
Supplementary Material for ‘Inertio-elastic
instability of a vortex column’

1. Elastic Rayleigh Equation: the continuous spectra

The elastic Rayleigh equation as derived in the main text is given by,

D
[
r3PDξ

]
= r(m2 − 1)Pξ, (1.1)

where P = Σ2−2m2EΩ′2. In contrast to the inviscid Rayleigh operator which supports a
single continuous spectrum ranging over the base-state interval of angular velocities (Case
(1960);Roy & Subramanian (2014a);Roy & Subramanian (2014b)), the elastic Rayleigh
operator supports three distinct continuous spectra. The first of these is the original
inviscid continuous spectrum modified by elasticity. There exist in addition a pair of
continuous spectra associated with fore- and aft-travelling elastic shear waves in the az-
imuthal direction. On writing Σ2−2m2EΩ′2 in (1.1) as (Σ +mΩ′

√
2E)(Σ−mΩ′

√
2E), it

is seen that these shear waves propagate at angular frequencies of ±(mΩ′)
√

2E relative
to the base-state angular frequency, mΩ(r), at r. Unlike the finite-De continuous spectra
discussed in section 2 of the main text, these elastic-Rayleigh travelling-wave spectra arise
due to a balance of the inertial and elastic terms, and must therefore disappear for any
finite De. Thus, in the presence of any amount of relaxation, the original travelling-wave
CS-modes are no longer true eigenfunctions, and must instead be expressible in terms
of a superposition of finite De discrete modes. Aside from the obvious reduction in the
order of the equation, this again highlights the singular relation between the spectrum
of the elastic Rayleigh equation discussed below and the finite De spectrum, spectrum
associated with the viscoelastic Orr-Sommerfeld equation.

The elastic Rayleigh equation for arbitrary E belongs to the confluent Heun class with a
pair of regular singular points at the travelling wave locations given by Σ±mΩ′

√
2E = 0,

and an irregular one at infinity (Slavyanov & Lay (2000)). The associated insolubility im-
plies that we only analyze the continuous spectra for small but finite E. The inertial terms
become arbitrarily small sufficiently close to the critical radius, defined by Σ(rc) = 0, and
for any E however small, the effects of elasticity become comparable to those of inertia in
a boundary layer around rc. Thus, the elastic continuous spectra are analyzed below via
a matched asymptotic expansions approach which involves matching the leading-order

inviscid solutions, in regions away from rc, to those in an O(E
1
2 ) interior elastic boundary

layer around the critical radius. The analysis of the continuous spectrum lends additional
insight into the structure of the unstable (discrete) mode described in detail in the next
section. The discrete mode mirrors the structure of the elastic CS-modes in the limit of
a vanishingly small growth rate.

To begin with, we summarize briefly the inviscid 2D CS-spectrum of the Rankine
vortex for E = 0 as found by Roy & Subramanian (2014), and referred to as the Λ1-family
therein. In light of the scalings used in section 2 of the main text, the non-dimensional
angular velocity profile for the Rankine vortex is given by Ω(r) = H(1− r) + 1

r2H(r− 1),
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H(z) being the Heaviside function. For an azimuthal wavenumber m, the 2D CS-modes
span the angular frequency range (0,mΩ0), and have a twin-vortex-sheet structure. The
vortex sheets are cylindrical, being threaded by axial lines, with one sheet located at
the edge of the core and the other at the critical radius in the irrotational exterior.
A given CS-mode rotates with the base-angular velocity corresponding to the critical
radius. Therefore, the radial velocity and axial vorticity eigenfunctions are of the form
[ur(r; rc), wz(r; rc)] = [ûr(r; rc); ŵz(r; rc)]e

i(mθ−ωt) with ω = Ω(rc), rc = (m/ω)
1
2 , and

ûr(r; rc) = drm−1 r < 1, (1.2)

= c1r
m−1 + c2

1

rm+1
1 < r < rc, (1.3)

=
1

rc

1

rm+1
r > rc, (1.4)

ŵz(r; rc) =
[ 2id

(ω −m)
δ(r − 1)−A(rc)δ(r − rc)

]
, (1.5)

where

d =
1

rc
+

iA(rc)

2

[
rm+1
c − 1

rm−1
c

]
, (1.6)

c1 = − iA(rc)

2

1

rm−1
c

, (1.7)

c2 =
1

rc
+

iA(rc)

2
rm+1
c , (1.8)

A(rc) =
(2i/rc)[(m− 1)− ω]

(1/rm−1
c ) + [(m− 1)− ω]rm+1

c

. (1.9)

The radial velocity eigenfunction itself is continuous at r = rc, but the discontinuities
in slope at both r = 1 and r = rc correspond to delta-function (vortex-sheet) contribu-
tions in the perturbation axial vorticity field. The first delta function is an artifact of
the kink in the base-state (Rankine) profile, and it is the amplitude of the second vortex
sheet, A(rc), that is of interest and that characterizes the 2D CS-spectrum. Note that
A(rc), and therefore c1, equals zero when ω = (m− 1), which corresponds to the regular

Kelvin mode with a critical radius given by rck = ( m
m−1 )

1
2 ; the radial velocity in the

exterior now monotonically decays as 1/r(m+1). There is a direct analogy between the
2D CS-spectra of plane Couette flow as found by Case (1960) and that of the Rankine
vortex summarized above. In both cases, the vorticity eigenfunctions are vortex-sheets
convected with the base-state flow - a single plane vortex sheet for Couette flow and
a pair of cylindrical sheets for the Rankine vortex. The crucial difference is the addi-
tional presence of the Kelvin mode above in the latter case. While the inviscid spectrum
for plane Couette flow (and other non-inflectional profiles) is purely continuous with the
amplitude of the vortex-sheet remaining non-zero over the entire range of wave speeds,
there exists a unique angular frequency, the Kelvin mode for a given m, for which the
vortex-sheet amplitude is zero for the case of the Rankine vortex.

For a Rankine vortex, the Kelvin mode, together with the 2D CS-modes, provide a
complete basis for an arbitrary axial vorticity field in two dimensions (Roy & Subrama-
nian 2014b). For almost any initial axial vorticity field, the linearized temporal evolution
(of the kinetic energy or other integral measures), for a Rankine vortex, is characterized
by a long-time algebraic decay characteristic of the inviscid continuous spectrum; the
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exception is an initial condition localized at the critical radius which excites the Kelvin
mode. In contrast, the absence of a regular discrete mode for non-compact Rankine-like
profiles, (the analog of the inviscid regular Kelvin mode is now a vorticity eigenfunction
with a Cauchy-principal-value singularity at the critical radius) implies that the temporal
evolution, for initial conditions localized at the critical radius, involves an intermediate
asymptotic regime characterized by an exponential decaying quasi-mode, the decay rate
being proportional to the (small) vorticity gradient at the critical radius. In the linearized
approximation, this exponential decay is followed by an algebraic decay, as for a Rankine
vortex; nonlinear effects, however, lead to a finite-amplitude tripolar structure (Balm-
forth et al. 2013; Schecter et al. 2000; Balmforth et al. 2001; Pradeep & Hussain 2006).

Returning to the Rankine vortex for small but finite E, we examine the solutions of
(1.1) separately in the outer region where r − rc ∼ O(1), and in the inner region (the

elastic boundary layer) where r − rc ∼ O(E
1
2 ), before matching them to determine the

unknown coefficients in the respective domains. We assume the critical radius, rc, to be
such that the elastic boundary layer lies an O(1) distance away from the edge of the
core (r = 1). The solutions in the outer regions, at leading order, are thus identical to
those given in (1.2)-(1.4) except that (1.3) and (1.4) are not valid right until rc. Likewise,
apart from the core contribution (the term proportional to δ(r−1) in (1.5)), the vorticity
field is localized in the elastic boundary layer around rc, although no longer a delta

function at this location. Thus, (1.3) is now valid in the range r > 1, (rc − r) � O(E
1
2 )

while (1.4) is now valid in the range (r−rc)� O(E
1
2 ). Note that since P = Σ2−2m2EΩ′2

in (1.1), the direct effect of elasticity enters the outer regions only at O(E). At O(E
1
2 ),

the outer solutions still satisfy the inviscid Rayleigh equation, and the effects of elasticity
only enter via matching to the far-field forms of the elastic boundary layer solution. For
purposes of matching below, it is convenient to normalize the perturbation in the core
region, so that ûr(r; rc) = rm−1 for r < 1 instead of (1.2) (this being valid to all orders
in E). As a result, instead of (1.3) and (1.4), we have:

ûr1(r; rc) = c
(0)
1 rm−1+

(1−c(0)
1 )

rm+1
+E

1
2 c

(1)
1 (rm−1− 1

rm+1
)+O(E) r > 1, rc − r � O(E

1
2 ),

(1.10)

ûr2(r; rc) =
c
(0)
2 + E

1
2 c

(1)
2

rm+1
+O(E) r − rc � O(E

1
2 ), (1.11)

for the irrotational radial velocity perturbation outside the core and outside the elastic
boundary layer. The choice of constant in (1.10) reflects consistency with the normalized
core perturbation at r = 1. Since one is looking for elastic generalizations of the Λ1

CS-modes, we also impose continuity of the radial velocity for r → rc, as seen from the

outer region. This implies c
(0)
1 rm−1

c +
(1−c(0)1 )

rm+1
c

=
c
(0)
2

rm+1
c

= ûr(rc; rc), which also leads to the

relation between the two constants involved: c
(0)
2 = c

(0)
1 (r2m

c −1) + 1.

It may be shown that a balance between the inertial and elastic terms occurs at leading

order when r − rc ∼ O(E
1
2 ), and one therefore defines the boundary layer variable η =

r−rc
(2E)

1
2

. On using the expansion Σ(r) ≈ −mΩ′c(r − rc)−mΩ′′c
(r−rc)2

2 ≈ −mΩ′c(2E)
1
2 η[1 +

Ω′′c
Ω′c

(E
2 )

1
2 η], the original relationship between the radial velocity and displacement, ξ(r) =

(iûr)/Σ(r), takes the form ũr(η) = −imΩ′cη[1 +
Ω′′c
Ω′c

(E
2 )

1
2 η]ξ̃(η) in the boundary layer, to
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O(E), with ξ(r) = (2E)
1
2 ξ̃(η). Further, P = (ω−mΩ(r))2−2m2E[Ω′(r)]2 ≈ 2m2EΩ′c

2
[η2−

1 +
Ω′′c
Ω′c

(2E)
1
2 η3]. To O(E

1
2 ), the governing equation, (1.1), then takes the form:

d

dη

[
{rc + (2E)

1
2 η}3

[
(η2 − 1)− 3

√
2

rc
E

1
2

]
dξ̃

dη

]
= O(E), (1.12)

in terms of the re-scaled radial displacement, ξ̃(η), in the boundary layer. Here, we have
used that Ω′c = − 2

r3c
,Ω′′c = 6

r4c
for a Rankine vortex. The form of (1.12) evidently suggests

a series expansion of the form ξ̃(η) = ξ̃(0)(η) + E
1
2 ξ̃(1)(η) + O(E), and one obtains the

following governing equations at O(1) and O(E
1
2 ), respectively:

d

dη

[
(η2 − 1)

dξ̃(0)

dη

]
= 0, (1.13)

d

dη

[
(η2 − 1)

dξ̃(1)

dη

]
=

3
√

2

rc

d

dη

[
η
dξ̃(0)

dη

]
. (1.14)

The solution of (1.13) is given by:

ξ̃(0)(η) = A
(0)
1 +A

(0)
2 ln|η − 1

η + 1
|, (1.15)

implying a radial velocity in the boundary layer of the form:

ũ(0)
r (η) = −imΩ′cη

[
A

(0)
1 +A

(0)
2 ln|η − 1

η + 1
|
]
, (1.16)

at leading order. The values η = ±1 denote the locations of the travelling wave singular-
ities where the radial velocity is logarithmically divergent. This divergence is expected
since the Frobenius exponents associated with each of the regular singularities are both
0. The singularities divide the boundary layer into three regions, with the solution forms
in the individual regions may be written explicitly as:

ũ
(0)
r−(η) = η

[
Â

(0)
1− + Â

(0)
2 ln

η − 1

η + 1

]
η < −1, (1.17)

ũ(0)
r (η) = η

[
Â

(0)
1 + Â

(0)
2 ln

1− η
1 + η

]
− 1 < η < 1, (1.18)

ũ
(0)
r+(η) = η

[
Â

(0)
1+ + Â

(0)
2 ln

η − 1

η + 1

]
η > 1, (1.19)

where Â
(0)
i = −imΩ′cA

(0)
i . Note that we have chosen the same constant for the sin-

gular logarithmic solution in all three parts of the boundary layer with the logarithm
being real valued in each region (this being possible by suitable choice of the regular
constants). Such a choice is consistent with the purely inviscid case (E = 0) where, for
a general non-linear shear flow, the constant multiplying the logarithmically singular
Tollmein solution is the same across the critical level, and it is the jump in the constant
multiplying the regular solution that generates the inviscid CS-spectrum of the Rayleigh
equation (Balmforth & Morrison (1995a)). It will be seen below that the constants in

the two peripheral regions (Â
(0)
1±,Â

(0)
2 ) are constrained by matching, and an appropriate

choice can accommodate the differing slopes of the outer solutions on either side. The

regular constant in the central part of the boundary layer, at leading (Â
(0)
1 ) and higher

orders, can be chosen independently, however, and this additional degree of freedom is
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crucial to the existence of additional continuous spectra for any finite E.

Using (1.15) in (1.14), and solving, gives:

ξ̃(1)(η) = A
(1)
1 +

[
A

(1)
2 +

3A
(0)
2√

2rc
η

]
ln|η − 1

η + 1
|−3
√

2A
(0)
2

rc

1

η2−1
, (1.20)

where the terms proportional to A
(1)
1 and A

(1)
2 denote the homogeneous solution. Al-

though not made explicit in (1.20), a distinction will again being made between solution
forms in the the three parts of the elastic boundary layer similar to that done at leading

order. The radial velocity in the elastic boundary layer, at O(E
1
2 ), is given by:

ũ(1)
r (η) = η

[
Â

(1)
1 +

(
Â

(1)
2 +

3Â
(0)
2√

2rc
η

)
ln|η − 1

η + 1
|−3
√

2Â
(0)
2

rc

1

η2−1

]
, (1.21)

where Â
(1)
i = −imΩ′cA

(1)
i .

The matching requirement between the outer regions and the elastic boundary layer
may be stated as: limr→rc ûr1(r; rc) = limη→−∞ ũr−(η) and limr→rc ûr2(r; rc) = limη→∞ ũr+(η)

to O(E
1
2 ). As pointed out earlier, the only difference between the 2D inviscid spectra of

plane Couette flow and the Rankine vortex is the existence of a lone discrete mode - the
Kelvin mode - in the latter case. In order to discriminate between the generalizations of
the inviscid CS-modes and the Kelvin mode for non-zero E, one needs to carry out the

matching to O(E
1
2 ). At O(1), the matching process ensures the continuity of the radial

velocity across the elastic boundary layer, and it is only at O(E
1
2 ) that the two ends

of the elastic boundary layer (η → ±∞) sense the difference in the slopes of the outer
eigenfunctions, ûr1(r; rc) and ûr2(r; rc), for r approaching rc. It is precisely this jump in
slope that differentiates the CS-modes from the Kelvin mode.

The far-field forms of the solutions in the peripheral regions of the elastic boundary
layer are given by:

lim
η→±∞

ũr−(η) = Â
(0)
1±η − 2Â

(0)
2 + E

1
2

[
−2Â

(1)
2 +

(
Â

(1)
1± −

3
√

2

rc
Â

(0)
2

)
η

]
, (1.22)

where the neglected terms only affect the matching at o(E
1
2 ). The above expressions are

to be matched to the limiting forms of the outer solutions obtained from (1.10) and (1.11)

in the limit r → rc + (2E)
1
2 η, which are given by:

ûr1(r; rc) = ûr(rc; rc) +E
1
2

[(
c
(0)
1 (m−1)rm−2

c − (m+1)(1−c(0)
1 )

rm+2
c

)
√

2η+c
(1)
1 (rm−1

c − 1

rm+1
c

)

]
+O(E),

(1.23)

ûr2(r; rc) = ûr(rc; rc) + E
1
2

[
−
√

2(m+ 1)c
(0)
2

rm+2
c

η +
c
(1)
2

rm+1
c

]
+O(E). (1.24)

Matching (1.22) and (1.23)-(1.24), at leading order, gives Â
(0)
1± = 0 and Â

(0)
2 = − ûr(rc;rc)

2 .

A consistent match of the constant term at O(E
1
2 ) gives Â

(1)
2 = c

(1)
1 = c

(1)
2 = 0. Matching
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the term proportional to η at O(E
1
2 ) gives:

Â
(1)
1− =

3
√

2

rc
Â

(0)
2 +

√
2

(
c
(0)
1 (m−1)rm−2

c − (m+1)(1−c(0)
1 )

rm+2
c

)
, (1.25)

= − 3√
2rc

ûr(rc; rc)+
√

2

[
(m−1)r2m

c + (m+1)

rm+2
c

rm+1
c ûr(rc; rc)− 1

r2m
c − 1

− m+1

rm+2
c

]
, (1.26)

Â
(1)
1+ =

3
√

2

rc
Â

(0)
2 −

(m+ 1)
√

2

rm+2
c

c
(0)
2 , (1.27)

= − (2m+ 5)√
2rc

ûr(rc; rc), (1.28)

where the two boundary-layer constants are rewritten in terms of ûr(rc; rc), the ampli-
tude of the radial velocity eigenfunction at the critical radius.

Having determined the constants above, the forms of the eigenfunction in the outer

regions, to O(E
1
2 ), are given by:

ûr1(r; rc) = c
(0)
1 rm−1+

(1−c(0)
1 )

rm+1
; ûr2(r; rc) =

c
(0)
2

rm+1
, (1.29)

where c
(0)
1 and c

(0)
2 have been defined in terms ûr(rc; rc) above. The form of the eigenfunc-

tion within the elastic boundary layer may be written down in the following piecewise
form:

ũr−(η) =Â
(0)
2 Pf.ηln

η − 1

η + 1
+ E

1
2 η

[
Â

(1)
1−+

3√
2rc

Â
(0)
2 Pf.

(
η ln

η − 1

η + 1
− 2

η2−1

)]
η < −1,

(1.30)

ũr(η) =η

[
Â1+Â

(0)
2 Pf. ln

1− η
1 + η

]
+ E

1
2 η

[
3√
2rc

Â
(0)
2 Pf.

(
η ln

1− η
1 + η

− 2

η2−1

)]
− 1 < η < −1,

(1.31)

ũr+(η) =Â
(0)
2 Pf.ηln

η − 1

η + 1
+ E

1
2 η

[
Â

(1)
1++

3√
2rc

Â
(0)
2 Pf.

(
η ln

η − 1

η + 1
− 2

η2−1

)]
η > 1,

(1.32)

again to O(E
1
2 ). Note that the terms linear in η, at leading order and at O(E

1
2 ), have

been combined into a single term, Â1η, in (1.31). While Â
(0)
2 = − ûr(rc;rc)

2 , and Â
(1)
1± in

the above expressions are given by (1.26) and (1.28), respectively, Â1 in (1.31) remains
arbitrary. The prefix Pf. in (1.30)-(1.32) denotes a principal-finite-part interpretation
(Gakhov 1990) which, as will be seen below, is required in interpreting the axial vorticity
field within the elastic boundary layer. The expressions (1.30)-(1.32), taken together with
the expressions for the constants involved, show that the CS-modes for small but finite

E involve two parameters. These may be taken as [ûr(rc; rc) − r−(m+1)
c ] and Â1, where

1/rm+1
c is the normalized radial velocity associated with the Kelvin mode at r = rc. The

first parameter, of course, already exists for E = 0, and is proportional to the amplitude
of the second vortex sheet, A(rc), used earlier for the description of the CS-modes for
E = 0 (see (1.2)-(1.4)). The second parameter arises only for non-zero E and affects the
detailed structure of the (elastic) boundary layer vorticity field.

The finite-E generalization of the regular Kelvin mode may be obtained by taking rc =
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rck, c
(0)
1 = 0, c

(0)
2 = 1, as for the inviscid case above. This implies Â

(0)
2 = −1/(2rm+1

ck ),

Â
(1−)
1 = Â

(1+)
1 = −(2m + 5)/(

√
2rm+2
ck ). In the outer region, one now has ûr1(r; rc) =

ûr2(r; rc) = 1/rm+1, and within the boundary layer, (1.30)-(1.32) take the form:

ũrk−(η)=− 1

2rm+1
ck

Pf.ηln
η − 1

η + 1
− E

1
2 η√

2rm+2
ck

[
(2m+5)+

3

2
Pf.

(
η ln

η−1

η+1
− 2

η2−1

)]
η < −1,

(1.33)

ũrk(η)=η

[
Â1−

1

2rm+1
ck

Pf.ln
1− η
1 + η

]
− 3E

1
2 η

2
√

2rm+2
ck

Pf.

(
ηln

1− η
1 + η

− 2

η2−1

)
− 1 < η < −1,

(1.34)

ũrk+(η)=− 1

2rm+1
ck

Pf.ηln
η − 1

η + 1
− E

1
2 η√

2rm+2
ck

[
(2m+5)+

3

2
Pf.η

(
η ln

η−1

η + 1
− 2

η2−1

)]
η > 1,

(1.35)

The above expressions suggest that the finite-E generalization of the regular Kelvin mode
is a one-parameter family of singular eigenfunctions, Â1 being the parameter, with sin-
gularities at r = rck ±

√
2E (η = ±1) for small E.

The above interpretation for finite E also becomes clear on consideration of the ax-
ial vorticity field associated with (1.30)-(1.32) (recall that the velocity field in the outer

regions is irrotational to O(E
1
2 )). For E = 0, the axial vorticity field is, of course, a

delta function at r = rc. For small but finite E, the vorticity field is still localized in
the elastic boundary layer which may be regarded as a vortex sheet on the scale of
the outer region. One may therefore discriminate between the 2D CS-modes and Kelvin
mode based on the strength of this equivalent vortex sheet, defined as the total vor-

ticity contained within the O(E
1
2 ) boundary layer over a single wavelength in the az-

imuthal direction. For E � 1, this integrated vorticity contribution is proportional to´ r−rc�O(E
1
2 )

rc−r�O(E
1
2 )
ŵz(r; rc)rdr = (2E)

1
2

´∞
−∞ w̃z(η)[rc+(2E)

1
2 η]dη.

Using the relation ŵz = (i/m)L(rûr), together with the small E expansion for the

radial velocity in the boundary layer, one obtains w̃z(η) = (2E)−1[w̃
(0)
z (η) + E

1
2 w̃

(1)
z (η)]

where:

w̃(0)
z (η) =

irc
m

d2ũ
(0)
r

dη2
, (1.36)

=
irc
m

[
−Pf.

4Â
(0)
2

(η2 − 1)2
+Â1[δ(η + 1)− δ(η − 1) + δ′(η + 1) + δ′(η − 1)]

]
, (1.37)

w̃(1)
z (η) =

i

m

[
√

2

(
η
d2ũ

(0)
r

dη2
+ 3

dũ
(0)
r

dη

)
+ rc

d2ũ
(1)
r

dη2

]
, (1.38)

=P iÂ
(0)
2

m

[√
2

(
2η(3η2 − 5)

(η2 − 1)2
+ 3 ln|η − 1

η + 1
|
)

+ 2rc

(
ln|η − 1

η + 1
|+ 2η(η4−4η2−1)

(η2 − 1)3

)]
+

irc
m

[Â
(1)
1−{δ′(η + 1)− δ(η + 1)}+ Â

(1)
1+{δ′(η − 1) + δ′(η − 1)}], (1.39)

where P denotes a Cauchy-principal-value interpretation. The integrated boundary-layer
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vorticity, for small E, may be written as:

(2E)
1
2

ˆ ∞
−∞
w̃z(η)[rc+(2E)

1
2 η]dη (1.40)

=
1

(2E)
1
2

[
rc

ˆ ∞
−∞
w̃(0)
z (η)dη + E

1
2

(√
2

ˆ ∞
−∞
w̃(0)
z (η)ηdη + rc

ˆ ∞
−∞
w̃(1)
z (η)dη

)]
, (1.41)

= − 4ir2
c

m(2E)
1
2

Pf.

ˆ ∞
−∞

dη

(η2 − 1)2
+

irc
m

(Â
(1)
1+ − Â

(1)
1−) +O(E

1
2 ), (1.42)

=
irc
m

(Â
(1)
1+ − Â

(1)
1−) +O(E

1
2 ), (1.43)

where the Cauchy-principal-value interpretation implies that only the terms proportional

to Â
(1)
1± in (1.39) contribute. Physically, the contributions that are odd in η denote jet-like

structures, either localized at the travelling wave singularities (proportional to δ′(η± 1))
or non-local, within the elastic boundary layer, and their contribution to the outer ve-
locity field is negligibly small for E � 1. The second term in (1.42) is expected, and
denotes the strength of the elastic boundary layer, interpreted as an equivalent vortex
sheet, on the outer scale. This vortex-sheet contribution is present only for the CS-modes,

and vanishes for the Kelvin mode in which case Â
(1)
1+ = Â

(1)
1−. The first term in (1.42) is

larger, being O(E−
1
2 ), but does not contribute to the outer velocity field owing to the

principal finite-part interpretation. Thus, the vortex-sheet contribution, proportional to

Â
(1)
1+− Â

(1)
1−, is the only relevant one as far as the induced velocity field in the outer region

is concerned, ensuring consistency with the inviscid scenario in the limit E→ 0. In terms
of the vorticity field in the elastic boundary layer requiring a principal-finite-part inter-
pretation, the relation between the finite E CS-modes, and those for E = 0, is similar to
that between the three-dimensional CS-modes of a smooth vorticity profile and those of
a Rankine vortex (Roy & Subramanian (2014b)).

Having established in detail a connection between the solutions of the elastic Rayleigh
equation for small but finite E, and the original inviscid spectrum of the Rankine vor-
tex (including the Kelvin mode), we proceed towards an alternate intepretation of the
CS-eigenfunctions for non-zero E. As will be seen, this interpretation is more general in
that it is not reliant on E being small. The presence of two parameters, ûr(rc; rc)−1/rm+1

c

and Â1 in (1.29)-(1.32), implies the existence of a pair of continuous spectra for finite E,
in contrast to the single one for E = 0. It is convenient to regard each of these as corre-
sponding to a particular choice of Â1 in (1.31), and therefore, as being parameterized by

ûr(rc; rc)− 1/rm+1
c alone. The natural choices are Â1 = E

1
2 Â

(1)
1+ and Â1 = E

1
2 Â

(1)
1− which

ensure the smooth connection of the regular solution across η = 1 and −1, respectively.
For either choice, the absence of a kink ensures the absence of delta-function-like con-
tributions to the tangential velocity and axial vorticity fields at the relevant travelling
wave singularity. Of course, the finite-E eigenfunction is still singular owing to the loga-
rithmic terms in (1.30)-(1.32). From here onwards, the singularities at η = 1 and −1 will
be associated with the fast (or forward) and slow (or backward) shear wave, respectively,

for obvious reasons. The choice Â1 = Â
(1)
1+ implies that one only has a kink at the slow

shear wave. Since it is this kink that allows for singular eigenfunctions even as rc spans a
continuous interval, the interval of existence for this slow-shear-wave-spectrum (SSWS)
may be obtained by the requirement that the kink (the location of the slow shear wave
singularity) lie in the physical domain. The slow shear wave propagates with an angular

frequency of ω = m[Ω(r) + Ω′(r)(2E)
1
2 ] = m[1/r2 − 2(2E)

1
2 /r3], which must then lie in
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the base-state range of angular frequencies (0,m). The shear wave frequency evidently

approaches zero for r →∞, while it equals m for r = rcs with 1/r2
cs−2(2E)

1
2 /r3

cs = 1. For

small E this gives rcs = 1− (2E)
1
2 , corresponding to an angular frequency of 1 + 2(2E)

1
2 .

So, the SSWS frequency interval is [0,m(1 + 2(2E)
1
2 )]. Analogous arguments for the

fast shear wave yield the frequency interval for the fast-shear-wave-spectrum (FSWS) as

[0,m(1 − 2(2E)
1
2 )] for small E. The SSWS and FSWS eigenfunctions differ in structure

only within the O(E
1
2 ) boundary layer, where they are given by

ũr−(η) =Â
(0)
2 Pf.ηln

η−1

η+1
+E

1
2 η

[
Â

(1)
1−+

3√
2rc

Â
(0)
2 Pf.

(
η ln|η−1

η+1
|− 2

η2−1

)]
η < −1, (1.44)

ũr+(η) =Â
(0)
2 Pf.ηln|η−1

η+1
|+E

1
2 η

[
Â

(1)
1++

3√
2rc

Â
(0)
2 Pf.

(
η ln

η−1

η+1
− 2

η2−1

)]
η > −1, (1.45)

and

ũr−(η) =Â
(0)
2 Pf.ηln|η−1

η+1
|+E

1
2 η

[
Â

(1)
1−+

3√
2rc

Â
(0)
2 Pf.

(
η ln|η − 1

η + 1
|− 2

η2−1

)]
η < 1, (1.46)

ũr+(η) =Â
(0)
2 Pf.ηln

η − 1

η + 1
+E

1
2 η

[
Â

(1)
1++

3√
2rc

Â
(0)
2 Pf.

(
η ln

η−1

η+1
− 2

η2−1

)]
η > 1, (1.47)

respectively, to O(E
1
2 ). The SSWS interval above extends outside the base-state interval

of angular frequencies, clearly implying that the modified semi-circle theorem stated ear-
lier doesn’t apply to the CS-modes. The equivalence of the CS-interval to the semi-circle
radius, for the purely inviscid case, is thus a coincidence. It is worth noting that the
expressions (1.44)-(1.47) are valid only when the elastic boundary layer is at a distance
away from the core that is much greater than O(

√
E). Strictly speaking, derivation of the

finite-E eigenfunctions for frequencies close to the upper end of the SSWS and FSWS
intervals requires application of the core boundary condition to a uniformly valid repre-
sentation constructed from both the outer and boundary layer solutions. This is a detail,
however, and can be done (Reddy (2015)).

The point that needs emphasis, with regard to the alternate interpretation above,
is its validity for arbitrary E. Although closed form expressions for the eigenfunctions,
belonging to the two continuous spectra, can no longer be obtained when E is not small,
the pair of travelling wave singularities still exist and satisfy ω = m[Ω(r)±2Ω′(r)(2E)

1
2 ].

The elastic boundary layer solution given in (1.15) must now be interpreted as a Frobenius
expansion in the vicinity of the relevant singular point. The FSWS spectrum corresponds
to the interval [0,m(1 − 2(2E)

1
2 )] for E < 1/8, and to [m(1 − 2(2E)

1
2 ), 0] for E > 1/8.

The SSWS spectrum continues to be given by [0,m(1 + 2(2E)
1
2 )] for finite E, although

there arises a degeneracy for E > 1/18 due to shear waves at a pair of radial locations
propagating with the same frequency. Figures 1 and 2 show the spectra, and a few
representative eigenfunctions, for the hyperbolic tangent vorticity profile defined as,

Z(r) =
Z0

2

{
1− tanh

[
r − a
d

]}
, (1.48)

determined numerically using a spectral method (cf. section 3 in the main text). Figure
3 shows a comparison between the numerical and analytical estimates for the upper (and
lower) bounds of the SSWS (and FSWS) intervals with E for this vorticity profile.

The close analogy of the Rankine vortex with plane Couette flow (Roy & Subramanian
(2014b)) allows one to identify the travelling-wave spectra in the latter case too. For the
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Figure 1: The elastic Rayleigh spectrum for the hyperbolic tangent vorticity profile (de-
fined in (1.48)) with d = 0.025 for (a) E = 0.1 and (b) E = 1; m = 2 and N = 1500.
In addition to the continuous spectrum, we see a pair of discrete modes for E = 0.1.
For the numerical calculation, the domain chosen is r ∈ (0, r∞) with r∞ = 4a. Hence
the continuous spectrum eigenvalues lie between ωmin and ωmax which can be found
analytically, using the expressions derived in the main text, and are marked on the plot.
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Figure 2: The radial displacement eigenfunctions for the CS-modes associated with the
hyperbolic tangent vorticity profile (defined in (1.48)); E = 0.1,m = 2 for (a), (c), (e);
E = 1,m = 2 for (b), (d), (f). The wavespeeds are given by, ωr = (a) 0.3, (c) 0.8 and
(e) 1.2 for E = 0.1 and by ωr = (b) −0.7, (d) 0.8 and (f) 2 for E = 1. The analytical
locations for the shear-wave singularities are marked as red (dashed) lines.
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Figure 3: Variation of the global (a) upper and (b) lower bounds of the continuous
spectrum with E, for the hyperbolic tangent vorticity profile (defined in (1.48)) with
d = 0.025. For SSWS, the lower bound is 0 while the upper bound is shown in (a). On
the other hand for the FSWS, for E < 0.145, the lower bound is 0 while the upper bound
is shown in (b). For FSWS, for E > 0.145, the lower bound is shown in (b) while the
upper bound is 0. In (b), the threshold E∼ 0.145 is marked. Note that due to the bounded
domain the transition threshold for FSWS is different from that for an unbounded vortex
(E= 1/8).

(dimensionless) base-state profile U(y) = y in the domain (0, 1), the FSWS and SSWS

span the intervals [−(2E)
1
2 , 1− (2E)

1
2 ] and [(2E)

1
2 , 1 + (2E)

1
2 ], both of which violate the

semi-circle theorem. Unlike the Rankine vortex, the linearity of the Couette profile implies
that the aforementioned spectral intervals remain valid for arbitrary E, and become
disjoint for E > 1/8. An analysis similar to that detailed above, but simpler, can be
carried out for plane Couette flow to obtain expressions for the singular eigenfunctions
corresponding to the fast and slow shear wave spectra in the limit E � 1. The outer

solutions, valid when |y − yc| � E
1
2 with yc being the critical level, are the well-known

Case eigenfunctions with the normal velocity given by ûy(y; yc) = sinh k(1 − yc) sinh ky
for 0 < y < yc and ûy(y; yc) = sinh kyc sinh k(1−y) for y < yc < 1 (Case (1960)). Within
the elastic boundary layer, the SSWS eigenfunctions are given by:

ũy−(η) =B̂2Pf.ηln
η−1

η+1
+(2E)

1
2 ηB̂1− η < −1, (1.49)

ũy+(η) =B̂2Pf.ηln|η−1

η+1
|+(2E)

1
2 ηB̂1+ η > −1, (1.50)
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Figure 4: The elastic Rayleigh spectrum for plane Couette flow for (a) E = 0.1 and (b)
E = 1; k = 2 and N = 1500.

and the FSWS eigenfunctions are given by:

ũy−(η) =B̂2Pf.ηln|η−1

η+1
|+(2E)

1
2 ηB̂1− η < 1, (1.51)

ũy+(η) =B̂2Pf.ηln
η − 1

η + 1
+(2E)

1
2 ηB̂1+ η > 1, (1.52)

Here, η = (y − yc)/(2E)
1
2 is the boundary layer variable, and the constants appear-

ing in (1.49)-(1.52) are B̂2 = − 1
2 ûy(yc; yc) with ûy(yc; yc) = sinh kyc sinh k(1 − yc) be-

ing the normal velocity at the critical level, and B̂1+ = −k cosh k(1 − yc) sinh kyc and
B̂1− = k cosh kyc sinh k(1−yc). Since the original inviscid spectrum is purely continuous,
the exceptional case of B̂1+ = B̂1−, corresponding to the Kelvin mode for the Rankine
vortex above, does not arise. Figures 4 and 5 show the spectra, and a few representative
eigenfunctions, for plane Couette flow for E’s on either side of the overlap threshold (E
= 1/8), again determined using a spectral method (cf. next section).

The CS-modes arising from the multiple continuous spectra above, together with a
possibly finite number of discrete modes, must form a complete basis for the independent
fields required to completely characterize an initial state in the limit Re,De → ∞. For
the Rankine vortex, as governed by the elastic Rayleigh equation, these may be taken as
the radial velocity field and the two components of the polymeric force field, ∇ ·a; since
the radial component of the normal stress, arr, does not enter in the elastic Rayleigh
limit, one may equivalently consider the radial velocity field and the stress components
arθ and aθθ. One therefore needs (at least) three continuous spectra in order to represent
an arbitrary initial condition. The analysis detailed above, in choosing a continuous
solution across r = rc (η = 0), does not account for the third spectrum needed. This
is the Doppler spectrum corresponding to ω = Ω(rc). Now, the Frobenius exponents
for r = rc, for the radial displacement field, are 0 and 1, and there is no singularity at
r = rc (η = 0), as is also evident from the elastic boundary layer solutions above (see
(1.15) above). However, in a manner similar to inviscid plane Couette flow (Case (1960)),
one nevertheless requires CS-modes with a singularity at r = rc to generate a complete
basis. The Doppler spectrum eigenfunctions, for finite E, withDe→∞, may be generated
by different choices of one of the two regular solutions on either side of r = rc (the one
corresponding to a Frobenius exponent of 0). On including the effects of relaxation,
r = rc becomes a singular point. The functional form of the CS-modes has been obtained
earlier (Graham (1998)). For large but finite De, these modes, arising from the solution of
a fourth-order ODE, will be valid in an inner layer of O(De−1) (with De−1 �

√
E), and
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Figure 5: The wall-normal displacement eigenfunctions for plane Couette flow for the
CS-modes; E = 0.1, k = 2 for (a), (c), (e); E = 1, k = 2 for (b), (d), (f). The wavespeeds
are given by cr = (a) −0.8, (c) 0.1 and (e) 1.2 for E = 0.1 and by cr = (b) −2, (d) 0.5
and (f) 2 for E = 1. The analytical locations for the fast and/or slow travelling-wave
singularities are marked as red (dashed) lines.

will transition to the elastic Rayleigh Doppler-spectrum eigenfunctions on scales much
larger than O(De−1).

2. Details of the analysis for the LHS problem

The approach used in section 3.2 of the main text, may be validated by the exactly
soluble LHS problem - that governed solely by the LHS of (3.2) of the main text for the
Rankine profile. The governing equation for the LHS problem is:

D
[
r3
{

(ω −mΩ)2 − 2m2EΩ′2
}
Dξ
]

= 0 (2.1)

with Ω = 1/r2, Ω′ = −2/r3 and the boundary conditions:

ξ
∣∣∣
r=1

= 1, (2.2)

dξ

dr

∣∣∣
r=1+

=
(m− 1) (ω −m)2

(ω −m)2 − 8m2E
, (2.3)

ξ → 0, as r →∞. (2.4)
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As will be seen below, the eigenvalue expression obtained from the LHS problem agrees
with the complete problem to O(g

√
E).

The solution of (2.1) may be readily written as,

ξ =

ˆ ∞
r

dr′

r′3P (r′)ˆ ∞
1

dr′

r′3P (r′)

, (2.5)

where P (r) = (ω−mΩ(r))2−2m2EΩ′(r)2, defined in the main text. (2.5) satisfies the first
and third boundary conditions above by construction. Applying the remaining boundary
condition (2.3), leads to the following dispersion relation, valid for arbitrary E:

D(ω,m; E) ≡ 1 + (m− 1)(ω −m)2

ˆ ∞
1

dr′

r′3P (r′)
= 0 (2.6)

A Nyquist method, following Balmforth (1998), can be used establish the presence of an
unstable mode (not shown).

2.1. Small-E expansion of the exact solution

Next, we analyze (2.6) to obtain the scaling for the growth rate in the limit of small E.
(2.6), explicitly written out after evaluation of the integral in closed form, takes the form

D(ω,m; E) ≡ 1 +
(m− 1)f2

(η1 − η2)(η2 − η3)(η3 − η1)
{η1(η2 − η3) log(1− η1) + η2(η3 − η1) log(1− η2)+

η3(η1 − η2) log(1− η3)} = 0, (2.7)

where f = m/ω− 1 and η1,2,3 are the roots of the cubic: η(η− 1− f)2 − 8(1 + f)2E = 0.
The exact expressions for η1,2,3 are omitted for brevity. We make the a priori assumption
of f � 1 but do not specify its smallness relative to E; implying that the unstable mode
exists in the vicinity of the core. As already argued in section ??, this is a reasonable
assumption since the balance between elastic and inertial terms in P occurs when ω−m ∼
O(
√

E). Expanding the exact expressions of η1,2,3 for small values of E and f , one obtains,

η1 = 1 + 2
√

2E− 4E + 10
√

2E3/2 − 64E2 + f
(

1 +
√

2E− 5
√

2E3/2 + 64E2 + . . .
)

+f2

(
−
√

E

2
√

2
+

15E3/2

2
√

2
− 64E2 + . . .

)
+ . . . , (2.8)

η2 = 8E + 128E2 − 128fE2 + 128f2E2 + . . . , (2.9)

η3 = 1− 2
√

2E− 4E− 10
√

2E3/2 − 64E2 + f
(

1−
√

2E + 5
√

2E3/2 + 64E2 + . . .
)

+f2

( √
E

2
√

2
− 15E3/2

2
√

2
− 64E2 + . . .

)
+ . . . (2.10)

Substituting the above expansions in (2.7), again expanding for small E, yields the asymp-
totic expansion for f . The corresponding expression for ω is found to be,

ω

m
∼ 1−

√
E

[√
8 + e

− 1
m−1

(√
2
E−6

) {
2
√

8− 16
√

E + 4
√

8E− 128E3/2 log(32E)− 64(3 + 4iπ)E3/2
}]

(2.11)
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It is evident that f = m/ω − 1 ∼ O(
√

E) � 1, ensuring self-consistency. The above
expression highlights the transcendentally small nature of the growth rate; specifically

ωi = 256πE2e
− 1

m−1

(√
2
E−6

)
in the limit E � 1. Note that in contrast to the growth rate,

the correction to the leading order wave speed has an algebraic scaling, 1−ωr ∼ O(
√

E),
consistent with the initial scaling arguments in section 3.2 of the main text.

2.2. Matched Asymptotics Expansions approach

Here we give the details for the solution of the LHS problem using using the matched

asymptotics expansions approach. The answer obtained to O(E2e−
1

m−1

√
2
E ) matches ex-

actly with that obtained from the exact solution (2.11 above). This serves to validate
use of the technique for the full problem for which an exact solution is not available. We
assume the following double expansion for the eigenvalue for E � 1 and g � 1:

ω

m
= 1−

√
E
[√

8 + g
{
c0 + c1

√
E + c2E + . . .

}
+O(g2)

]
(2.12)

As will be seen, the transcendental scaling for g naturally emerges in this approach, im-
plying that (2.12) conforms to the exponential asymptotics ansatz; the transcendentally
small terms of O(g) in this expansion are important since they determine the growth rate
at leading order. The boundary layer structure is the same as that of the full problem,
and has been discussed in detail in the main text.

2.2.1. Outer region- r − 1 ∼O(1)

One expands P for small E as,

P

m2
= S0 +

√
ES1 + ES2 + O(g

√
E), (2.13)

where S0 =
(
1− 1

r2

)2
, S1 = −2

√
8
(
1− 1

r2

)
and S2 = 8

(
1− 1

r6

)
. This implies an expan-

sion for the radial displacement of the form,

ξF (r) = E ξF0 (r) + E3/2 ξF1 (r) + E2 ξF2 (r) + O(E5/2) + O(g
√

E). (2.14)

From section 3.1, we see that the RHS of (??) enters at all orders in the outer region.
Thus, the outer region solutions of the full problem and LHS problem differ at all orders.
For the LHS problem, at O(E),

d

dr

[
r3S0

dξF0
dr

]
= 0 (2.15)

with ξF0 → 0 for r →∞, which gives ξF0 (r) =
B0

(r2 − 1)
.

At O(E3/2),

d

dr

[
r3S0

dξF1
dr

]
= − d

dr

[
r3S1

dξF0
dr

]
, (2.16)

with ξF1 → 0 for r →∞, which gives ξF1 (r) =
2
√

2B0

(r2 − 1)2
+

4
√

2B0 + B1

(r2 − 1)
.

At O(E2),

d

dr

[
r3S0

dξF2
dr

]
= − d

dr

[
r3S1

dξF1
dr

]
− d

dr

[
r3S2

dξF0
dr

]
, (2.17)

with ξF2 → 0 for r →∞, which gives, ξF2 (r) =
32B0

3(r2 − 1)3
+

20B0 + 2
√

2B1

(r2 − 1)2
+

32B0 + 4
√

2B1 + B2

(r2 − 1)
+
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8B0 log
r2 − 1

r2
. The Bi’s in the above expressions are integration constants, which are de-

termined by matching to the outer boundary-layer solution.

2.2.2. Outer boundary layer - r − 1 ∼
√
E

In terms of the rescaled coordinate x = (r − 1)/
√

E, the LHS problem in the outer
boundary layer takes the form:

d

dx

[
Qdξ

o

dx

]
= 0, (2.18)

where Q, for small E, is expanded as,

Q = Q0 +
√

EQ1 + EQ2 + E3/2Q3 + O(E2) + O(g
√

E), (2.19)

with Q0 = 4x(x − 2
√

2), Q1 = −12
√

2x(x − 2
√

2), Q2 = x2(x2 − 4
√

2x − 24) and
Q3 = x3(88− x2). For the displacement, we assume the expansion,

ξo(x) =
√

E ξo0(x) + E ξo1(x) + E3/2 ξo2(x)+

E2 log(32E) ξo31(x) + E2 ξo3(x) + O(E5/2) + O(g
√

E). (2.20)

The log(32E) term in (2.20) is necessitated by the log term in the outer region solution
at E2 viz. ξF2 .

At O(E1/2),

d

dx

[
Q0

dξo0
dx

]
= 0 (2.21)

⇒ ξo0(x) = G10 + G11 log

(
x− 2

√
2

x

)
. (2.22)

At O(E),

d

dx

[
Q0

dξo1
dx

]
= − d

dx

[
Q1

dξo0
dx

]
, (2.23)

⇒ ξo1(x) = G21 + G11 log

(
x− 2

√
2

x

)
. (2.24)

Note that at both O(E1/2) and O(E) one obtains the same governing equation since
Q0 and Q1 have an identical dependence on x (to within a multiplicative constant). At

O(E3/2),

d

dx

[
Q0

dξo2
dx

]
= − d

dx

[
Q1

dξo1
dx

]
− d

dx

[
Q2

dξo0
dx

]
, (2.25)

⇒ ξo2(x) = G22 + G12 log

(
x− 2

√
2

x

)
− G10√

2

(
32

x− 2
√

2
+ x− 2

√
2

)
. (2.26)

At O(E2 log(32E)),

d

dx

[
Q0

dξo31

dx

]
= 0, (2.27)

⇒ ξo31(x) = G̃23 + G̃13 log

(
x− 2

√
2

x

)
. (2.28)
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At O(E2),

d

dx

[
Q0

dξo3
dx

]
= − d

dx

[
Q1

dξo2
dx

+Q2
dξo1
dx

+Q3
dξo0
dx

]
(2.29)

⇒ ξo3(x) = G23 + G13 log

(
x− 2

√
2

x

)
+ 3
√

2G12 log

(
x− 2

√
2

x

)

− 3G10

(
x+

32

x− 2
√

2

)
− G11√

2

(
32

x− 2
√

2
+ x− 2

√
2

)
+
G10√

2

(
(x− 2

√
2)2

2
+ 6
√

2
(
x− 2

√
2
)
− 64 log

(
x− 2

√
2
)

+
160
√

2

x− 2
√

2

)
.

(2.30)

The Gij ’s in the above expressions are integration constants, which are determined by
matching to the far-field and inner boundary-layer solutions.

2.2.3. Inner boundary layer - r − 1 ∼ O(g
√
E)

Introducing the inner boundary layer coordinate, y = (r − 1)/g
√

E with g,E� 1 and
the inner boundary layer displacement as ξ(r) = ξi(y), we have:

d

dy

[
Rdξ

i

dy

]
=
g2ER(m2 − 1)

(1 + g
√

Ey)2
ξi, (2.31)

with R = (1 + g
√

Ey)3P/(m2gE), which is further expanded as,

R = R0 +
√

ER1 + ER2 + E3/2 log(32E)R30 + E3/2R31 + O(E2), (2.32)

where R0 = 4
√

2(c0 − 2y), R1 = 4
√

2(c1 + 6
√

2y), R2 = 4
√

2c2, R30 = 4
√

2c30 and
R31 = 4

√
2c31, where the 32 is retained in the log term in (2.32) for convenience. The

boundary conditions are given by,

ξi(y = 0) = 1 (2.33)

dξi

dy

(
y = 0

)
= (m− 1)

√
E

{√
2

c0
−
√

2c1
√

E

c20
+

√
2
(
c21 − c0c2

)
E

c30
−
√

2
(
c31 − 2c0c1c2 + c20c31

)
E3/2

c40
−

√
2c30E3/2 log(32E)

c20
+ . . .

}
(2.34)

ξi(y) can thus be expanded as,

ξi(y) = ξi0(y) +
√

E ξi1(y) + E ξi2(y) + E3/2 ξi3(y)

+ E2 log(32E) ξi40(y) + E2 ξi41(y) + O(E5/2) + O(g
√

E), (2.35)

where the leading order radial displacement is now O(1). Importantly, as already argued
in the main text, the RHS in (2.31) is transcendentally small (on account of g), and
may therefore be neglected to all algebraic orders considered below. Thus, at O(1), one
obtains,
Finally, at O(1) we obtain,

d

dy

[
R0

dξi0
dy

]
= 0, (2.36)
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with ξi0(y = 0) = 1 and
dξi0
dy

(y = 0) = 0, which gives

ξi0(y) = 1. (2.37)

At O(E1/2) we obtain,

d

dy

[
R0

dξi1
dy

]
= 0, (2.38)

with ξi1(y = 0) = 0 and
dξi1
dy

(y = 0) =

√
2(m− 1)

c0
, which gives,

ξi1(y) = − (m− 1)√
2

log

(
c0 − 2y

c0

)
. (2.39)

At O(E) we obtain,

d

dy

[
R0

dξi2
dy

]
= − d

dy

[
R1

dξi1
dy

]
, (2.40)

with ξi2 = 0 and
dξi2
dy

= −
√

2(m− 1)c1
c20

, which gives,

ξi2(y) = −3(m− 1) log

(
c0 − 2y

c0

)
− (m− 1)

2
(
√

2c1 + 6c0)

{
1

c0 − 2y
− 1

c0

}
. (2.41)

At O(E3/2) we obtain,

d

dy

[
R0

dξi3
dy

]
= − d

dy

[
R1

dξi2
dy

]
− d

dy

[
R2

dξi1
dy

]
, (2.42)

with ξi3 = 0 and
dξi3
dy

=

√
2(m− 1)(c1 − c0c2)

c30
, which gives,

ξi3(y) = −9
√

2(m− 1) log

(
c0 − 2y

c0

)
− (m− 1)√

2
(c2 + 6

√
2c1 + 36c0)

{
1

c0 − 2y
− 1

c0

}
+

(m− 1)

2
√

2
(c1 + 3

√
(2)c0)2

{
1

(c0 − 2y)2
− 1

c20

}
. (2.43)

At O(E2 log(32E)) we obtain,

d

dy

[
R0

dξi40

dy

]
= − d

dy

[
R30

dξi1
dy

]
, (2.44)

with ξi40 = 0 and
dξi40

dy
= −
√

2(m− 1)c30

c20
, which gives,

ξi40(y) = − (m− 1)√
2

c30

{
1

c0 − 2y
− 1

c0

}
. (2.45)

At O(E2) we obtain,

d

dy

[
R0

dξi41

dy

]
= − d

dy

[
R1

dξi3
dy

+R2
dξi2
dy

+R31
dξi1
dy

]
, (2.46)
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with ξi41 = 0 and
dξi41

dy
= −
√

2(m− 1)(c31 − 2c0c1c2 + c20c3)

c40
, which gives,

ξi41(y) = −54(m− 1) log

(
c0 − 2y

c0

)
− (m− 1)√

2
{c3 + 6

√
2c2 + 54(c1 + 3

√
2c0)}

{
1

c0 − 2y
− 1

c0

}
+

(m− 1)

2
√

2
{2c2(c1 + 3

√
2c0) + 9

√
2(c1 + 3

√
(2)c0)2}

{
1

(c0 − 2y)2
− 1

c20

}
− (m− 1)

3
√

2
(c1 + 3

√
(2)c0)3

{
1

(c0 − 2y)3
− 1

c30

}
. (2.47)

2.2.4. Matching

With the inner and outer boundary layer solutions, and the solution in the outer re-
gion, in place, we proceed to derive the necessary constants via matching. To begin with,
we expand the far-field solution for small values of r − 1 by writing it in terms of the
outer boundary layer coordinate as r = 1 +

√
Ex, which leads to the following limiting

forms:

EξF0 ∼
√

E
B0

2x

(
1−
√

Ex

2
+O

(
x2
))

, (2.48)

E3/2ξF1 ∼ E
B1 + 4

√
2B0

2x

(
1−
√

Ex

2
O
(
x2
))

+

√
E

√
2B0

2x2

(
1−
√

Ex+O
(
x2
))
, (2.49)

E2ξF2 ∼ E3/2B2 + 4
√

2B1 + 32B0

2x

(
1−
√

Ex

2
+O

(
x2
))

+

E
2
√

2B1 + 20B0

4x2

(
1−
√

Ex+O
(
x2
))

+

√
E

4B0

3x3

(
1−
√

E
3x

2
+O

(
x2)
))

+

8B0E2
(

log
√

E + log 2x+ log
(

1 +
√

E
x

2

)
− 2 log

(
1 +
√

Ex
))

. (2.50)

Next, the outer boundary layer solution needs to be expanded both for large and small
x. The large and small x limiting forms are needed for matching with the limiting forms
of the outer region and inner boundary layer, respectively. For x � 1 we obtain the
following limiting forms,

ξo0 ∼ G20 + G10

(
−2
√

2

x
+O

(
1

x2

))
, (2.51)

ξo1 ∼ G21 + G11

(
−2
√

2

x
+O

(
1

x2

))
, (2.52)
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ξo2 ∼ G22 + 2G10 + G12

(
−2
√

2

x
+O

(
1

x2

))
− G10

x√
2

−G10

(
16
√

2

x
+O

(
1

x2

))
, (2.53)

ξo3 ∼
(
−2
√

2G13 − 12G12 − 16
√

2G11 + 64G10

) 1

x
+
(
G23 + 2G11 − 10

√
2G10

)
+

(
−3G10 − G11

1√
2

+ 4G10

)
x− 32

√
2G10 log x+O

(
1

x2

)
. (2.54)

In the limit g � x� 1, one needs to account for the multi-valuedness of the logarithm in
the log(x− 2

√
2) term (see (2.22)). Here, x = 2

√
2 denotes the singularity of the forward

travelling shear wave in the limit of neutral stability. For x crossing 2
√

2 along the real
axis, there is an ambiguity in the sign of the phase jump associated with the logarithm,
an aspect familiar from inviscid hydrodynamic stability (Drazin & Reid 1981). The res-
olution lies in recognizing that the singularity associated with the unstable mode must
lie in the complex plane, so that x = 2

√
2 − iε (ε > 0), even if the displacement from

the real axis (ε) is transcendentally small. This resolves the sign of the phase jump; the
logarithmic term is now log(x − 2

√
2 + iε), which leads to a phase jump of iπ in the

limit x � 1. With this in place, one obtains the following small-x forms for the outer
boundary layer solutions:

ξo0 ∼ G10

(
log 2
√

2− log x+ iπ
)
, (2.55)

ξo1 ∼ G21 + G11

(
log 2
√

2− log x+ iπ
)
, (2.56)

ξo2 ∼ G22 + 10G10 + G12

(
log 2
√

2− log x+ iπ
)
, (2.57)

ξo31 ∼ G̃23 + G̃13

(
log 2
√

2− log x+ iπ
)
, (2.58)

ξo3 ∼ G23 − 26
√

2G10 + 10G11 +
(
G13 + 3

√
2G12

)(
log 2
√

2− log x+ iπ
)

−32
√

2G10

(
log 2
√

2 + iπ
)
. (2.59)

Finally, the inner boundary layer solution is expanded for large values of y and towards
this end, is written in terms of the outer boundary layer coordinate, y = x/g with x ∼
O(1) and g � 1. The multi-valuedness of the logarithmic is again accounted for by noting
that the backward travelling shear-wave must lie at y = c0/2− iε′ (ε′ > 0), which leads
to a logarithmic term of the form log(c0 − 2y − 2iε′) in (2.39) for instance. This in turn
leads to a phase jump of −iπ across y = c0/2. The large-y forms of the inner boundary
layer solutions are given by:

ξi0 ∼ 1, (2.60)

ξi1 ∼ −
m− 1√

2

(
log x+ log

(
2

c0

)
− log g − iπ

)
, (2.61)
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ξi2 ∼ −3 (m− 1)

(
log x+ log

(
2

c0

)
− log g − iπ

)
+
m− 1√

2

(√
2
c1
c0

+ 6

)
, (2.62)

ξi3 ∼ −9
√

2 (m− 1)

(
log x+ log

(
2

c0

)
− log g − iπ

)
+
m− 1√

2

(
c2
c0

+ 6
√

2
c1
c0

+ 36

)
−m− 1

2
√

2

(
c1
c0

+ 3
√

2

)2

, (2.63)

ξi40 ∼
m− 1√

2

c30

c0
, (2.64)

ξi41(y) ∼ −54(m− 1)

(
log x+ log

(
2

c0

)
− log g − iπ

)
+

(m− 1)√
2c0

{c31 + 6
√

2c2 + 54(c1 + 3
√

2c0)}

− (m− 1)

2
√

2c20
{2c2(c1 + 3

√
2c0) + 9

√
2(c1 + 3

√
(2)c0)2} − (m− 1)

3
√

2c30
(c1 + 3

√
(2)c0)3.

(2.65)

Having determined the appropriate limiting forms, we proceed to match the appropri-
ate terms. In matching (2.60-2.65) to (2.55-2.59), an inconsistency appears in that the
only term at O(1) is that from the inner boundary layer (ξi0 in (2.60)), and there are
no terms for this to match on to, in the outer boundary layer solutions. The resolution
involves recognizing that one of the terms at O(

√
E), the one proportional to log g in

(2.61), jumps order to cancel the aforementioned O(1) contribution. This implies,

g = e−
1

(m−1)

√
2
E , (2.66)

and confirms the transcendental smallness of g anticipated earlier. Owing to this tran-
scendental smallness, the log g term contributes at an algebraic order lower than the
nominal one at which it appears. Next, at O(

√
E), we first match the log x terms in the

inner and outer boundary layer solutions ((2.61) and (2.55), respectively), to determine
the unknown constant (G10) in the outer boundary layer solution as,

G10 =
m− 1√

2
. (2.67)

The constant terms in the outer boundary layer (2.51) and the outer region (2.48) solu-
tions are matched to determine the unknown constant (G20) in the outer boundary layer
solution as,

G20 = 0. (2.68)

Then we match the constant term in the inner boundary layer (2.61) and the outer
boundary layer solutions (2.55), to determine the leading order term in the eigenvalue
expansion (c0) as,

c0 = 4
√

2e
6

m−1 . (2.69)

Finally, matching the coefficient of the 1
x term in the outer boundary layer (2.51) and

the outer region (2.48) solutions is used to determine the unknown constant (B0) in the
outer region solution as,

B0 = −4(m− 1). (2.70)

This completes the matching at O(
√

E). For all higher orders, the matching thus proceeds
in the same sequence as above. For instance, at O(E), matching the log x term from the
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inner (2.62) and outer boundary layer solution (2.56) leads to,

G11 = 3(m− 1). (2.71)

Next, matching the constant terms in the outer boundary layer (2.52) and the outer
region (2.49) solutions gives,

G21 = (m− 1). (2.72)

Matching the constant term in the inner boundary layer (2.62) and the outer boundary
layer solutions (2.56) gives,

c1 = −16e
6

m−1 . (2.73)

Finally, matching the 1
x term in the outer boundary layer (2.52) and the outer region

(2.49) solutions gives,

B1 = 0. (2.74)

In a similar manner, one determines all unknown constants involved. The results are
summarized below:

g = e−
1

(m−1)

√
2
E ,

c0 = 4
√

2e
6

m−1 , c1 = −16e
6

m−1 , c2 = 8
√

2e
6

m−1 , c3 = (−656 log (2)− 192− 256iπ) e
6

m−1

G20 = 0, G10 =
m− 1√

2
, G21 = (m− 1), G11 = 3(m− 1),

G22 =
3
√

2(m− 1)

2
, G12 = 9

√
2(m− 1),

G23 =
81(m− 1)

3
− 34 log (2) (m− 1), G13 = 0,

B0 = −4(m− 1), B1 = 0, B2 = 0.

(2.75)

As a result, one has the following asymptotic expression for the eigenvalue,

ω

m
∼ 1−

√
E

[√
8 + e

− 1
m−1

(√
2
E−6

) {
2
√

8− 16
√

E + 4
√

8E− 128E3/2 log(32E)− 64(3 + 4iπ)E3/2
}]

,

(2.76)

which is the same as the expression as that obtained by direct expansion of the exact
solution, for small E, in (2.11).

3. Details of the matched asymptotic analysis for the inertio-elastic
instability

Here we give the details for the matched asymptotic analysis for the instability that is
described in section 3.2 of the main text, and governed by the full equation (3.2) in the
main text.

3.1. Outer region- r − 1 ∼ O(1)

To begin with, we study the solution in the region where r − 1 ∼ O(1). One obtains the
following equations at successive orders whose solutions are written alongside. At O(E),

d

dr

[
r3S0

dξF0
dr

]
− S0ξ

F
0 r(m

2 − 1) = 0, (3.1)
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with ξF0 → 0 for r →∞, which gives ξF0 (r) =
B0

rm−1(r2 − 1)
. Similarly, at O(E3/2),

d

dr

[
r3S0

dξF1
dr

]
− S0ξ

F
1 r(m

2 − 1) = − d

dr

[
r3S1

dξF0
dr

]
+ S1ξ

F
0 r(m

2 − 1), (3.2)

with ξF1 → 0 for r →∞, which gives ξF1 (r) =
2
√

2B0

rm−1(r2 − 1)2
+

B1

rm−1(r2 − 1)
.

The Bi’s in the above expressions are integration constants which will be determined
from matching considerations (see section 3.4). Using the expressions for ξF0 and ξF1
above, the solution in the outer region, to O(E3/2), may be written as:

ξF (r) = E
B0

rm−1(r2 − 1)
+ E3/2

{
2
√

2B0

rm−1(r2 − 1)2
+

B1

rm−1(r2 − 1)

}
+ O(E2). (3.3)

In the outer region solution (ξF ), there are no signatures of the travelling shear-wave
singularities. Note that we do not consider the O(E2) and higher order contributions to
ξF since they are not required to determine the growth rate at leading order, an insight
that is obtained from the solution of the LHS problem.

3.2. Outer boundary layer - r − 1 ∼ O(
√
E)

We now consider the outer boundary layer using the boundary layer coordinate x =
(r−1)/

√
E. One obtains the following equations at successive orders whose solutions are

written alongside.
At O(E1/2) we obtain,

d

dx

[
Q0

dξo0
dx

]
= 0 (3.4)

⇒ ξo0(x) = G10 + G11 log

(
x− 2

√
2

x

)
. (3.5)

In ξo0(x) above, and in the solutions at higher orders below, the forward and backward
travelling wave singularities correspond to x = 2

√
2 and x = 0, respectively; the latter

location is the edge of the core, since transcendentally small terms are now neglected.
At O(E) we obtain,

d

dx

[
Q0

dξo1
dx

]
= − d

dx

[
Q1

dξo0
dx

]
, (3.6)

⇒ ξo1(x) = G21 + G11 log

(
x− 2

√
2

x

)
. (3.7)

Note that ξo1 is again the homogeneous solution since Q1 has the same x-dependence as

Q0. At O(E3/2) we obtain,

d

dx

[
Q0

dξo2
dx

]
= − d

dx

[
Q1

dξo1
dx

]
− d

dx

[
Q2

dξo0
dx

]
+ (m2 − 1)Q0ξ

o
0 , (3.8)
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⇒ ξo2(x) = G22 + G12 log

(
x− 2

√
2

x

)
− G10√

2

(
32

x− 2
√

2
+ x− 2

√
2

)
− G10(m2 − 1)

ˆ
x2 − 3

√
2x

3(x− 2
√

2)
log (x) dx

+ G10(m2 − 1)

ˆ (
x2 − 3

√
2x

3(x− 2
√

2)
+

8
√

2

3x(x− 2
√

2)

)
log
(
x− 2

√
2
)
dx

− G10(m2 − 1)

(√
2x

3
− 4

3
log

(
x− 2

√
2

x

))
. (3.9)

At O(E2) we obtain,

d

dx

[
Q0

dξo3
dx

]
= − d

dx

[
Q1

dξo2
dx

]
− d

dx

[
Q2

dξo1
dx

]
− d

dx

[
Q3

dξo0
dx

]
+(m2−1)Q1ξ

o
0−2x(m2−1)Q0ξ

o
0+(m2−1)Q0ξ

o
1 ,

(3.10)

⇒ ξo3(x) = G23 + G13 log

(
x− 2

√
2

x

)

+ 3
√

2G12 log

(
x− 2

√
2

x

)
− 3G10

(
x+

32

x− 2
√

2

)
− G11√

2

(
32

x− 2
√

2
+ x− 2

√
2

)

+
G10√

2

(
(x− 2

√
2)2

2
+ 6
√

2
(
x− 2

√
2
)
− 64 log

(
x− 2

√
2
)

+
160
√

2

x− 2
√

2

)

− (G11 − 3G10)(m2 − 1)

ˆ
x2 − 3

√
2x

3(x− 2
√

2)
log (x) dx

+ (G11 − 3G10)(m2 − 1)

ˆ (
x2 − 3

√
2x

3(x− 2
√

2)
+

8
√

2

3x(x− 2
√

2)

)
log
(
x− 2

√
2
)
dx

− (G11 − 3G10)(m2 − 1)

(√
2x

3
− 4

3
log

(
x− 2

√
2

x

))

+
1

3
(m2 − 1)G21

(
x2

2
−
√

2x− 4 log
(
x− 2

√
2
))

+

√
2

3
(m2 − 1)G10

(
x2

2
+
√

2x− 4 log
(
x− 2

√
2
))

+ G10(m2 − 1)

ˆ
3x3 − 8

√
2x2

6(x− 2
√

2)
log (x) dx

− G10(m2 − 1)

ˆ (
3x3 − 8

√
2x2

6(x− 2
√

2)
+

32

3x(x− 2
√

2)

)
log
(
x− 2

√
2
)
dx. (3.11)

3.3. Inner boundary layer - r − 1 ∼ O(g
√
E)

Finally, we introduce an inner boundary layer in an exponentially small neighborhood of
the core, corresponding to O(1) values of the boundary layer coordinate y = (r−1)/g

√
E

with g,E� 1. We have the following equations (and boundary conditions) and solutions
at successive orders.
At O(1) we obtain,

d

dy

[
R0

dξi0
dy

]
= 0, (3.12)
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with ξi0(y = 0) = 1 and
dξi0
dy

(y = 0) = 0, which gives

ξi0(y) = 1. (3.13)

At O(E1/2) we obtain,

d

dy

[
R0

dξi1
dy

]
= 0, (3.14)

with ξi1(y = 0) = 0 and
dξi1
dy

(y = 0) =

√
2(m− 1)

c0
, which gives,

ξi1(y) = − (m− 1)√
2

log

(
c0 − 2y

c0

)
. (3.15)

From the expression for ξi1(y) and the solutions at higher orders below, we see that
the singularity associated with the backward travelling shear-wave is now resolved, and
corresponds to y = c0/2 (x = gc0/2), where c0 still needs to be determined.
At O(E) we obtain,

d

dy

[
R0

dξi2
dy

]
= − d

dy

[
R1

dξi1
dy

]
, (3.16)

with ξi2 = 0 and
dξi2
dy

= −
√

2(m− 1)c1
c20

, which gives,

ξi2(y) = −3(m− 1) log

(
c0 − 2y

c0

)
− (m− 1)

2
(
√

2c1 + 6c0)

{
1

c0 − 2y
− 1

c0

}
. (3.17)

3.4. Matching

With the inner, outer boundary layer and far-field solutions in place, we proceed to derive
the necessary constants via matching appropriate limiting forms of the solutions to each
other. First, we expand the outer region solutions for small values of r − 1, writing it in
terms of the outer boundary layer coordinate, x = (r − 1)/

√
E,

EξF0 ∼
√

E
B0

2x

(
1−
√

Ex

2
(2m− 1) +O

(
x2
))

, (3.18)

E3/2ξF1 ∼ E
B1

2x

(
1−
√

Ex

2
(2m− 1)O

(
x2
))

+

√
E

√
2B0

2x2

(
1−m

√
Ex+O

(
x2
))
. (3.19)

Next, the outer boundary layer solution is expanded both for large and small x for match-
ing with the far-field and inner boundary layer, respectively. For x� 1,

ξo0 ∼ G20 + G10

(
−2
√

2

x
+O

(
1

x2

))
, (3.20)

ξo1 ∼ G21 + G11

(
−2
√

2

x
+O

(
1

x2

))
, (3.21)
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and

ξo2 ∼ G22 + 2G10 + G12

(
−2
√

2

x
+O

(
1

x2

))
− G10

x√
2

−G10

(
16
√

2

x
+O

(
1

x2

))
+ G10(m2 − 1)

(
−
√

2x

3
+

8
√

2

3x

)

+
4

3
G10(m2 − 1)

(
1 + Z1 + Z2 + log(2

√
2)(log(2

√
2)− log(iγ))

)
, (3.22)

where Z1 and Z2 are real constants defined by the integrals,

Z1 =

ˆ ∞
2
√

2

log(x− 2
√

2)− log(x)

x
dx, (3.23)

Z2 =

ˆ ∞
2
√

2

2
√

2 log x− 2
√

2 log 2
√

2

x(x− 2
√

2)
dx. (3.24)

The integrals in the exact expression, (3.9), for ξo2 appear to have a singularity when
taking the limit x � 1. To resolve this, we again recognize that the travelling wave
singularity must be displaced into the complex plane for an unstable mode and the
constant γ indicates this small but finite displacement. Note that the last term in (3.22)
when combined with the constant G22 (the first term), shows that ξo2 is independent of
the arbitrary constant γ, which is only used as an intermediate step.

For gc0 � x� 1,

ξo0 ∼ G10

(
log 2
√

2− log x+ φ
)
, (3.25)

ξo1 ∼ G21 + G11

(
log 2
√

2− log x+ φ
)
, (3.26)

ξo2 ∼ G22 + 10G10 + G12

(
log 2
√

2− log x+ φ
)

−4

3
G10(m2 − 1)

(
log 2
√

2− log x+ φ
)

+G10(m2 − 1)

(
2

3
+

4

3
(Z3 −Z4)− 4

3
log(x)(φ+ log(2

√
2))

)
+G10(m2 − 1)

(
8

3
log 2
√

2(Φ1 + log 2
√

2)− 4

3
log(2

√
2) log(iγ)

)
, (3.27)

where Z3 and Z4 are real constants defined by the integrals

Z3 =

ˆ 2
√

2

0

log(2
√

2− x)− log 2
√

2

x
dx, (3.28)

and

Z4 =

ˆ 2
√

2

0

log x− log 2
√

2

x− 2
√

2
dx. (3.29)

The inner boundary layer solution is written in terms of the outer boundary layer coor-
dinate, using y = x/g, and then expanded for g � 1 (corresponding to y � 1) as,
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ξi0 ∼ 1,

ξi1 ∼ −
m− 1√

2

(
log x+ log

(
2

c0

)
− log g + φ′

)
, (3.30)

ξi2 ∼ −3 (m− 1)

(
log x+ log

(
2

c0

)
− log g + φ′

)
+
m− 1√

2

(√
2
c1
c0

+ 6

)
. (3.31)

At O(1), we note that the only term contributing is from the inner boundary layer.

Thus to achieve a consistent balance, a term from the eigenfunction at O
(√

E
)

must

contribute. This gives,

g = e−
1

(m−1)

√
2
E . (3.32)

This implies that the log g term contributes at a lower order as opposed to the order in
which it appears in the inner-boundary layer expansion.

The growth rate only results at O(E2). By looking at the lower order matching results,
it is evident that only the functional form of log

(
x− 2

√
2
)
, and not log

(
x− 2

√
2
)
−log x,

results in an imaginary part for the eigenvalue. Such a form only occurs at O(E2). This is
also evident in the calculation that is carried out for the LHS problem earlier. Thus, one
may directly carry out the matching procedure for the imaginary term at O(E2) between
the inner and outer boundary layer solutions. The eigenvalue constant, c3, enters the
inner boundary layer solution at O(E2) and writing c3 = c3r + ic3i, gives immediately an
expression for the growth rate (c3i):

(m− 1)c3i√
2c0

= −32
√

2πG10 −
4

3
(m2 − 1)πG21 −

8
√

2

3
(m2 − 1)πG10. (3.33)

The RHS of (3.33) results from the limiting form of the outer boundary layer solution at
O(E2) (3.11). As noted earlier, only terms of the functional form log

(
x− 2

√
2
)

in (3.11)
contribute to the imaginary part and hence only these are considered when evaluating
the limiting form. The matching procedure is detailed in 2.2.4, and to O(E), yields the
following expressions for the various constants:

c0 = 4
√

2e
6

m−1 , c1 = 16(m− 2)e
6

m−1 ,

G20 = 0, G10 =
m− 1√

2
, G21 = (2m− 1)(m− 1), G11 = 3(m− 1),

B0 = −4(m− 1), B1 = 4
√

2(m− 1)(m− 3).

These are sufficient to find the growth rate at O(E2). Recall from section 3.3, that the
location of the backward travelling shear-wave is given by y = c0/2 in terms of the inner
boundary layer coordinate. Using the expression for c0, we obtain the radial location of

the backward travelling shear wave as r = 1 + 2
√

2Ee−
1

(m−1)

√
2
E + 6

m−1 . The shear wave
is indeed a transcendentally small distance away from the vortex core, as anticipated by
the simplistic approach earlier.

Substituting the above results in the growth rate expression yields,

c3i = −4
√

2πe
6

m−1

(
32
√

2 +
4

3
(m2 − 1)(2m− 1) +

8
√

2

3
(m2 − 1)

)
, (3.34)
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which corresponds to an unstable mode.
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