supplementary Material 5

Re Torque Torque, theoretical Torque, theoretical Torque

Reynolds number Sec. 1 method (Topayev et al. 2019) (Davey 1962) (Fasel & Booz 1984)

70.0 17.1594 17.1572 17.1544 17.1537

75.0 18.1741 18.2090 18.1089 18.1627

80.0 19.0700 19.1164 18.6183 19.0527

85.0 19.8707 19.8909 19.5375 19.8490

90.0 20.5954 20.5543 20.0800 20.5692

95.0 21.2567 21.1265 20.5391 21.2267

Supplementary Table T1: Newtonian fluid with η = 0.5. Variation of the torque at the

inner cylinder as a function of Reynolds number. Comparison with weakly nonlinear

stability results of Topayev et al. (2019) as well as with the numerical results of Fasel &

Booz (1984).

the reference torque Tref = µR2
1 Ω1ℓ where ℓ is the length of the cylinders. In the low

supercritical regime the agreement with both Davey’s and Topayev et al.’s data is very

good. Nevertheless, one can note that our numerical solutions are closer to Topayev et

al.’s results than to Davey’s ones. This is not surprising since Davey’s analysis is based

on expansion at cubic order about the critical Reynolds number, whereas in Topayev

et al. (2019), the expansion is pushed until seventh order.

Comparison with weakly nonlinear theory in the case of a shear-thinning fluid is dis-

played in table T2. A Carreau fluid with nc = 0.5 and λ = 100 is considered. The radius

ratio is η = 0.4. As it can be observed, our numerical solutions are in very good agree-

ment with Topayev et al.’s results.
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Re Torque Torque, theoretical

Reynolds number method of Sec. 1 (Topayev et al. 2019)

3.5810 0.54993 0.54975

3.9348 0.56953 0.56572

4.2925 0.58656 0.580353

4.6502 0.59795 0.59242

Supplementary Table T2: Carreau fluid with nc = 0.5, λ = 100 and η = 0.4. Variation of

the torque at the inner cylinder on Reynolds number. Comparison with weakly nonlinear

stability results of Topayev et al. (2019)

2.3. Comparison with literature in strongly nonlinear regime

To validate the numerical tool described in Sec. 1, in a strongly nonlinear regime, our

numerical results are compared with those obtained by Fasel & Booz (1984) for a New-

tonian fluid at η = 0.5. In their numerical study, the computations were carried out

under the assumption of axisymmetric flow structure, with L = 2 and periodic bound-

ary conditions at both ends of cylinders. Note that L = 2 is very close to a the axial

wavelength at critical conditions Λ = 1.9858. Our numerical solutions obtained using a

single wavelength fluid column with periodic boundary conditions presented in table T5

at different Reynolds numbers show excellent agreement with the DNS study of Fasel &

Booz (1984). Additional computations done with two wavelengths fluid column gives the

same results.

3. Supplementary section S3: Experimental protocol

To observe flow structures corresponding to various Re in the Taylor-Couette geometry,

the Reynolds number is slowly increased with time starting from a stationary inner
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cylinder. Actually, we have first evaluated the critical Reynolds number, Rec, for the

onset of Taylor vortices from the linear theory. The velocity of rotation of the inner

cylinder is increased from Re = 0 to Re = 0.8Rec in one hour. In this first step, the

ramping rate agrees with the criterion of Dutcher & Muller (2009): the nondimensional

acceleration rate dRe/dtd, where td is the time dimensionalized with the viscous diffusion

time scale ρ d2/µ, should be less than unity to ensure that the flow can be considered

to be quasisteady. The values of dRe/dtd and dΩ1/dt̂ are listed in Table T3, with t̂ the

dimensional time. In the second step, i.e. from Re = 0.8Rec, Ω1 was increased in small

steps of ∆Ω1 with waiting times sufficiently long to assure static conditions. Typical

values of ∆Ω1 is 0.21 rad/s. However, near criticality, the increment ∆Ω1 was reduced

to 0.105 rad/s. Above the onset of TVF, the step ∆Ω1 and the waiting time period

were adapted to have a balance between the need to avoid unsteady effects and the

requirements that the measurements were performed over a reasonable time. Experiments

typically lasted approximately 6 to 10 hours. Temperature measurements of the working

fluid before and after an experiment indicated that the temperature change was less than

1◦C.

4. Supplementary section S4: Influence of the endwalls: Numerical

results

The objective of this section is to check if the endwall boundary conditions have an

effect on the onset of Taylor vortices in the case of purely viscous shear-thinning fluid

for a quite small aspect ratio L = 10.

For a purely viscous fluid, at Re << Rec and far from the endwalls, the stable flow

is geostrophic. The fluid is in equilibrium under the centrifugal force and the pressure

gradient. Close to the stationary bottom endwall, the no-slip boundary condition results
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# Concentration dΩ1/dt̂ (rad/s
2) dRe/dtd

(1) glycerol aqueous solution 0.872e-3 1.006e-2

(2) 1000 ppm 0.909e-3 1.97e-2

(3) 2000 ppm 0.691e-3 2.01e-4

(4) 3000 ppm 2.035e-3 1.51e-6

Supplementary Table T3: Experimental conditions used in the various experiments: ac-

celeration rate during the phase where the velocity of the inner cylinder is increased from

0 to 0.8Rec.

in an azimuthal velocity lower than that far from the endwall. The imbalance between

the pressure gradient force and the centrifugal force near the bottom endwall, results in a

force that drives the fluid radially inwards (Czarny et al. 2003). This radial inflow induces

an axial downward flow near the outer cylinder and an axial upward flow near the inner

one, yielding a vortex situated at the bottom wall. As the Reynolds number is increased

more counter rotating vortices appear. Below Rec, the strength of the vortices decays

exponentially (Ahlers et al. 1986; Lücke et al. 1985; Pfister & Rehberg 1981). However,

the exponential decay length diverges as |ǫ|−1/2. Hence, a finite system of length L will

be completely filled with detectable vortices for ǫ ≥ −L−2 (Ahlers et al. 1986). These

counter-rotating vortices appear quite similar to Taylor vortices and have almost the same

axial extent (Czarny et al. 2003). Numerical simulations done with L = 10, for a Carreau

fluid of rheological parameters nc = 0.2 and λ = 200 show that around the middle of

the annular domain and at ǫ ≤ −0.01, the vortices induced by the endwalls boundary

conditions are very weak. This is clearly shown by figure F1 where we have represented
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the radial velocity profile along the axial line, r = 0.8, passing through the center of

vortices (position of minimum speed in the radial plane,
√

u2
r + u2

z). At ǫ = −0.01, the

maximum radial velocity is about 0.7% of the surface speed of the inner cylinder reached

near the bottom endwall. When ǫ > 0, vortices due to centrifugal instability are observed

and their strength increases with increasing Reynolds number. Around the middle of the

height of the annular space (z = 5), we have found a wavenumber knum = 8.39 which

is in very good agreement with the theoretical value kc = 8.4055 (Topayev et al. 2019).

Therefore, there is practically no effect of endwalls boundary conditions on the onset

of TVF even for a quite small aspect ratio L = 10. At the middle of the height of the

annular space, the periodicity of the cells is well described by the linear theory.

Note that in the TVF regime the maximum outflow (positive) velocity is larger than

the maximum inflow (negative) velocity. For instance, at ǫ = 0.06, the ratio between the

maximum outflow and the maximum inflow is ≈ 3.6 and the width of the inflow region

is 2.4 times that of the outflow region as measured between zero-crossings.
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Supplementary Figure F1: Carreau fluid with nc = 0.2 and λ = 200. Radial velocity

component along the axial line, r = 0.8, passing through the center of vortices. (a)

ǫ = −0.1, (b) ǫ = −0.01, (c) ǫ = 0.03 and (d) ǫ = 0.06. For nc = 0.2, λ = 200, the

linear theory assuming infinite cylinders gives Rec = 1.1643 (Topayev et al. 2019).

# Concentration nc µ0(Pa.s) λf (s) λ

(1) glycerol aqueous solution 1 0.088 - -

(2) 850 ppm 0.52 0.13 2.78 0.40

(3) 1000 ppm 0.5 0.33 8.48 3.14

(4) 1200 ppm 0.45 1.64 18.93 34.5

(5) 1500 ppm 0.41 3.38 26.51 99.6

(6) 2000 ppm 0.34 5.85 30.36 197.4

(7) 3000 ppm 0.23 27.48 47.66 1455.2

Supplementary Table T4: The main rheological parameters of aqueous xanthan gum

solution: shear-thinning index nc, zero shear viscosity µ0 and characteristic time of the

fluid λf , at different concentrations.
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Re Torque Torque

Reynolds number method of Sec. 1 (Fasel & Booz 1984)

100 21.8653 21.8352

125 24.3584 24.3199

150 26.3074 26.2646

175 27.9669 27.9276

200 29.4749 29.4266

Supplementary Table T5: Newtonian fluid with η = 0.5. Variation of the torque at the

inner cylinder on Reynolds number. Comparison with numerical results of Fasel & Booz

(1984)

# Concentration nc Rec Reexpc kc kfinitec kexpc

(1) 0 ppm 1 68.296 68.74 3.1834 3.24 3.27

(2) 1000 ppm 0.5 11.106 11.05 3.5235 3.63 3.72

(3) 2000 ppm 0.344 1.6944 1.69 4.5159 4.42 4.37

(4) 3000 ppm 0.23 0.5179 0.512 6.8418 6.77 6.55

Supplementary Table T6: Comparison between theoretical and experimental critical con-

ditions for Newtonian and aqueous solution of xanthan gum at different concentrations
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Supplementary Figure F2: Schematic of the experimental set up.

Supplementary Figure F3: Space-time diagrams for aqueous solution of xanthan gum

at 1000 ppm for Re = 5.72, 10.67, 11.05 and 11.43. The rheological parameters are nc =

0.5, λ = 3.1. For these parameters, the linear theory assuming infinite cylinders gives

Rec = 11.1064 (Topayev et al. 2019).
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Supplementary Figure F4: Space-time diagrams of xanthan gum 3000ppm at Re =

0.457, 0.507, 0.512 and 0.517. The rheological parameters are nc = 0.23 and λ = 1455.

For this case, the linear theory gives Rec = 0.5180.
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Supplementary Figure F5: Aqueous glycerol solution. Spatio-temporal diagram in the

WVF 1 regime at two Reynolds numbers Re = 361 and 452 in the case of WVF

1 regime. The black parallel lines are inflow and outflow boundaries. The vortices are

situated between these lines. Adjacent to each vortex is another vortex that circulates

in the opposite sense. Neighboring vortices appear darker or lighter. Below each bright

vortex there is an outflow boundary and above each bright vortex an inflow boundary.

Supplementary Figure F6: Aqueous glycerol solution. Visualization of the cross-section of

the flow in the r−z plane. Spatio-temporal diagrams in the WVF 1 regime at Re = 361

and 452.
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Supplementary Figure F7: Aqueous glycerol solution. Spatio-temporal diagram in WVF

II at Re = 479 and 497.



16 S. Topayev, C. Nouar and J. Dusek

REFERENCES

Ahlers, G., Cannell, D.S., Dominguez-Lerma, M.A. & Heinrichs, R. 1986 Wavenumber

selection and Eckhaus instability in Couette-Taylor flow. Physica D: Nonlinear Phenomena

23 (1-3), 202–219.

Alibenyahia, B., Lematre, C., Nouar, C. & Ait-Messaoudene, N. 2012 Revisiting the

stability of circular Couette flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech.

183, 37–51.

Cahouet, J & Chabard, J-P 1988 Some fast 3d finite element solvers for the generalized

stokes problem. Int. J. Numer. Methods Fluids 8 (8), 869–895.

Czarny, O., Serre, E., Bontoux, P. & Lueptow, R.M. 2003 Interaction between Ekman

pumping and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15 (2), 467–

477.

Davey, A. 1962 The growth of Taylor vortices in flow between rotating cylinders. J. Fluid

Mech. 14 (3), 336–368.

Dutcher, Cari S & Muller, Susan J 2009 Spatio-temporal mode dynamics and higher order

transitions in high aspect ratio newtonian Taylor-Couette flows. J. Fluid Mech. 641, 85.

Fasel, H & Booz, O 1984 Numerical investigation of supercritical Taylor-vortex flow for a

wide gap. J. Fluid Mech. 138, 21–52.

Hecht, Frédéric 2012 New development in freefem++. Journal of numerical mathematics

20 (3-4), 251–266.

Jenny, M., Plaut, E. & Briard, A. 2015 Numerical study of subcritical Rayleigh–Bénard

convection rolls in strongly shear-thinning Carreau fluids. J. Non-Newtonian Fluid Mech.

219, 19–34.
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