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1. Transitions at infinity
In order to understand the behavior of critical points at infinity, we use the approach

of Bhosale et al. (2020), where a periodic setup is employed to confine farfield dynamics
and bifurcations within repeating unit cells, with the understanding that an infinite
domain is recovered as cell boundary approaches infinity. In the following, we present
and understand the bifurcations occurring at infinity for both axisymmetric (2D) and
non-axisymmetric (3D) cases.

1.1. Fully symmetric setting
We first recall the bifurcations responsible for the single-to-double layer regime tran-

sition in the case of the sphere, introduce the overall logic behind the analysis approach,
and finally provide precise pointers to previous work, for the interested reader.

From the main text, we observe that the transition introduces saddles that approach
the body (as we decrease δAC/a from the Stokes-like regime) and eventually sit at a
distance δDC away from the body, as observed in the finite thickness layer regime (figure
2 of main text). The appearance of these saddles is mediated by bifurcations occuring
at infinity (Bhosale et al. 2020). In order to visualize these bifurcations, we can first
cast the 3D problem into a 2D problem by virtue of its axisymmetry (i.e. considering a
circular cylinder in place of a sphere). Then, by creating repeating units of evenly spaced
oscillating cylinders, we form a periodic lattice setup (Bhosale et al. 2020). This allows
us to confine bifurcations at infinity in between the repeating units and observe them as
they unfold. We thus reduced the problem to a 2D setting already thoroughly investigated
in Bhosale et al. (2020). There, critical background on the equivalence between stream
function and autonomous Hamiltonian systems is provided in Section 3.2, and the actual
investigation of the single-to-double layer regime is carried out in detail in Section 2.3
of the Supplementary Information. There, we can see how the transition involves a two-
step process, where the system first undergo a higher-order hyperbolic reflecting umbilic
bifurcation followed by a higher-order elliptic reflecting umbilic bifurcation (Bosschaert
& Hanßmann 2013).

† Email address for correspondence: mgazzola@illinois.edu
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Figure 1. Bifurcation at infinity elucidated through periodic setup. Streaming body (spheroid
with radii ratio ax : ay : az = a : a : 0.25a) oscillating in a repeating unit bounded by cubic boxes,
resulting in critical points defining the flow for (a) Phase I and (b) Phase II. The highlighted
stable NSS (blue) undergo supercritical pitchfork bifurcation (inset) to produce two stable (blue)
and one unstable (red) NSS, where the new stable NSS eventually approaches the streaming
body. Axes orientation are indicated at the bottom-left, and the orange X-axis represents the
axis of oscillation. Simulation details: normalized uniform grid spacing h/a = 0.03.

1.2. Axisymmetric setting
When investigating the transition from the pocket phase to the finite thickness layer

regime for a spheroid oscillating along its axis of symmetry (Section 4.1 of the main
text), the disappearance (towards infinity) of the unstable NSS and the appearance
(from infinity) of the 2D degenerate saddles (figure 3(c–f) of the main text) can be
explained via the same approach above. Again, this process is illustrated in detail in
the Supplementary Information of Bhosale et al. (2020) in Section 4.4, where elliptic
reflecting umbilic bifurcation is identified to be at play.

1.3. Non-axisymmetric setting
We recall here the Phase I → II transition from the main text, where we observe a pair

of stable FSS approaching the body along the Y-axis as a consequence of supercritical
pitchfork bifurcations taking place at infinity. In order to investigate the mechanism
responsible for the appearance of these points, we use the same approach above (sec-
tions 1.1 and 1.2) and cast the problem in a periodic setup, this time corresponding to
a fully 3D repeating lattice. We note that similar mechanisms (either supercritical or
subcritical pitchfork bifurcation) can be shown to be at play for other phase transitions
involving points approaching from infinity (i.e. Phase III → IV and V → VI transitions
of the main text). Hence, for brevity, we present one such transition here.

Figure 1 illustrates the result of these periodic simulations in Phase I and II, where
the streaming body is set to oscillate in a repeating unit bounded by the cubic box.
We note that the local flow trajectories are not rendered here to avoid clutter. While
we can observe many critical points (stable and unstable NSS) on the boundaries (these
critical points are shared between adjacent units), we first draw attention to the stable
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Figure 2. Bifurcation through curvature variation in axisymmetric cases. Keeping flow
parameter δAC/a = 0.065 constant while varying the aspect ratio ax/a of an oscillating spheroid
with radii ax : ay : az, where ay = az = a, reveals different streaming flow regimes: (a,b)
Stokes-like regime at ax/a = 0.25; (c,d) Flow regime defined by enclosed pockets at ax/a = 0.4;
(e,f) Finite thickness layer regime at ax/a = 0.667. Simulation details: normalized uniform grid
spacing h/a = 0.03.

NSS highlighted in figure 1(a). As we decrease δAC/a from Phase I, we observe that the
blue stable NSS undergoes a supercritical pitchfork bifurcation and splits apart into an
unstable (red) and two stable (blue) NSS. These new stable NSS (blue) then eventually
approach the body as we further decrease δAC/a, resulting in Phase II, consistent with
the observations of the main text.
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2. Transition via geometric variation
2.1. Axisymmetric setting

In the main text, we presented three main regimes (Stokes-like, pockets, finite thickness
layer) for a spheroid oscillating along its axis of symmetry by varying the flow parameter
δAC/a. Here we show that these regimes are also accessible via geometric variations alone,
in keeping with two-dimensional predictions (Bhosale et al. 2020). In the following, we
oscillate a spheroid of radii ax and ay = az = a along the X-axis, and vary its aspect
ratio ax/a < 1 while keeping flow parameter δAC/a = 0.065 constant.

We start by considering a flat spheroid of aspect ratio ax/a = 0.25, where we encounter
the Stokes-like regime characterized by the single-layer structure as shown in figure 2(a,b).
Upon increasing ax/a to a critical value, we observe the emergence of the neatly enclosed
pockets of fluid on both sides of the body (figure 2(c,d)), consistent with the observation
in figure 3 of the main text. A further increase in ax/a brings the flow to the finite
thickness layer regime, where the characteristic double-layer recirculating regions can
be seen (figure 2(e,f)). Finally, we note that the transitions from single- to double-layer
regime achieved via geometric variations here undergo the same bifurcations as those
observed by varying flow parameter δAC/a (figure 3 of main text).

2.2. Non-axisymmetric setting
In the main text, we discovered seven distinct phases between Stokes-like and finite

thickness layer regimes for an oscillating spheroid in a non-axisymmetric setting. These
phases are also accessible via geometric variation alone, consistent with the above
discussion. Indeed, the transitions induced by geometric variations are mediated by the
same mechanisms as those observed in figure 4 of the main text. Here, for brevity, we
demonstrate two such transitions by changing the aspect ratio az/a of a spheroid with
radii ax = ay = a and az oscillating along the X-axis, while keeping δAC/a constant.

2.2.1. Phase II → III
Here we demonstrate the Phase II → III transition at constant δAC/a = 0.316. We

start by considering a spheroid of aspect ratio az/a = 0.5 as shown in figure 3(a), where
we encounter a flow representative of Phase II. Upon decreasing az/a to a critical value,
we observe that the stable NSS (blue) on both sides of the body split into an unstable NSS
(red) and a pair of stable FSS (purple) as shown in figure 3(b), undergoing the two-step
process elaborated in section 3 of the Supplementary Information. This transition, similar
to that presented in the main text, is mediated by a supercritical pitchfork bifurcation
(inset of figure 3), where the bifurcation parameter here is now the body aspect ratio
az/a in place of δAC/a.

2.2.2. Phase VI → VII
We further demonstrate the Phase VI → VII transition at constant δAC/a = 0.21,

illustrating it via geometric variation alone. We start by considering a spheroid of aspect
ratio az/a = 0.3 as shown in figure 4(a), where we encounter the characteristic outer rings
oriented orthogonally to the inner ones (Phase VI). Upon decreasing δAC/a to a critical
value, we can observe that the stable NSS (blue) approach the body and the stable FSS
(purple) in the outer rings, ultimately passing through the FSS pairs as the outer rings
“kiss” and reorient orthogonally, thus reorganizing the flow into the finite thickness layer
regime of Phase VII (figure 4(b)). This transition, similar to that presented in the main
text, is mediated by a higher-order elliptic reflecting umbilic bifurcation (Bosschaert &
Hanßmann 2013).
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Figure 3. Bifurcation through curvature variation in non-axisymmetric case. We keep the flow
parameter δAC/a = 0.316 constant. (a) Streaming from spheroid with aspect ratio az/a = 0.5
illustrates a flow representative of Phase II. (b) Decreasing az/a to 0.25, while keeping δAC/a
constant, triggers a supercritical pitchfork bifurcation that splits the stable NSS (blue) into an
unstable NSS (red) and two stable FSS (purple). Simulation details: normalized uniform grid
spacing h/a = 0.03.
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Figure 4. Bifurcation through curvature variation in non-axisymmetric case. We keep the flow
parameter δAC/a = 0.21 constant. (a) Streaming from spheroid with aspect ratio az/a = 0.3
illustrates a flow representative of Phase VI, where the outer rings are oriented orthogonally
relative to the inner ones. (b) Decreasing az/a to 0.25, while keeping δAC/a constant, induces
the reorientation of the outer rings as the stable NSS move past the adjacent stable FSS pair.
Simulation details: normalized uniform grid spacing h/a = 0.03.

3. Two-step transition in non-axisymmetric cases
We describe here the two-step process encountered in multiple transitions observed

in the main text. We start by recalling the Phase II → III transition and describe the
two-step process in detail (figure 5). As we decrease δAC/a from Phase II (figure 5(a)),
the stable NSS on each side of the body first splits into an unstable NSS (red) and a pair
of stable NSS (blue) through a supercritical pitchfork bifurcation, resulting in the flow
structure of figure 5(b). Upon a further decrease in δAC/a, we can observe that the new
pair of stable NSS (blue) moves apart from each other and away from the unstable NSS
(red), and begins to develop local rotational flow, thus transitioning from stable NSS
(blue) to stable FSS (purple), as illustrated in figure 5(c). It is important to highlight
here that in the second step of the process (figure 5(b,c)), the stability and the number
of these points are preserved across system changes (from NSS to FSS), suggesting that



6

Unstable

NSS

Stable

FSS

Stable

NSS
(–)

(–)

(–)

(+)

FSS

Stable

Unstable

II III

SUPERCRITICAL
PITCHFORK
BIFURCATION

X

Z

Y

Stable FSS Unstable FSSStable NSS Unstable NSS

(a) (b) (c)

Figure 5. Two-step process of pitchfork bifurcation for Phase II → II transition. Stable NSS
(blue) in (a) Phase II first splits into an unstable (red) and two stable (blue) NSS, resulting in
a (b) hidden phase, before ultimately transitioning to (c) Phase III when the new stable NSS
change in nature into stable FSS (purple). Simulation details: normalized uniform grid spacing
h/a = 0.03 (used throughout this section).

a bifurcation may not be the appropriate description, but rather a focus–node transition
similar to Barnes & Grimshaw (1997) has occured. We further note that this two-step
process occurs in the subcritical pitchfork bifurcation of Phase IV → V transition as well,
with the stability of the involved critical points throughout the transition now opposite
of those described above.

4. Identification of critical points
Here we describe the methodology employed to identify critical points in our simula-

tions. In particular, we follow the procedure below.
(i) Extraction of zero velocity points. We apply a minimum filter to scan over

the entire velocity field via a moving box, which isolates and outputs points that are local
minima. The size of this box is a user-defined parameter, where setting it too small results
in noisy outputs, while setting it too large effectively masks out existing, nearby critical
points. Here we set a cubic box of size based on the minimum system characteristic length
scale O(δAC/a) ∼ 0.1. The resulting points from the filter are then further processed via
a velocity threshold condition so that we eliminate points with velocity magnitudes larger
than 10−12. This is a value close to machine precision (we used double precision in all our
calculations) and orders of magnitude smaller than the streaming velocity scale O(ϵ2aω).

(ii) Classification and observation. We compute the eigenvalues/eigenvectors of
the Jacobian associated with the velocity field at the identified critical points, and classify
these points accordingly, as detailed in Section 3.2 of the main text. We further seed tracer
particles in the vicinity of these points and observe that local flow patterns are indeed
consistent with the previously identified critical point types.

(iii) Validation. We compared with previous theoretical, experimental, and numerical
observations available for 2D cylinders (Parthasarathy et al. 2019; Bhosale et al. 2020)
and 3D spheres (Lane 1955) and spheroids (Kotas et al. 2007). In all these cases, we
consistently recover reported flow topologies and critical points.

We further perform the following consistency checks:
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Figure 6. Trajectories of critical points transitioning from Phase II to III as δAC/a decreases,
as indicated by increasing opacity. Values of δAC/a presented in the main text for Phase II and
II are highlighted accordingly.

(i) Simulation resolution. We performed a set of simulations at double the mesh
grid resolution of those reported in the manuscript for all the phases presented (Phase
I–VII). We recovered exactly the same number and type of critical points.

(ii) Robustness to perturbation in the bifurcation parameter. For a given
streaming flow topology, we perturb the value of δAC/a (without invoking a bifurcation)
and observe that the captured critical points remain invariant. More details can be found
in section 5 below.

(iii) Symmetry cross-checks. We further take advantage of the discrete symmetry
in our problem setup and, as a sanity check, confirm that symmetry in the exis-
tence/emergence of the critical points is preserved in all instances. In other words, a
critical point that exists on one side of the oscillating body must exist on the other side
as a reflection along the plane of symmetry. We consistently recover such symmetry and
do not observe any deviation from it in any instance.

We note here that we cannot mathematically prove the methodology above captures
all the existing critical points in a general 3D flow field. However, given the protocols
and consistency checks described above, we are reasonably confident that we have not
missed any of the critical points for the specific scenarios presented in the paper.

5. Identification of bifurcation
In order to ensure that the bifurcations occur as indicated in the manuscript, we

have investigated more δAC/a values than presented in the main text. We first identify
distinct phases through a coarse δAC/a scan, and then perform additional simulations
via a bisection approach to precisely pinpoint the δAC/a bifurcation value.

Here, as an example, we demonstrate the approach here for the Phase II–III supercrit-
ical pitchfork bifurcation presented in the main text. In figure 6 below, we illustrate the
trajectories of the critical points as δAC/a decreases (indicated by the increasing opacity
of the visualized points). The δAC/a values presented in the main text are also marked
in figure 6. This approach not only allows us to accurately determine the bifurcation
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parameter values, but also provides us with a large set of simulations, that we use to
test the robustness of our critical point extraction methods (section 4 above). We find
that critical points are consistently recovered across simulations, further reinforcing the
approach presented in section 4 above.
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