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Introduction

In this text, we concern ourselves with two issues. The first one is the algorithm for solving the

system of nonlinear equations with respect to the parameters a, b, c, d and k. Here we should

remark that on the one hand, developing such an algorithm is a routine problem. Below we

demonstrate that the system can be easily reduce to a system of five polynomial equations with

five unknowns, to which one can apply, for example, the routine FindRoot (see Wolfram 2003)

by choosing the zeroth approximations by a trial-and-error method. In such a manner, one can

calculate several examples, but for systematical calculations this is an unpromising way. On the

other hand, if one wants to solve the system almost instantly for any set of the parameters α, β and

σ, the problem becomes challenging. One of the possible solutions to this problem is presented

below. The second issue is the deduction of analytical formulae for hydrodynamic properties. The

formulae are based on the analytical integral-free representation of the conformal mapping of the

parametric domain onto the physical flow region and the generalization of the Blasius-Chaplygin

formulae for the case of the re-entrant jet cavity model. For the flow over an oblique flat plate, the

formulae include expressions for the lift, drag and moment coefficients, the length and width of

the cavity. Such a deduction is again a challenging problem because something similar has never

been deduced before for any cavity model. The solutions of both these problems allow very fast

computations to be carried out.

1. Algorithm for finding the accessory parameters

Let us write down the system of equations needed to be solved:

[a + i(b − k)][a − c + i(b − d)][a + c + i(b − d)]
[a + i(b + k)][a − c + i(b + d)][a + c + i(b + d)] − R e−iα

= 0, (1.1)

i
a + ib

ab
− 2(a + ib)
(a + ib)2 − 1

+

4[a + i(b + d)]
[a + i(b + d)]2 − c2

+

2

a + i(b + k) = 0, (1.2)

(1 − ik)(1 − c − id)(1 + c − id)
(1 + ik)(1 − c + id)(1 + c + id) − e−i(α+β)

= 0, (1.3)

were α is the angle of attack, β is the inclination angle of the re-entrant jet, R = 1/
√

1 + σ and σ

is the cavity number. The unknowns in the system (1.1)–(1.3) are a, b, c, d and k.

First, we reduce the system (1.1)–(1.3) to the system of polynomial equations. To do so, instead

of α and β, we introduce the parameters

T = tan
α

2
, P = cot

β

2
. (1.4a–b)

Now we insert in the right-hand sides of (1.1) and (1.3) the expressions

e−iα
=

1 − iT
1 + iT

, e−i(α+β)
=

1 − iT
1 + iT

P − i

P + i
, (1.5a–b)
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reduce each equation in the system (1.1)–(1.3) to a common denominator, calculate real and

imaginary parts of the obtained three numerators, and equate these parts of numerators to zero.

Carrying out these operations by means of the Mathematica package (see Wolfram 2003), we get

b(R − 1)
[

−3a2 − 2aT (2d + k) + b2
+ c2
+ d2

+ 2dk
]

+(R + 1)
[

a3T − a2(2d + k) − aT
(

3b2
+ c2
+ d2

+ 2dk
)

+b2(2d + k) + k
(

c2
+ d2

) ]

= 0,

(1.6)

(R − 1)
{

a3
+ a2T (2d + k) − a

(

3b2
+ c2
+ d2

+ 2dk
)

− T
[

b2(2d + k) + k
(

c2
+ d2

) ] }

−b(R + 1)
[

−3a2T + 2a(2d + k) + T
(

b2
+ c2
+ d2

+ 2dk
) ]

= 0,
(1.7)

a4(2b + 2d + k) + a2
{

4b3 − 4b2(2d + k) + b
[

−4
(

c2
+ d2

)

− 8dk + 2
]

−k
(

c2
+ d2

+ 1
)

− 2d
}

+ 2b5
+ 3b4(2d + k) + b3

[

4
(

c2
+ d2

)

+ 8dk − 2
]

−b2
[

−5k
(

c2
+ d2

)

+ 2d + k
]

+ k
(

c2
+ d2

)

= 0,

(1.8)

a6 − a4
[

−b2
+ 3b(2d + k) + c2

+ d2
+ 2dk + 1

]

− b
(

b2
+ 1

)

(b + k)
[

b(b + 2d) + c2
+ d2

]

+a2
[

−b4
+ 4b3(2d + k) +

(

6b2
+ 5bk + 1

) (

c2
+ d2

)

+ 6b2(2dk − 1) − b(2d + k) + 2dk
]

= 0,
(1.9)

(

c2
+ d2 − 1

)

(kU − V) − 2d(kV +U) = 0, where U = P − T, V = 1 + PT . (1.10a–c)

In the system (1.6)–(1.10), equations (1.6) and (1.7) are equivalent to (1.1), equations (1.8) and

(1.9) are equivalent to (1.2) and equation (1.10) is equivalent to (1.3). So we have obtained the

system of five polynomial equations with five unknowns.

Now, we exclude the parameters c and d from the system (1.6)–(1.10). With the help of (1.10),

we express c in terms of k and d:

c =

√

−d2
+

2d(kV +U)
kU − V

+ 1, and, therefore, c2
+ d2

=

2d(kV +U)
kU − V

+ 1. (1.11a–b)

Equations (1.6)–(1.9) are quadratic with respect to the unknowns c and d and do not contain c
being raised to the first power. Moreover, if somewhere in the equations c2 is presented, then

d2 is also presented forming the sum c2
+ d2. This means that inserting equation (1.11b) into

(1.6)–(1.9) gives rise to four equations which will not contain c and will be linear with respect

to d. Solving these linear equations, we obtain

d =
1

2
(V−kU)E11

E21

, d =
1

2
(V−kU)E12

E22

, d =
1

2
(V−kU)E13

E23

, d =
1

2
(V−kU)E14

E24

, (1.12a–d)

where

E11 = (R + 1)
[

k
(

−a2
+ b2
+ 1

)

+ aT
(

a2 − 3b2 − 1
)]

+ b(R − 1)
(

−3a2 − 2akT + b2
+ 1

)

,

(1.13)

E21 = U
{

(R + 1)
[

k
(

−a2
+ b2

+ 1
)

− ak2T − aT
]

+ b(R − 1)
(

−2akT + k2
+ 1

)}

+V
[

(R + 1)
(

a2 − b2
+ k2

)

+ 2ab(R − 1)T
]

,
(1.14)

E12 = b(R + 1)
(

−3a2T + 2ak + b2T + T
)

− (R − 1)
[

a3
+ a2kT − a

(

3b2
+ 1

)

−
(

b2
+ 1

)

kT
]

,

(1.15)
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E22 = U
{

b(R + 1)
(

2ak + k2T + T
)

− (R − 1)
[

a2kT − a
(

k2
+ 1

)

−
(

b2
+ 1

)

kT
]}

+V
[

(R − 1)T
(

a2 − b2
+ k2

)

− 2ab(R + 1)
]

,
(1.16)

E13 = k
(

a2 − 3b2 − 1
) (

a2 − b2 − 1
)

+ 2b
[

a4
+ a2

(

2b2 − 1
)

+ b4
+ b2

]

, (1.17)

E23 = U
{

a4k − 2a2[2(b2k + bk2
+ b) + k] + b2

[

b
(

3bk + 4k2
+ 4

)

+ 4k
]

+ k
}

+V
[

−a4
+ a2

(

4b2 − k2
+ 1

)

− 3b4
+ b2

(

5k2
+ 1

)

+ k2
]

,
(1.18)

E14 = −
(

a2 − b2 − 1
) [

a4
+ a2

(

2b2 − 3bk − 1
)

+ b
(

b2
+ 1

)

(b + k)
]

, (1.19)

E24 = U
{

a4
(

3bk + k2
+ 1

)

− a2
[

4b3k + 6b2
(

k2
+ 1

)

+ 4bk + k2
+ 1

]

+b
(

b2
+ 1

)

(b + k)(bk + 1)
}

+ Vb
[

−3a4
+ a2

(

4b2 − 5k2 − 1
)

+

(

b2
+ 1

)

(k2 − b2)
]

.

(1.20)

With the help of the first equation in the system (1.12), we eliminate d from the three remaining

equations to obtain

E11E22 − E12E12 = 0, E11E23 − E12E13 = 0, E11E24 − E12E14 = 0. (1.21a–c)

The system (1.21) is a rather cumbersome system of three polynomial equations with respect

to the unknowns a, b and k that must satisfy the complementary conditions

a > 0, b > 0, k > 0. (1.22a–c)

The most surprising fact is that it is possible to exclude k from this system. Indeed, note that

each equation of the system is cubic with respect to k. Therefore, the system can be rewritten as

follows

Λ11k3
+ Λ12k2

+ Λ13k + Λ14 = 0, (1.23)

Λ21k3
+ Λ22k2

+ Λ23k + Λ24 = 0, (1.24)

Λ31k3
+ Λ32k2

+ Λ33k + Λ34 = 0. (1.25)

Here, the coefficients Λij , (i = 1, 3, j = 1, 4) depend on the unknowns a and b and the known

parameters R, T , U and V . The values of these twelve coefficient are presented in Appendix to this

text. With the help of equation (1.23), we eliminate k3 from equations (1.24) and (1.25). Namely,

we insert

k3
= − 1

Λ11

(Λ12k2
+ Λ13k + Λ14)

into the first terms of equations (1.24) and (1.25). The result of these simple algebraic operations

turns out to be rather unexpected, namely, equations (1.24) and (1.25) are equivalent to the

following ones:

4bM1(a, b)E21(a, b, k) = 0, 4abM2(a, b)E21(a, b, k) = 0, (1.26a–b)

where

M1(a, b) = Ω11U +Ω12V, M2(a, b) = Ω21U + Ω22V, (1.27a–b)
and Ωij are polynomials of the unknowns a and b with coefficients that depend on the known

parameters R and T . The parameters U and V are also known. So the notations M1(a, b) and

M1(a, b) emphasize that M1 and M2 are polynomialsof unknowns a and b with known coefficients.

The analytical formulae for the polynomials Ωij (i, j = 1, 2) are presented in Appendix to this

text.

Since E21(a, b, k) is the denominator of the first equation in (1.12), we must assume that
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E21(a, b, k) , 0. Then by virtue of (1.22), we infer that equations (1.26) are equivalent to the pair

of polynomial equations with only two unknowns, a and b:

M1(a, b) = 0, M2(a, b) = 0. (1.28a–b)

Taking into account the awkwardness of the coefficients Λij (see Appendix), the passage from

equations (1.23)–(1.25) to the system (1.28) can be considered as a small wonder.

One can easily see that if a and b satisfy (1.28), then all equations in the system (1.23)–(1.25)

will be proportional to each other. So, we have reduced the system of five equations (1.6)–(1.10)

with five unknown accessory parameters a, b, c, d and k, to the system (1.28) with only two

unknowns a and b. After finding a and b from (1.28), we determine k from the cubic equation

(1.23) and the parameters d and c by means of formulae (1.12a) and (1.11a).

The system (1.28) is a system of nonlinear polynomial equations with respect to a and b.

To solve such systems, there are two routines in the Mathematica package (see Wolfram 2003):

NSolve and FindRoot. Comparing these two routines, we should remark that NSolve is especially

intended for solving polynomial systems and is able to find all roots. The latter is the reason why

NSolve is rather time-consuming. FindRoot uses the Newton method and works thousand times

faster than NSolve, but for its application one needs to know a good zeroth approximations for

unknowns. So, we shall use FindRoot to solve the system (1.28). As to the zeroth approximations,

we construct three types of them.

Type 1. The parameter ε = 1 − R, i.e. the cavity number σ, is small, whereas the parameters

T and P, i.e. the angle of attack α and the re-entrant jet inclination angle β, are finite:

a = 1 + ε2 T2
+ 1

32T2

[

T2 − 4PT − 3 −
P2

(

T2 − 3
)

+ 24PT − 7T2
+ 13

4T2
ε

]

,

b = ε

[

1

4

(

T +
1

T

)

−
(

P2 − 3
) (

T2
+ 1

)

32T
ε

]

.

(1.29)

Type 2. The parameter T is small, whereas the parameters R and P are finite:

a =
4
√

R
√

R + 1
√

T
√

1 − R
√

(R − 1)P2
+ R + 1

+

(1 − 3R)PT

2
[

(R − 1)P2
+ R + 1

] ,

b =
R3/4√R + 1

√
T

√
1 − R

√

(R − 1)P2
+ R + 1

−
√

R(5R + 1)PT

2
[

(R − 1)P2
+ R + 1

] .

(1.30)

Type 3. The parameters T and ε are both small, but the ratio T/ε = A as well as the parameter

P are finite:

a = A1 + ε
A2

A3

, b = B1 + ε
B2

B3

, (1.31a–b)

where

A1 =

√

√

A
(√

4A2
+ 1 + 2A

)

4A2
+ 1

, B1 =

√

√

A
(√

4A2
+ 1 − 2A

)

4A2
+ 1

, (1.32a–b)

A2 = −32A5
(

4A5
1
+ 5A4

1
− 4A3

1
− 4A2

1
− 1

)

A1P

+4A4
(

A2
1
− 1

) [ (

8A4
1
− 4A2

1
− 1

)

P2
+ 20A4

1
+ 2A2

1
+ 1

]

+8A3
(

−8A5
1
− 10A4

1
+ 4A3

1
+ 4A2

1
+ A1 + 1

)

A1P

+A2 A2
1

[ (

16A4
1
− 12A2

1
− 1

)

P2
+ 32A4

1
− 14A2

1
− 4

]

+A6
1

(

2P2
+ 3

)

− 2A (4A1 + 5) A5
1
P,

(1.33)
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A3 = 4
[

8A4
(

4A2
1 − 3

)

A3
1 + A2

(

16A4
1 − 6A2

1 − 1
)

A1 + 2A5
1

]

, (1.34)

B2 = 18A2
(

4A2
+ 1

)

B3
1
P − 6A2B1P + A2

(

8AP − P2 − 7
)

−2
(

4A2
+ 1

)

B6
1

[

16A3P − 4A2
(

P2
+ 3

)

+ 4AP − P2 − 2
]

−A2B2
1

(

128A3P − 4A2
(

3P2
+ 31

)

+ 24AP + P2 − 23
)

+ 2B4
1

×
[

−128A5P + A4
(

40P2
+ 92

)

− 48A3P + A2
(

14P2
+ 29

)

− 4AP + P2
+ 2

]

,

(1.35)

B3 = 4B1

[

8A4
(

4B4
1 + 5B2

1 + 1
)

+ A2
(

16B4
1 + 14B2

1 + 1
)

+ 2B4
1 + B2

1

]

. (1.36)

The zeroth approximations (1.29)–(1.31) have been found by the following method. With the

help of the routine Resultant of the Mathematica package (see Wolfram 2003), we compute the

resultants (see Kurosh 1980) of polynomials M1(a, b) and M2(a, b) with respect to the variables

b (at a fixed a) and a (at a fixed b). This operation leads to two separated polynomials, one of the

variable a and another of the variable b, both of degree 41. We factorize these polynomials and

remove the factors that do not satisfy the following conditions:

• for the polynomial of a, the factor vanishes at R = 1 and a = 1;

• for the polynomial of b, the factor vanishes at R = 1 and b = 0.

These conditions follow from the following reasoning. The re-entrant jet cavity flow must tend

to the Helmholtz-Kirchhoff flow with infinite cavity when the cavity number σ → 0 (R → 1).

Since for the Helmholtz-Kirchhoff flow, the infinity I of the re-entrant jet and infinity D of the

main stream coincide, we must have

R → 1 =⇒ a → 1 and b → 0. (1.37)

The procedure of removing factors from the initial resultants allows us to exclude from con-

sideration a significant number of spurious roots and leads to two polynomials Pa(a) and Pb(b),
both of twelfth degree, with coefficients depending on R, T , and P. So, we have succeeded in

reducing the system of five equations (1.6)–(1.10) to two polynomial equations

Pa(a) = 0, Pb(b) = 0, (1.38a–b)

and each of the equations has only one unknown. The polynomials Fa(a) and Fb(b) are stored

in the Supplementary Matherials in the form of expressions of the Mathematica package (see

Wolfram 2003).

Further, we apply a standard perturbation technique (see Murdock 1991) to the equations

Pa(a) = 0 and Pb(b) = 0 to construct the two-term asymptotic expansions (1.29)–(1.31). Here,

the routine Series of the Mathematica package turns out to be very helpful.

Computations have shown that for any angle of attack 0 < α ≤ π/2, any re-entrant jet

inclination angle π/2 ≤ β ≤ 3π/2 and any cavity number 0 < σ ≤ 5, at least one of the zeroth

approximations (1.29)–(1.31) leads to the convergence of the routine FindRoot. The question is

what is the priority of using these zeroth approximations? Here, the following approach has been

applied. If α ≥ π/4, we always use the zeroth approximation of type 1. In the opposite case, we

organize a competition between the zeroth approximations of types 1–3. Namely, at the values of

a and b, calculated by formulae (1.29)–(1.31), we compute the values of the norms
√

M2
1
(a, b) + M2

2
(a, b), (1.39)

locate these norms in the increasing order and sequentially apply FindRoot with the zero approx-

imations corresponding to this order.

Applying this algorithm, we have used the floating point arithmetics with 56 decimal places, so
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the obtained values of a, b, c, d and k are very accurate. At these values, the maximum order of

the right-hand sides of the initial equations (9), (12) and (13) is 10−55 . The algorithm is also fast:

for one set of the parameters α, β and σ, the average time of computing the unknown parameters

is approximately 0.01 second on the notebook HP G1 EliteBook Folio 1040. The algorithm is

realized in the routine fnum[α, β, σ] of the package RerntrantJet.m.

2. Analytical formulae for hydrodynamic properties

2.1. Formulae from the main text of the paper

Below we present the formulae from the main text of the paper to make easier the reading of

the further reasonings. Equations for the lift and drag forces L and D have been deduced by

Gilbarg & Serrin (1950):

L = −Qρv0 sin β − ρv∞Γ, D = −Qρv0 cos β + ρv∞Q. (2.1a,b)

Hear ρ is the density of the fluid, v∞ is the incident velocity, v0 is the constant fluid velocity along

the cavity boundaries, Γ is the circulation around the body-cavity system, Q is the flow flux in

the re-entrant jet and β is the angle of inclination of the re-entrant jet with respect the incident

flow direction.

The formulae connecting the variables w = ϕ + iψ, z = x + iy and u = ξ + iη are as follows

dw

du
= l0v0 f (u), f (u) =

u(u2
+ k2)(u2 − u2

0
)(u2 − u0

2)
(1 − u2)(u2 − u2

∞)2(u2 − u∞
2)2
, (2.2a,b)

dw

v0dz
= eiαF(u), F(u) = (u − ik)(u − u0)(u + u0)

(u + ik)(u − u0)(u + u0)
, (2.3a,b)

dz
du
= l0e−iαG(u), G(u) = f (u)

F(u) =
u(u + ik)2(u + u0)2(u − u0)2

(1 − u2)(u2 − u2
∞)2(u2 − u∞

2)2
. (2.4a,b)

where

u∞ = a + ib, u0 = c + id, (2.5a,b)
the overbars mean the complex conjugate values, and l0 is an unknown positive constant, which

is related the the length l of the plate by the relationships

l = l0J(a, b, c, d, k), (2.6)

where

J =
∫ ∞

0

G1(η)dη, G1(η) =
η(η + k)2[(η + d)2 + c2]2

(η2
+ 1)[η4

+ 2(a2 − b2)η2
+ (a2

+ b2)2]2
. (2.7a,b)

2.2. Deduction of analytical formulae

Assume that the system of equations (1.1), (1.2) and (1.3) has been solved and the accessory

parameters a, b, c, d and k have been found.

It is clear that
∮

C

dw

dz
dz = Γ − iQ, (2.8)

where Γ is the circulation, Q is the flux in the re-entrant jet, C is a closed contour surrounding the

plate-cavity system, and the integration along C is in the anticlockwise direction. In the parametric

u-plane, the contour C transforms to a contour surrounding the point u∞, but the integration will
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be in the clockwise direction, therefore,

Q + iΓ = 2π res
u=u∞

dw

du
= 2πl0v0 res

u=u∞
f (u). (2.9)

Calculating the residue, we obtain

Q = l0v0q, q =
π

(

k2
+ 1

)

[

c4
+ 2c2

(

d2 − 1
)

+

(

d2
+ 1

)2
]

2
[

a4
+ 2a2

(

b2 − 1
)

+

(

b2
+ 1

)2
]2

. (2.10a–b)

The flux in the re-entrant jet Q = v0δ, where δ is the width of the re-entrant jet. Thus, the

dimensionless width of the re-entrant jet is δ/l = q/J.

Computing the imaginary part of the residue in (2.9) leads to an expression for the circulation Γ,

but the formula turns out to be very cumbersome. Another way of determining Γ is to express the

circulation in terms of q. Indeed, for the flat plate the lift-to-drag ratio L/D = cotα. Taking into

account (2.1), we get

Γ = l0v0γ, γ =
q
R
[(cos β − R) cotα − sin β] , (2.11a–b)

where

R =
v∞
v0

=

1
√

1 + σ
. (2.12)

Let N be the normal force acting on the plate and M be the moment about the trailing edge B. The

positive direction of the moment M is anticlockwise. We introduce the following hydrodynamic

coefficients:

CN =
2N

ρv2
∞l
, CL =

2L

ρv2
∞l
, CD =

2D

ρv2
∞l
, CM =

2M

ρv2
∞l2

. (2.13a–d)

It is evident that the lift and drag coefficients CL and CD can be expressed in terms of CN :

CL = CN cosα, CD = CN sinα, (2.14a,b)

and with allowance for (2.1) we infer that

CN = 2 csc α(1 + σ)(R − cos β) δ/l, δ/l = q/J. (2.15a–b)

Now we find explicit analytical expressions for the conformal mapping z(u) and the parameter J.

It follows from (2.4) that

z(u) = l0e−iαζ(u), ζ(u) =
∫ u

∞
G(u1)du1, (2.16a–b)

where we have taken into account that the origin of the Cartesian coordinate system is located at

the point B. The integrand in (2.16) is a rational function, hence the integral can be calculated

analytically. Nevertheless, the direct application of the routine Integrate of the Mathematica

package (see Wolfram 2003) leads to an expression which is too long to be printed. Yet, some

simplifications are possible. Let us introduce the coefficient

µ = lim
u→u∞

f (u)(u − u∞)2. (2.17)

Calculating the limit, we obtain

µ =

[

k2
+ (a + ib)2

]

{

d4
+ 2d2

[

(a + ib)2 + c2
]

+

[

(a + ib)2 − c2
]2

}

64a2b2
[

(a + ib)2 − 1
]

(a + ib)
. (2.18)
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It can be easily demonstrated that the functions f (u) and F(u) possess the following properties:

f (u) = f (ū), f (u) = − f (−ū), F(u) = F(−ū), F(u) = 1

F(ū)
. (2.19a–d)

Besides, we take into account that the system of equations (1.1)–(1.3) has been deduced from

the following relations:

eiαF(u∞) = R, res
u=u∞

G(u) = 0, eiαF(1) = e−iβ (2.20a–c)

The properties (2.19) and the relations (2.20) allow us to determine the finite principle parts of

Laurent series of the function G(u) = f (u)/F(u) in the vicinity of the points u = ±u∞, u = ± u∞
and u = ±1. With the use of these expansions, we decompose G(u) into a sum of partial fractions

which can be easily integrated. The final result looks as follows:

ζ(u) = ζ1(u) + ζ2(u) + ζ3(u), (2.21)

where

ζ1(u) = −eiα

R
µ

u − u∞
, ζ2(u) = −ei(α+β) q

π
log

u − 1

u + 1
, ζ3(u) =

e−iα

R
µ̄

u + u∞

−R eiα µ̄

u − u∞
+ R e−iα µ

u + u∞
+ R eiα q − iγ

π
log

u − u∞
u + 1

+ R e−iα q + iγ

π
log

u + u∞
u + 1

,

(2.22)

and the standard branch of the logarithm with the cut along the negative part of the ξ-axis is

chosen, i.e.

log u = log |u| + i arg u, −π < arg u ≤ π. (2.23a,b)

In the z-plane, the complex coordinate of the point A has an argument of π−α. This means that

the length of the plate l = −l0ζ(0), and, as follows from (2.6), J = −ζ(0). An explicit expression

for J is as follows

J =
2
(

R2 − 1
)

sin α(bµ1 − aµ2) − 2
(

R2
+ 1

)

cosα(aµ1 + bµ2)
σ

(

a2
+ b2

)

+

R
π

[

2 tan−1

(

b
a

)

(γ cosα − q sin α) − log
(

a2
+ b2

)

(γ sin α + q cosα)
]

−q sin(α + β) − γR cosα + qR sinα,

(2.24)

where µ1 = Re µ and µ2 = Im µ.

The normal force N and the moment M acting on the plate are expressed by the integrals

N =
ρv2

∞
2

∫ l

0

Cp(s)ds, M = − ρv
2
∞

2

∫ l

0

Cp(s)sds, (2.25a,b)

where Cp is the coefficient of the pressure p calculated with respect to the pressure p0 inside the

cavity:

Cp =
p − p0

ρv2
∞/2

= (1 + σ)
(

1 − v
2

v
2
0

)

, (2.26)

v is the velocity on the plate, and s is the distance between a point on the plate and the trailing

edge B,

Passing in (2.25) to the integration in the parametric u-plane along the imaginary axis and
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taking into account (2.3), (2.6) and (2.16), we infer that

CN =
1 + σ

J

∫ ∞

0

(

1 − |F(iη)|2
)

G1(η)dη, CM =
1 + σ

J2

∫ ∞

0

(

1 − |F(iη)|2
)

|ζ(iη)|G1(η)dη,
(2.27a,b)

where G1(η) is determined by (2.7b).

By making use of (2.1), we have already derived formula (2.15) that, opposite to (2.27a),

expresses the coefficient CN of the normal force N in the integral-free form. Let us deduce now

an integral-free expression for CM . First, we present two formulae that generalize the Blasius-

Chaplygin theorem to the case of the re-entrant jet cavity flows:

D − iL =
iρ

2

∮

C

(

dw

dz

)2

dz − ρv2
0e−iβδ, M = − ρ

2
Re

∮

C

(

dw

dz

)2

zdz − ρv2
0δh, (2.28a,b)

where C is a closed contour surrounding the plate-cavity system, h is the distance from the

origin to the mean line of the re-entrant jet at the infinity I , the integration along C being in

the anticlockwise direction. Equations (2.28) are correct for a curved plate of arbitrary shape,

and their derivation can be performed by the standard approach, described, for example, in

Milne-Thomson (1968, §6·41). It is worthwhile to note that the vector ρv2
0
δeiβ is that of the

mean algebraic momentum of the remote part of the re-entrant jet, thus, ρv2
0
δh is the moment

of the momentum ρv2
0
δeiβ with the lever h. Therefore, h is positive if the momentum acts in the

counterclockwise direction with respect to the origin.

In the neighborhood of the infinity D, we have

dw

dz
= v∞ +

Γ − iQ
2πiz

+

ω1 + iω2

z2
+O(1/|z|3), (2.29)

where ω1 and ω2 are real constants. With the help of the first equation in (2.28) and (2.29), one

can easily derive equations (2.1) for the lift and drag forces L and D. For the moment M, formula

(2.29) and the second equation in (2.28) yield

M = ρ

[

2πω2v∞ +
ΓQ
2π

− v
2
0δh

]

. (2.30)

So, to calculate the moment M, one needs to determine the constants ω2 and h. Since the mean

line of the re-entrant jet is rotated with respect to the x-axis by the angle π − β, it is evident that

h =
δ

2
+ lim

ξ→1+0
Im

[

e(π−β)iz(ξ)
]

. (2.31)

Taking into account equation (2.16) and the equalities l0 = l/J and δ/l = q/J, we obtain

h
l
=

q
2J

− 1

J
Im

[

e−(α+β)ip1

]

, where p1 = ζ1(1) + ζ3(1). (2.32a,b)

Thus, to find the constant p1, one needs to remove from the expression (2.22) the second term

and to calculate the remainder sum at u = 1. To determine ω2, we write

ω1 + iω2 =
1

2πi

∮

C

dw

dz
z dz = −

l2
0
v0

2πi
e−iα

∮

u∞

F(u)ζ(u)dζ
du

du =
l2
0
v0

4πi
e−iα

∮

u∞

F ′(u)ζ2(u)du,

(2.33)

where F(u) is defined in (2.3), the symbol
∮

u∞
means that the integration is in the anticlockwise

direction along a closed contour surrounding the point u∞ in the parametric u-plane, and the

second equality has been obtained by making use of integration by parts. Therefore,

ω2 =
l2
0
v0

2
Im

{

e−iα res
u=u∞

[

F ′(u)ζ2(u)
]

}

. (2.34)
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Now we introduce the following complex constants:

p2 = ζ2(u∞) + ζ3(u∞), p3 =
F ′(u∞)
F(u∞)

=

2ik

u2
∞ + k2

+

2u0

u2
∞ − u2

0

− 2u0

u2
∞ − u0

2
, (2.35a,b)

p4 =
d

du
F ′(u)
F(u)

�

�

�

�

u=u∞

= − 4iku∞
(u2

∞ + k2)2
− 4u0u∞
(u2

∞ − u2
0
)2
+

4u0u∞

(u2
∞ − u0

2)2
. (2.36)

Taking into account that F(u∞) = Re−iα, we write

F ′(u∞) = F(u∞)
F ′(u∞)
F(u∞)

= Re−iαp3, F ′′(u∞) =
d

du

[

F(u)F ′(u)
F(u)

]�

�

�

�

u=u∞

= Re−iα(p2
3 + p4).

(2.37a,b)
Thus, in the neighborhood of the point u = u∞, we have

ζ(u) = −eiα

R
µ

u − u∞
+p2+O(|u−u∞ |), F ′(u) = Re−iα

[

p3 + (p2
3 + p4)(u − u∞)

]

+O
(

|u − u∞ |2
)

.

(2.38a,b)
The last two formulae allows us to calculate the residue in (2.34) and with allowance for (2.30)

to write finally

CM =
2(σ + 1)

J2

{

Im
[

−2πe−iαRµp2p3 + πµ
2
(

p2
3 + p4

)

+ p1qe−i(α+β)
]

− q2

2
+

γq
2π

}

. (2.39)

Thus, we have calculated analytically the second integral in (2.27). Let r be the distance between

the center of pressure on the plate and the trailing edge B. Since we calculate the moment about

the trailing edge, the formula for r takes the form r/l = −CM/CN .

We denote by Lc the length of the cavity defined as the distance between the extreme left

and right vertical lines that touch the cavity surface. Analogously, Hc is the width of the cavity

defined as the distance between the extreme above and below horizonal lines that touch the same

surface. Thus, Lc and Hc determine the minimal rectangle in which it is possible to inscribe the

plate-cavity system, located on the main sheet of the flow region. The simplest way of finding Lc

and Hc is to determine the positive roots of the equations

dx
dξ
= Re

dz
dξ
= l0 Re

[

eiαG(ξ)
]

= 0,
dy

dξ
= Im

dz
dξ
= l0 Im

[

eiαG(ξ)
]

= 0. (2.40a,b)

These roots correspond to the images of the contact points of the horizontal (first equation) and

vertical (second equation) tangent lines to the surface of the cavity. Fortunately, the left-hand

sides of the equations can be factorized:

−l0ξ
∆1(ξ)∆2(ξ)
∆(ξ) = 0, 2l0ξ

∆3(ξ)∆4(ξ)
∆(ξ) = 0, (2.41a,b)

where

∆1(ξ) = −k(T −1)
(

c2
+ d2

)

− ξ(T +1)
[

c2
+ d(d + 2k)

]

+ ξ2(T −1)(2d+ k)+ ξ3(T +1), (2.42)

∆2(ξ) = −k(T +1)
(

c2
+ d2

)

+ ξ(T −1)
(

c2
+ d(d + 2k)

)

+ ξ2(T +1)(2d+ k)+ ξ3(1−T ), (2.43)

∆3(ξ) = −kT
(

c2
+ d2

)

+ ξ

(

−c2 − d(d + 2k)
)

+ ξ2T (2d + k) + ξ3, (2.44)

∆4(ξ) = k
(

c2
+ d2

)

− ξT
(

c2
+ d(d + 2k)

)

+ ξ2(−2d − k) + ξ3T, (2.45)

∆(ξ) = (ξ2 − 1)
(

T2
+ 1

) (

a2 − 2aξ + b2
+ ξ2

)2 (

a2
+ 2aξ + b2

+ ξ2
)2

, (2.46)
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where T = tan(α/2).
The functions ∆i(ξ), i = 1, 4, are cubic polynomials, therefore, their roots can be found

analytically by means, for example, of the trigonometric method. Let {ξ1, ξ2, . . . , ξN } be the

positive roots of the polynomials ∆i(ξ), i = 1, 4. Then

Lc

l
=

1

J

{

max
i

[Re ζ(ξi)] − min
i

[Re ζ(ξi)]
}

,
Hc

l
=

1

J

{

max
i

[Im ζ(ξi)] − min
i

[Im ζ(ξi)]
}

.

(2.47a,b)
Thus, if the accessory parameters a, b, c, d , k and J are found, all desired features of the

flow can be determined from explicit analytical integral-free formulae. On the notebook HP G1

EliteBook Folio 1040, the total time of computing the accessory parameters and all hydrodynamic

properties mentioned above is not more than 0.02 second. Analytical formulae of this section are

realized in the routine param[α, β, σ] of the package ReentrantJet.m stored in the Supplementary

Materials.

Appendix

Below, the formulae for the twelve coefficientsΛij (i = 1, 3, j = 1, 4) of equations (1.23)–(1.25)

are written down. The formulae have been generated and printed out by computer, so they cannot

contain any typos.

Λ11 = U
[

−a
(

R2 − 1
)

(T2
+ 1)

(

a2
+ b2 − 1

)

+ 4bRT
(

a2
+ b2
+ 1

)]

− 2abV
[

(R − 1)2T2
+ (R + 1)2

]

,

Λ12 = − 2abU
(

a2
+ b2

)

[

(R + 1)2T2
+ (R − 1)2

]

+ V
[

a
(

R2 − 1
) (

T2
+ 1

)

(a2 − 3b2 − 1) + 12a2bRT − 4b
(

b2
+ 1

)

RT
]

,

Λ13 = U
{

−a
(

R2 − 1
) (

T2
+ 1

) [

a4
+ a2

(

2b2 − 1
)

+ b2
(

b2
+ 3

)]

−4bRT
[

a4
+ a2

(

2b2 − 3
)

+ b4
+ b2

]}

− 2abV
[

(R2
+ 1)

(

T2
+ 1

)

− 2R
(

T2 − 1
)]

,

Λ14 = − 2abU
(

a2
+ b2

)

[

(R + 1)2T2
+ (R − 1)2

]

+ V
(

a2
+ b2

) [

a
(

R2 − 1
)

(T2
+ 1)

(

a2
+ b2 − 1

)

+ 4bRT
(

a2
+ b2

+ 1
)]

,

Λ21 = (R + 1)
(

a2 − b2 − 1
) [

a3TU + 4a2bU − a
(

3b2
+ 1

)

TU − 2b2(2bU + V)
]

− b(R − 1)
{

U
[

a4 − 8a3bT − 2a2
(

2b2
+ 1

)

+ 8ab3T + 3b4
+ 4b2

+ 1
]

−2aTV
(

a2 − 5b2 − 1
)}

,
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Λ22 = U
{

2b2(R − 1)
[

5a4 − a2
(

10b2
+ 1

)

+ b4
+ b2

]

−2ab(R + 1)T
[

a4 − a2
(

10b2
+ 1

)

+ 5b4
+ b2

] }

+ V
{

b(R − 1)
[

3a4 − 4a2
(

4b2
+ 1

)

+ 5b4
+ 6b2

+ 1
]

+ (R + 1)
[

−Ta5 − 2a4b + 2a3
(

4b2T + T
)

+ a2
(

2b − 4b3
)

−a
(

15b4
+ 8b2

+ 1
)

T − 2
(

b5
+ b3

)]}

,

Λ23 = (R + 1)
(

a2 − b2 − 1
) {

a5TU + 2a4bU − a3
(

6b2
+ 1

)

TU

+2a2
(

2b3
+ b

)

U + 3ab2
(

3b2
+ 1

)

TU + 2b2
[

b
(

b2 − 1
)

U − V
] }

− b(R − 1)
[

3a6U − 4a5bTU − a4
(

13b2
+ 6

)

U − 2a3T
(

4b3U + 2bU + V
)

+a2
(

13b4
+ 14b2

+ 3
)

U + 2aT
(

−2b5U + 2b3U + 5b2V + V
)

−b2
(

3b4
+ 4b2

+ 1
)

U
]

,

Λ24 = 2bU
{

b(R − 1)
[

5a4 − a2
(

10b2
+ 1

)

+ b4
+ b2

]

−a(R + 1)T
[

a4 − a2
(

10b2
+ 1

)

+ 5b4
+ b2

] }

+ V
{

−a7(R + 1)T + a6b(R − 5) + a5T
[

b2(3R + 11) + 2(R + 1)
]

+a4b
[

b2(11 − 15R) − 2R + 6
]

− a3T
[

b4(23R + 7) + 2b2(R + 5) + R + 1
]

+a2b
[

b4(15R − 11) − 2b2(R + 3) + R − 1
]

+ab2T
[

b4(5R + 13) − 4b2(R − 1) − R − 1
]

+ b3
[

−b4(R − 5) + 4b2
+ R − 1

]}

,

Λ31 = 2abV
[

a(R + 1)
(

a2 − b2 − 1
)

− b(R − 1)T
(

−5a2
+ b2

+ 1
)]

+U
{

− a6(R + 1) + a5b(R + 5)T + 2a4
[

b2(2R + 5) + R + 1
]

+2a3bT
[

4b2(R − 2) − R − 3
]

− a2
(

b2
+ 1

)

[

b2(3R + 11) + R + 1
]

+abT
[

−b4(R − 3) + 4b2
+ R + 1

]

+ 2
(

b3
+ b

)2
}

,
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Λ32 = 2abU
{

−b(R + 1)T
(

5a4 − 5a2
(

2b2
+ 1

)

+ b4
+ b2

)

−a(R − 1)
[

a4 − a2
(

10b2
+ 1

)

+ 5
(

b4
+ b2

)]}

+ V
{

a6(R + 1) − 5a5b(R + 1)T + 2a4
[

b2(8R − 7) − R − 1
]

+2a3b
(

8b2
+ 3

)

(R + 1)T − a2
(

b2
+ 1

)

[

b2(9R − 7) − R − 1
]

−ab
(

3b4
+ 4b2

+ 1
)

(R + 1)T − 2
(

b3
+ b

)2
}

,

Λ33 = 2abV
[

a(R + 1)
(

a2 − b2 − 1
)

− b(R − 1)T
(

−5a2
+ b2

+ 1
)]

+U
{

− a8(R + 1) + a7b(R + 5)T + a6
[

2(R + 1) − 9b2(R − 1)
]

−a5bT
[

b2(15R + 11) + 2(R + 3)
]

+ a4
[

b4(17R − 13)
+6b2(3R − 1) − R − 1

]

+ a3bT
[

b4(15R + 11) + b2(26R + 2) + R + 1
]

−a2b2
(

b2
+ 1

)

[

7b2(R − 1) + 9R + 3
]

− ab3
(

b2
+ 1

)

T
[

b2(R + 5) + 3(R + 1)
]

−2b4
(

b2
+ 1

)2
}

,

Λ34 = 2abU
{

−b(R + 1)T
[

5a4 − 5a2
(

2b2
+ 1

)

+ b4
+ b2

]

−a(R − 1)
[

a4 − a2
(

10b2
+ 1

)

+ 5
(

b4
+ b2

)] }

+ V
{

a8(R + 1) − a7b(R + 5)T + a6
[

9b2(R − 1) − 2(R + 1)
]

+a5bT
[

b2(15R + 11) − 2R + 6
]

+ a4
[

b4(13 − 17R) + 2b2(R + 1) + R + 1
]

−a3bT
[

b4(15R + 11) + 2b2(R + 1) − 3R + 1
]

+a2b2
(

b2
+ 1

)

[

7b2(R − 1) − 3R − 1
]

+ ab3T
[

b4(R + 5) + 8b2 − R + 3
]

+2b4
(

b2
+ 1

)2
}

.
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Now we print out the formulae for the four coefficients Ωij (i = 1, 2; j = 1, 2) that defines the

polynomials M1(a, b) and M2(a, b) in equations (1.27) and (1.28). As well as formulae for Λij ,

these ones have bee generated by computer too.

Ω11 = − a3
(

R2 − 1
) (

T2
+ 1

) [

a4 − 2a2
(

b2
+ 1

)

− 3b4
+ 6b2

+ 1
]

− (R − 1)
[

− a7
+ 3a6bT + a5

(

3b2
+ 2

)

+ a4b
(

5b2 − 4
)

T

+a3
(

b4 − 2b2 − 1
)

+ a2b
(

b4
+ 10b2

+ 1
)

T

−a
(

3b6
+ 4b4

+ b2
)

− b3
(

b2
+ 1

)2

T

]

− (R + 1)T
[

a7T + 3a6b − a5
(

3b2
+ 2

)

T + a4b
(

5b2 − 4
)

+a3
(

−b4
+ 2b2

+ 1
)

T + a2
(

b5
+ 10b3

+ b
)

+ab2
(

3b4
+ 4b2

+ 1
)

T − b3
(

b2
+ 1

)2
]

,

Ω12 =8a3b3
(

R2 − 1
) (

T2
+ 1

)

− (R − 1)T
[

− a6
+ 2a5bT + a4

(

5b2
+ 2

)

+2a3b
(

2b2 − 1
)

T − a2
(

11b4
+ 4b2

+ 1
)

+ 2ab3
(

b2
+ 1

)

T −
(

b3
+ b

)2
]

+ (R + 1)
[

a6T + 2a5b − a4
(

5b2
+ 2

)

T

+a3
(

4b3 − 2b
)

+ a2
(

11b4
+ 4b2

+ 1
)

T + 2a
(

b5
+ b3

)

+

(

b3
+ b

)2

T

]

,

Ω21 = − a2b
(

R2 − 1
) (

T2
+ 1

) [

3a4
+ 2a2

(

b2 − 3
)

− b4
+ 2b2

+ 3
]

+ (R + 1)T
[

a7 − 3a6bT − a5
(

b2
+ 2

)

+ a4b
(

b2
+ 4

)

T + a3
(

−5b4
+ 6b2

+ 1
)

+a2b
(

3b4
+ 2b2 − 1

)

T − ab2
(

3b4
+ 8b2

+ 5
)

− b3
(

b2
+ 1

)2

T

]

− (R − 1)
[

− a7T − 3a6b + a5
(

b2
+ 2

)

T + a4b
(

b2
+ 4

)

+ a3
(

5b4 − 6b2 − 1
)

T

+a2b
(

3b4
+ 2b2 − 1

)

+ ab2
(

3b4
+ 8b2

+ 5
)

T − b3
(

b2
+ 1

)2
]

,
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Ω22 = − a2
(

R2 − 1
) (

T2
+ 1

) [

a4
+ a2

(

6b2 − 2
)

− 3b4 − 2b2
+ 1

]

+ (R + 1)
[

− a6
+ 2a5bT − a4

(

b2 − 2
)

−2a3
(

6b3
+ b

)

T + a2
(

b4 − 1
)

+ 2ab3
(

b2
+ 1

)

T +
(

b3
+ b

)2
]

+ (R − 1)T
[

a6T + 2a5b + a4
(

b2 − 2
)

T − 2a3
(

6b3
+ b

)

+a2
(

T − b4T
)

+ 2a
(

b5
+ b3

)

−
(

b3
+ b

)2

T

]

.
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