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1. Network analysis

1.1. Structure of interconnections between critical flow regions

The goal of the discussion in this section is to identify interconnections between the
various critical regions in the flow revealed by complex network analysis. This analysis is
implemented as follows. We first delete nodes with high closeness centrality in a selected
critical region of the flow from the network. Next, the closeness centrality is recomputed
on the resulting reduced network and visualized in physical space. The magnitude of
the change in closeness centrality in the critical regions retained in the network then
quantifies the extent of connectedness between the deleted region and those retained.
As an example of this analysis and its results, the weighted closeness centrality measure

for the non-reacting, air split 0.3 case is shown in Fig. 1a. The solid black line is the
uz = 0 contour that identifies the extent the vortex breakdown bubble (VBB). The
region of high centrality at the upstream end (z < 10 mm) of the bubble is identified as
the wavemaker region of the PVC oscillation. Oscillations in the shear layer downstream
of the wavemaker also have high levels of closeness centrality. Figure 1a shows another
region at the downstream end (z > 15 mm) of the bubble, which is composed of nodes
with large centrality values. Using the technique of selective deletion of nodes described
above, we clarify the relationship between this downstream critical region and the other
two critical regions located further upstream in the flow. Note first, from Figure 7 in
the paper, it is evident that as the air split is increased, the value of the centrality
measure in the downstream critical region drops significantly, whereas the value of the
centrality measure in the wavemaker region does not change. This suggests that the nodes
in this region of the flow become locally less connected with the rest of the network with
increasing air split.
We first delete nodes in the PVC wavemaker critical region by setting the correlation

coefficient value to zero at nodes with a weighted closeness centrality measure greater
than 0.7. Figure 1b shows the spatial distribution of closeness centrality computed for
this case. Note that the spatial structure and the value of the centrality measure in
the downstream region is unchanged, while some small changes are observed in the

† Email address for correspondence: jxo22@psu.edu



2 A. Karmarkar, S. Gupta, I. Boxx, S. Hemchandra, J. O’Connor

Figure 1. Weighted closeness centrality measure from the complex network analysis computed
for the radial velocity component for (a) all nodes, (b) with the PVC wavemaker nodes deleted,
and (c) with the shear layer nodes deleted.

critical regions in the shear layers. This change shows that the downstream central
region is not connected with the wavemaker critical region. Next, we delete nodes using
the same criterion in the shear layer critical regions alone; the spatial distribution of
closeness centrality for this case is shown in Fig. 1c. Again, the centrality values in the
PVC wavemaker critical region marginally reduce while leaving the downstream region
unchanged, showing that the downstream critical region is not connected with the shear
layer critical regions. Also, since the modal energy spectra from SPOD – see Fig. 5 in the
paper – do not show any narrowband oscillations other than the PVC mode, we conclude
that the downstream critical region corresponds to correlation due to turbulence and does
not constitute the wavemaker region of the PVC mode.

1.2. Complex network analysis of the air split 0.3 reacting flow case

Figure 13 in the paper shows the closeness centrality measure for the reacting cases.
The centrality measure for the air split 0.3 case has a significantly different structure
than the centrality measure for the other air split cases. Figure 12b in the paper shows
that for air split < 0.3, TA mode 1 is the only dominant mode, and for the cases with air
split > 0.3, the PVC mode governs the dynamics of the flow field. For the air split 0.3
case, Fig. 12b shows that the unsteady flow field is governed by both TA mode 1 and the
PVC mode, as they have similar modal amplitudes. Network analysis of this case thus
results in a centrality measure driven by both PVC and TA mode 1.
To identify the critical regions corresponding to the PVC and TA modes, we construct

reduced flow fields by selectively eliminating contributions from the PVC and the TA
mode using a frequency-time decomposition of the unsteady flow field. These types of
modal decomposition methods have been developed recently in the past by Mendez et al.
(2019), Yin & Stöhr (2020), and Gupta et al. (2021) in connection with understanding
non-stationary flow behavior in a spectrally-selective manner. We apply the wavelet POD
method (WPOD) described in detail in Gupta et al. (2021) in this section to construct
reduced flow fields.
Following Gupta et al. (2021), a continuous wavelet transform (CWT) using the bump

wavelet is applied on the raw velocity field time series data, qqq(x, y, t) = [ur, uθ, uz]
T ,

at each of the PIV grid points. Then, we set all wavelet coefficients at each grid point
that lie outside a frequency band of width ∆f = 60 Hz centered at the frequency of
the TA mode 1 (580 Hz) to zero. Note that this center frequency corresponds to the
TA mode 1 frequency obtained from SPOD analysis for the air split 0.3 case (refer to
Fig. 11 in the paper). Next, we invert the transform at all points that yields wavelet
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Figure 2. Modal energy spectra of the POD modes of the wavelet filtered velocity fields
centered at the TA mode 1 (q̃TAq̃TAq̃TA) frequency .

Figure 3. Modal energy spectra of velocity fields obtained from spectral POD for raw data,
qqq (solid line with red crosses), wavelet filtered data, q̃TAq̃TAq̃TA (dashed line with black filled circles),
and the velocity data with TA mode eliminated, qqq − q̃TAq̃TAq̃TA (dashed line with blue squares).

filtered snapshots, q̃TAq̃TAq̃TA(x, y, t), which is comprised of spectral content from the raw data
only in the vicinity of the TA mode 1 frequency alone. Next, q̃TAq̃TAq̃TA(x, y, t) is decomposed
using proper orthogonal decomposition (POD) in terms of spatial modes ϕ̃k(x, y) and
the temporal variations ãk(t) associated with each mode as follows,

q̃TAq̃TAq̃TA(x, y, t) =

N∑
k=1

σkãk(t)ϕ̃k(x, y) (1.1)

where N is the number of flow field snapshots, ϕ̂k are mutually orthogonal spatial modes
referred to as wavelet-POD (WPOD) modes, ak(t) determined the contribution of each
of the WPOD modes to q̃TAq̃TAq̃TA at each time instant, and σ2

k is the contribution from the
kth WPOD mode to the overall energy of q̃TAq̃TAq̃TA. We then truncate the series in Eq. 1.1
to include contributions from only the most energetic modes. The reduced time series
signal with the TA mode 1 eliminated is then computed as qqq− q̃TAq̃TAq̃TA. The same process is
applied to construct the reduced field with the PVC mode eliminated.
Figure 2 shows the variation of σk for the first 10 modes of the q̃TAq̃TAq̃TA(x, y, t) field. From

Fig. 2, it is evident that the first two WPOD modes dominate the overall energy of q̃TAq̃TAq̃TA.
Therefore, we use the first two modes to reconstruct the flow field by setting N = 2 in
Eq. 1.1. Figure 3 shows the comparison of the modal energy for the most energetic mode
obtained from spectral POD of the time series of the raw data, WPOD reconstructed TA
mode 1, and the reduced time series. It is clear that the TA mode 1 has been eliminated
in the reduced time series while retaining the background turbulence in its frequency
band.
We then compute the centrality measure for the radial velocity component of the flow
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Figure 4. Weighted closeness centrality measure computed for the radial velocity component
for the (a) raw data qqq, (b) (qqq − q̃TAq̃TAq̃TA), and (c) (qqq − q̃PV Cq̃PV Cq̃PV C) for the reacting case at air split = 0.3
case.

fields (qqq − q̃TAq̃TAq̃TA) and (qqq − q̃PV Cq̃PV Cq̃PV C). Figures 4a-c show the spatial variations of closeness
centrality for the raw time series and the reduced time series without TA mode 1 and
PVC contributions, respectively. Note that the spatial distribution of centrality for both
reduced fields show a region of strong centrality on the flow centerline at z ∼ 20 mm.
Additional regions of high centrality are observed in regions directly downstream of the
outer nozzle flow regions for the the (qqq − q̃PV Cq̃PV Cq̃PV C) case in Fig. 4c. Comparing results in
Figs. 4a and b shows that the wavemaker of the PVC-only reduced data in Fig. 4b
corresponds closely with the critical region observed in the the raw data. Therefore,
because both the PVC and TA mode 1 critical regions on the flow centerline are spatially
co-located, the combined effect is region of large centrality in this location as Fig. 4a
shows. These results also suggest that the wavemaker for the PVC for the air split 0.3
case alone is somewhat further downstream of the leading edge of the breakdown bubble,
possibly due to the lower mass flow rate through the central nozzle when compared to
the outer nozzle.

2. Theoretical Formulation

We formulate an asymptotic solution to the variable-density, low Mach number Navier-
Stokes equations to gain insight into the underlying mechanisms that determine the
coherent flow oscillation behavior of weakly forced, nominally axisymmetric flows that are
otherwise self-excited. This analysis extends the weakly nonlinear analysis of Manoharan
et al. (2020) that analyses self-excited PVC oscillations in a high-Re, variable-S jet. That
analysis shows that PVC oscillations are a result of a linear hydrodynamic mode of the jet
that becomes marginally stable at a critical swirl number Sc, corresponding to the onset
of bubble type vortex breakdown. The velocity fluctuations induced by this mode cause a
limit cycle oscillation in the flow characterised by the precession of the vortex breakdown
bubble about the flow axis. The value of Sc depends on when the time-averaged flow field
can sustain standing waves in a given geometry as suggested by prior studies of vortex
breakdown (Benjamin 1962).
The present analysis is motivated by acoustic forcing on the flow induced by thermoa-

coustic oscillations that are much smaller in amplitude when compared to hydrodynamic
response that they introduce. The spectral POD analysis of the experimental data
suggests that acoustic forcing from the first thermoacoustic mode excites an axisymmetric
hydrodynamic response at a fixed frequency. The spectral POD results also show that
the amplitude of axisymmetric flow oscillations are strong in the flame region and
smaller in regions away from the flame. This suggests that the thermoacoustic pressure
oscillation imposes a weak forcing on the time-averaged flow, where ‘weak’ implies that
the amplitude of the hydrodynamic response is much larger than that of the imposed
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acoustic forcing. Following Manoharan et al. (2020), we derive an asymptotic solution
for the flow state at a given S assuming a small departure from Sc as follows,

S = Sc + ϵ2∆s (2.1)

where ϵ is a small number and ∆s ∼ O(1). Note that this means that the amplitude
of the self-excited hydrodynamic oscillation is O(ϵ). The governing equations are the
nonlinear, variable density Navier-Stokes (NS) equations in the low Mach number limit,
formulated in a cylindrical coordinate (r, θ, z) system. Axial (uz) and radial (ur) velocity
components are non-dimensionalized using a suitably chosen reference velocity, Uz,ref .
The azimuthal (uθ) velocity component is non-dimensionalized using Uθ,ref = SUz,ref ,
where S is the flow swirl number. All lengths are normalized by the burner outer diameter.

The governing equations for the coherent flow component, q̃̃q̃q(r, θ, z, t) =
[
ρ̃, ũr, ũθ, ũz, p̃

]T
,

can now be written as follows,(
B + BS{q̃̃q̃q}

)
∂q̃̃q̃q

∂t
= −N {q̃̃q̃q}q̃̃q̃q − SN S{q̃̃q̃q}q̃̃q̃q − S2N SS{q̃̃q̃q}q̃̃q̃q

+LT q̃̃q̃q + SLS
T q̃̃q̃q + ϵ3q̂âqâqa(r, z) cos (ωat)

(2.2)

where, the last term on the right is the imposed forcing term from the axisymmetric
thermoaocustic oscillation with a frequency ωa and spatial amplitude distribution q̂âqâqa, that
is assumed to be weak when compared to leading order contributions from hydrodynamic
oscillations. As such, its amplitude is O(ϵ3) as shown in eq. 2.2 .

In eq. 2.2, the operators B and BS{q̃̃q̃q} are diagonal matrices with elements {1, 0, 0, 0, 0}
and {0, ρ, Sρ, ρ, 0} respectively and N {q̃̃q̃q}, N S{q̃̃q̃q} and N SS{q̃̃q̃q} are nonlinear operators
arising from convective terms. LT and LS

T in eq. 2.2 are the linear operators arising
from the pressure gradient term and molecular and turbulent transport terms. An eddy
viscosity model along with the Boussinesq assumption is used to close the turbulent
transport term as in prior studies (Manoharan et al. 2020; Tammisola & Juniper 2016;
Oberleithner et al. 2015). The various operators in eq. 2.2 are functions of the quantities
presented within the associated braces, { }. Also, solutions to eq. 2.2 must be periodic in
θ and obey no-slip conditions at the walls and kinematic compatibility conditions on the
flow centerline (Batchelor & Gill 1962). The details of the all the operators used in eq.
2.2 are algebraically complex expressions and are presented in the appendix (eqs. A 3,
A 6 and A7).

We derive a solution to eq. 2.2 accurate up to O(ϵ3), composed of oscillatory com-
ponents whose amplitudes grow slowly to their steady-state oscillation values, using the
method of multiple scales (Nayfeh 2008). Thus, we introduce a ‘fast’ time scale t1 = t, a
‘slow’ time scale t2 = ϵ2t, and an expansion for q̃̃q̃q in terms of ϵ as follows,

q̃̃q̃q(r, θ, z, t1, t2) = q0q0q0(r, z) + ϵq1q1q1(r, θ, z, t1, t2) + ϵ2q2q2q2(r, θ, z, t1, t2) + ϵ3q3q3q3(r, θ, z, t1, t2) + ...
(2.3)

where, q0q0q0 is the time-averaged flow state at Sc and each term in the expansion is assumed
to depend independently on fast and slow time scales. All the operators in eq. 2.2 are also
expanded in powers of ϵ (see eqs. A 11, A 16 and A21 for details). We then substitute
these expansions into eq. 2.2 and compare terms that are coefficients of the same power
of ϵ on both sides. This yields a sequence of equations for the functions q1q1q1, q2q2q2, . . . , etc.
in eq. 2.3.

At O(ϵ), the unsteady, linearized Navier-Stokes (LNS) equations for q1 are obtained
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as follows, (
B0

∂

∂t1
+ L

)
q1q1q1 = 0 (2.4)

where, L is an operator representing the spatial derivative terms in the LNS equations
and depends on q0q0q0 and Sc. The details of the operators B0 and L are presented in the
appendix (eqs. A 2 and A26 respectively). We decompose q1q1q1 into Fourier modes in the
azimuthal direction and write the solution to eq. 2.4 as follows,

q1q1q1(r, θ, z, t1, t2) = A1(t2)q̂1̂q1̂q1(r, z)e
i(θ−ω1t1) +A0(t2)q̂0̂q0̂q0(r, z)e

−iω0t1 + c.c. (2.5)

where, for the present flow, contributions from an axisymmetric mode (q̂0̂q0̂q0) and a helical
mode (q̂1̂q1̂q1) have been retained. Thus, ω0 and ω1 are their associated natural frequencies,
which are given by the solution to the following eigenvalue problem,

(−iωmB0 + Lm) q̂m̂qm̂qm(r, z) = 0 (2.6)

where, the operator Lm is obtained from L by the transformation ∂/∂θ → im and
m = 0, 1 for the axisymmetric and helical contributions in eq. 2.5, respectively. The
spectral analysis of the experimental data shows that the frequency of the axisymmetric
hydrodynamic mode does not depend on the air split. This result suggests that the
axisymmetric hydrodynamic mode is not self-excited, i.e., ω0i < 0 - the subscript ‘i’
represents the imaginary part. Accordingly, the thermoacoustic frequency, ωa can now
be written in terms of ω0 and the difference between S and Sc as follows,

ωa = ω0 + ϵ2Ωa (2.7)

where, Ωa ∼ O(1) and quantifies the extent of de-tuning between the natural oscillation
frequency ω0 and the thermoacoustic frequency ωa. Next, since Sc is the swirl number at
which PVC oscillations originate, ω1 is neutrally stable, i.e. ω1i = 0 (Manoharan et al.
2020).
The solution for q2q2q2 in eq. 2.3 is determined from the equation obtained by comparing

O(ϵ2) terms on both sides of eq. 2.2 as follows,

q2q2q2(r, θ, z, t1, t2) = ∆sq̂∆̂q∆̂q∆ + |A1|2q̂A1A∗
1

q̂A1A∗
1

q̂A1A∗
1

+
(
A1A0q̂A1A0

q̂A1A0q̂A1A0
eiθe−i(ω1+ω0)t1 +A1A

∗
0q̂A1A∗

0
q̂A1A∗

0
q̂A1A∗

0
eiθe−i(ω1−ω∗

0 )t1 + c.c.
)

+
(
(A1)

2q̂A1A1
q̂A1A1q̂A1A1

e2i(θ−ω1t1) + (A0)
2q̂A0A0
q̂A0A0q̂A0A0

e−2iω0t1 + c.c.
)

+
(
B1q̂1̂q1̂q1e

i(θ−ω1t1) +B0q̂0̂q0̂q0e
−iω0t1 + c.c.

)
(2.8)

where, the first term quantifies the change in the time-averaged flow from its state at Sc,
the second term is the time-averaged distortion (to leading order) due to finite amplitude
helical oscillations. The third set of terms are due to nonlinear coupling between the
helical and axisymmetric modes. Note that this results in helical oscillations at frequencies
corresponding to the sum and difference of the thermoacoustic and PVC frequencies. The
fourth set of terms are the first harmonic of the helical and axisymmetric oscillations. The
last set of terms are the complementary functions of the homogeneous form of eq. 2.2
at O(ϵ2). These terms are included here for mathematical completeness and will not
contribute to the final steady state oscillatory solution up to O(ϵ3).

The amplitudes A0(t2) and A1(t2) are determined from the equation for q3q3q3 (coefficient
of ϵ3 in eq. 2.3). This equation has oscillatory source terms of the form eiω0t1 and e−iω1t1 ,
which in general yield terms in the solution for q3 whose value grows exponentially with
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time. Thus, a bounded solution is possible only when the coefficients of these secular
terms vanish. This condition yields evolution equations for A0(t2) and A1(t2) as follows,

dA0

dt2
= ∆sαA0

A0 − βA0A1
|A1|2A0 + βA0fe

−iΩat2 (2.9)

dA1

dt2
= ∆sαA1

A1 − βA1A1
|A1|2A1 (2.10)

where, the coefficients in eqs. 2.9 and 2.10 are determined from inner products between
the adjoint modes q̂†0̂q

†
0̂q
†
0 and q̂†1̂q

†
1̂q
†
1, and expressions involving various the functions appearing

in eqs. 2.5 and 2.8. These expressions are given in the appendix (eqs. B 1 - B 5).
Equation 2.10 is equivalent to that derived by Manoharan et al. (2020) for the evolution
of helical mode oscillations in an unforced flow with constant density. This shows that
in the limit of weak axisymmetric forcing, the evolution of A1, i.e., helical oscillations,
is independent of A0, i.e., the hydrodynamic response to the thermoacoustic forcing. On
the other hand, the second term in eq. 2.9 shows that helical oscillations can influence
the evolution of the axisymmetric hydrodynamic response. The efficiency with which this
occurs is determined by the value of βA0A1

.

The steady-state oscillation amplitudes are determined as follows. First, we introduce
A0(t2) = D0(t2) exp[iϕ0(t2)] and A1(t2) = D1(t2) exp[iϕ1(t2)] in eqs. 2.9 and 2.10, and
equate real and imaginary parts on both sides. The real parts define evolution equations
forD1 andD0. Requiring time derivatives ofD0 andD1 to vanish in these equations yields
solutions for the steady-state amplitudes. The imaginary parts then yields expressions
for the natural frequencies of the axisymmetric and helical modes at S to leading order
in S − Sc.

The solutions for the steady-state amplitude of the helical mode and its characteristic
frequency are as follows,

APV C =

√
(S − Sc)αA1r

βA1A1r
(2.11)

and,

ωPV C = ω1 + (S − Sc)

(
αA1r

βA1A1i

βA1A1r
− αA1i

)
(2.12)

where, the letters ‘r’ and ‘i’ in the subscripts denote real and imaginary parts. Note that
as may be expected, the results in eqs. 2.11 and 2.12 are analogous to those derived by
Manoharan et al. (2020) for a constant density flow.

For the axisymmetric mode, the steady-state oscillation frequency is simply the ther-
moacoustic frequency ωa. The steady state amplitude, ATH of the axisymmetric mode
is given by the following,

ATH =
|βA0f |∣∣∣i[ωa − ω0 − i(S − Sc)αA0

]
− βA0A1

A2
PV C

∣∣∣ (2.13)

where βA0f is given as follows:

βA0f =
⟨q̂†0̂q

†
0̂q
†
0, q̂âqâqa⟩

2⟨q̂†0̂q
†
0̂q
†
0,B0q̂0̂q0̂q0⟩

(2.14)
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and βA0A1 is given by the following expression:

βA0A1 =
1

⟨q̂†0̂q
†
0̂q
†
0,B0q̂0̂q0̂q0⟩

〈
q̂0†q̂0†q̂0†,

[
I(−1,1){q0q0q0, q̂∗1̂q

∗
1̂q
∗
1}q̂A1A0
q̂A1A0q̂A1A0 + I(1,−1){q0q0q0, q̂A1A0

q̂A1A0q̂A1A0}q̂∗1̂q
∗
1̂q
∗
1 + I(−1,1){q0q0q0, q̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0}q̂1̂q1̂q1

+ I(1,−1){q0q0q0, q̂1̂q1̂q1}q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0

+ I(0,0){q0q0q0, q̂A1A∗
1

q̂A1A∗
1

q̂A1A∗
1
}q̂0̂q0̂q0 + S(0,0){q0q0q0, q̂0̂q0̂q0}q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1

+ Q0{q0q0q0, q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1}q̂0̂q0̂q0 +Q1{q0q0q0, q̂∗1̂q

∗
1̂q
∗
1 , q̂0̂q0̂q0}q̂1̂q1̂q1 +Q−1{q0q0q0, q̂1̂q1̂q1, q̂0̂q0̂q0}q̂∗1̂q

∗
1̂q
∗
1

+T0{q0q0q0, q̂0̂q0̂q0, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1
, q̂A1A0
q̂A1A0q̂A1A0

, q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0

}q0q0q0
]〉

(2.15)

where, the inner product between two functions p̂1̂p1̂p1(r, z) and p̂2̂p2̂p2(r, z) is defined as follows,

⟨p̂1̂p1̂p1, p̂2̂p2̂p2⟩ =
∫ Z

0

∫ R

0

(p̂1̂p1̂p1)
Hp̂2̂p2̂p2 r dr dz (2.16)

where, the superscript ‘H’ denotes the transpose conjugate.

In eq. 2.13, βA0f quantifies the receptivity of the axisymmetric mode to the forcing
imposed by the thermoacosutic oscillations. The denominator in eq. 2.13 quantifies two
separate sources of de-tuning. The first term in box brackets in the denominator of eq.
2.13 is the difference between the thermoacoustic forcing and the natural frequency of
the axisymmetric mode at S. Thus, as may be expected, a larger difference between these
two frequencies results in a smaller response amplitude. The last term in denominator
of eq. 2.13 shows that the presence of helical oscillations can additionally reduce ATH if
|βA0A1

| is large, i.e., the nonlinear coupling between helical and axisymmetric oscillations
is large. From the expression for βA0A1

in eq. 2.15, the contribution from nonlinear
coupling between the helical and axisymmetric mode depends on q̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0

and q̂A1A0
q̂A1A0q̂A1A0

. These
quantities are components of the solution for q2q2q2 (see eq. 2.8) that oscillate with frequencies
corresponding to the difference and sum of the helical and axisymmetric oscillations. The
equation that determines q̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0

is as follows,(
i∆ωB0 + L−1

)
q̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0 = −

(
I(0,−1){q0q0q0, q̂0̂q0̂q0}q̂∗1̂q

∗
1̂q
∗
1 + I(−1,0){q0q0q0, q̂∗1̂q

∗
1̂q
∗
1}q̂0̂q0̂q0 +Q0{q0q0q0, q̂0̂q0̂q0, q̂∗1̂q

∗
1̂q
∗
1}q0q0q0

)
(2.17)

where, ∆ω = ω1 − ω0 and the various operators on the right are given in the appendix
(eqs. C 6 and C5). The solution to eq 2.17 can be written in terms of the eigenfunctions
of L−1, q̂−1,kq̂−1,kq̂−1,k, and their adjoints as follows,

q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0 =

∑
k

[〈
q̂†−1,kq̂†−1,kq̂†−1,k, i

(
I(0,−1){q0q0q0, q̂0̂q0̂q0}q̂∗1̂q∗1̂q∗1 + I(−1,0){q0q0q0, q̂∗1̂q∗1̂q∗1}q̂0̂q0̂q0 +Q0{q0q0q0, q̂0̂q0̂q0, q̂∗1̂q∗1̂q∗1}q0q0q0

)〉
(∆ω + ω−1,k)⟨q̂†−1,kq̂†−1,kq̂†−1,k,B0q̂−1,kq̂−1,kq̂−1,k⟩

q̂−1,kq̂−1,kq̂−1,k

]
(2.18)

where, the summation is over the entire eigenspace of L−1. Thus, eq. 2.18 shows that
when ∆ω is small, i.e., when the axisymmetric and helical mode natural frequencies are
close, the magnitude of q̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0

is large. Therefore, when the forcing is near-resonant, i.e.,
ωa ∼ ω0, βA0A1 becomes large when ω1 ∼ ωa, resulting in an efficient reduction in the
amplitude of the axisymmetric hydrodynamic response as eq. 2.13 suggests.

Thus, the asymptotic solution for the stationary flow state, up to ϵ3, can be written
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by combining eqs. 2.5, 2.8 2.11, 2.12 and 2.13 as follows,

q̃̃q̃q(r, θ, z, t) = q0q0q0 + (S − Sc)q∆q∆q∆ +A2
PV CqA1A∗

1
qA1A∗

1
qA1A∗

1

+
(
APV Cq̂1̂q1̂q1e

iθe−iωPV Ct +ATHq̂0̂q0̂q0e
−iωat + c.c.

)
+
(
A2

PV Cq̂A1A1
q̂A1A1q̂A1A1

e2iθe−2iωPV Ct +A2
THq̂A0A0

q̂A0A0q̂A0A0
e−2iωat + c.c.

)
+
(
APV CATHq̂A1A0

q̂A1A0q̂A1A0
eiθe−i(ωPV C+ωa)t + c.c.

)
+
(
APV CATHq̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0

e−iθei(ωPV C−ωa)t + c.c.
)

+O
(
(S − Sc)

3/2
)
)

(2.19)

where, t1 and t2 have been replaced by t. It is now evident from eq. 2.19 that in general,
the flow solution must have oscillating components at the thermoacoustic frequency,
the PVC frequency, and their sum and difference. The suppression of the axisymmetric
hydrodynamic response to acoustic forcing, due to the presence of a PVC, can potentially
result in the suppression of the component of global heat release oscillation due to burning
area oscillations in the case of an axisymmetric flame (Acharya et al. 2012; Moeck et al.
2012). Therefore, ensuring that the characteristic frequency of PVC oscillations in a
combustor nozzle matches those of potentially unstable thermoacoustic modes during
initial stages of design might prove beneficial because the presence of a suitably designed
PVC could suppress global heat release rate oscillations through the nonlinear mechanism
described in this section as the qualitative agreement between flow dynamics in the
present experimental study and the theory shows.

Appendix A. Governing equations in the operator form

The governing equations for q̃̃q̃q =
[
ρ̃, ũr, ũθ, ũz, p̃

]T
i.e. the coherent flow components

are represented in the operator form as given in Eq. 2.2. The operators B and BS{q̃̃q̃q}
are diagonal matrices with elements B =

[
1 0 0 0 0

]
and Bs{q̃̃q̃q} =

[
0 ρ̃ Sρ̃ ρ̃ 0

]
.

The operator BS{q̃̃q̃q} can then be expanded as follows:

BS{q̃̃q̃q} = BS
1 {q̃̃q̃q}+ ϵ2∆sB

S
2 {q̃̃q̃q} (A 1)

where, BS
1 {q̃̃q̃q} and BS

2 {q̃̃q̃q} are diagonal matrices with elements BS
1 {q̃̃q̃q} =

[
0 ρ̃ Scρ̃ ρ̃ 0

]
and BS

2 {q̃̃q̃q} =
[
0 0 ρ̃ 0 0

]
. The matrix B0 is defined as:

B0 = B + BS
1 {q0q0q0} (A 2)

The nonlinear operators N {q̃̃q̃q}, N S{q̃̃q̃q} and N SS{q̃̃q̃q} in eq. 2.2 acting on the vector
field q̃̃q̃q, are defined as follows:

N {q̃̃q̃q} = N1{q̃̃q̃q}+ Rρ
2,4{q̃̃q̃q}N2{q̃̃q̃q}+ Rρ

5{q̃̃q̃q}R
ρ
5{q̃̃q̃q}N3{q̃̃q̃q} (A 3)
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where,

N1{q̃̃q̃q} =



∆̃rz ρ̃
(
1
r + ∂

∂r

)
0 ρ̃ ∂

∂z 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
RePr

[
ρ̃Λrθz − 2

(
∂ρ̃
∂r

∂
∂r + 1

r2
∂ρ̃
∂θ

∂
∂θ + ∂ρ̃

∂z
∂
∂z

)]
0 0 0 0


(A 4)

N2{q̃̃q̃q} =



0 0 0 0 0

0 ∆̃rz 0 0 0

0 0 0 0 0

0 0 0 ∆̃rz 0

0 0 0 0 0


N3{q̃̃q̃q} =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 ρ̃
(

∂
∂r + 1

r

)
0 ρ̃ ∂

∂z 0


(A 5)

Similarly, we can write N S{q̃̃q̃q} and N SS{q̃̃q̃q} as follows:

N S{q̃̃q̃q} = N S
1 {q̃̃q̃q}+ Rρ

2,3,4{q̃̃q̃q}N S
2 {q̃̃q̃q}+ Rρ

5{q̃̃q̃q}R
ρ
5{q̃̃q̃q}N S

3 {q̃̃q̃q} (A 6)

N SS{q̃̃q̃q} = Rρ
2,3{q̃̃q̃q}N SS

2 {q̃̃q̃q} (A 7)

where,

N S
1 {q̃̃q̃q} =



ũθ

r
∂
∂θ 0 ρ̃

r
∂
∂θ 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


N S

3 {q̃̃q̃q} =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 ρ̃
r

∂
∂θ 0 0


(A 8)

N S
2 {q̃̃q̃q} =



0 0 0 0 0

0 ũθ

r
∂
∂θ 0 0 0

0 0
(
∆̃rz +

ũr

r

)
0 0

0 0 0 ũθ

r
∂
∂θ 0

0 0 0 0 0


(A 9)
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N SS
2 {q̃̃q̃q} =



0 0 0 0 0

0 0 − ũθ

r 0 0

0 0 ũθ

r
∂
∂θ 0 0

0 0 0 0 0

0 0 0 0 0


(A 10)

where we have defined Λrθz =
(

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2 + ∂2

∂z2

)
and ∆̃rz =

(
ũr

∂
∂r + ũz

∂
∂z

)
.

Also, we define matrix Rρ
i,j,...{q̃̃q̃q} as a diagonal matrix with non-zero entries as ρ̃

on the ith, jth, ... indices. For example, Rρ
2,4{q̃̃q̃q} is a diagonal matrix with elements:[

0 ρ̃ 0 ρ̃ 0
]
.

The nonlinear operators can be expanded in powers of ϵ as follows:

N {q̃̃q̃q} = N1{q0q0q0}+ ϵNϵ{q0q0q0, q1q1q1}+ ϵ2Nϵ2{q0q0q0, q1q1q1, q2q2q2}+ ϵ3Nϵ3{q0q0q0, q1q1q1, q2q2q2, q3q3q3}+ ... (A 11)

where,

N1{q0q0q0} = N1{q0q0q0}+ Rρ
2,4{q0q0q0}N2{q0q0q0}+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N3{q0q0q0} (A 12)

Nϵ{q0q0q0, q1q1q1} = N1{q1q1q1}+ Rρ
2,4{q1q1q1}N2{q0q0q0}+ Rρ

2,4{q0q0q0}N2{q1q1q1}
+2Rρ

5{q0q0q0}R
ρ
5{q1q1q1}N3{q0q0q0}+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N3{q1q1q1}

(A 13)

Nϵ2{q0q0q0, q1q1q1, q2q2q2} = N1{q2q2q2}+ Rρ
2,4{q2q2q2}N2{q0q0q0}+ Rρ

2,4{q0q0q0}N2{q2q2q2}
+2Rρ

5{q0q0q0}R
ρ
5{q2q2q2}N3{q0q0q0}+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N3{q2q2q2}

+Rρ
2,4{q1q1q1}N2{q1q1q1}+ 2Rρ

5{q0q0q0}R
ρ
5{q1q1q1}N3{q1q1q1}

+Rρ
5{q1q1q1}R

ρ
5{q1q1q1}N3{q0q0q0}

(A 14)

Nϵ3{q0q0q0, q1q1q1, q2q2q2, q3q3q3} = N1{q3q3q3}+ Rρ
2,4{q3q3q3}N2{q0q0q0}+ Rρ

2,4{q0q0q0}N2{q3q3q3}
+2Rρ

5{q0q0q0}R
ρ
5{q3q3q3}N3{q0q0q0}+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N3{q3q3q3}

+Rρ
2,4{q1q1q1}N2{q2q2q2}+ 2Rρ

5{q0q0q0}R
ρ
5{q1q1q1}N3{q2q2q2}

+Rρ
5{q1q1q1}R

ρ
5{q2q2q2}N3{q0q0q0}+ Rρ

2,4{q2q2q2}N2{q1q1q1}
+2Rρ

5{q0q0q0}R
ρ
5{q2q2q2}N3{q1q1q1}+ Rρ

5{q2q2q2}R
ρ
5{q1q1q1}N3{q0q0q0}

+Rρ
5{q1q1q1}R

ρ
5{q1q1q1}N3{q1q1q1}

(A 15)

Similarly,

N S{q̃̃q̃q} = NS,1{q0q0q0}+ϵNS,ϵ{q0q0q0, q1q1q1}+ϵ2NS,ϵ2{q0q0q0, q1q1q1, q2q2q2}+ϵ3NS,ϵ3{q0q0q0, q1q1q1, q2q2q2, q3q3q3}+... (A 16)

where,

NS,1{q0q0q0} = N S
1 {q0q0q0}+ Rρ

2,3,4{q0q0q0}N S
2 {q0q0q0}+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N S

3 {q0q0q0} (A 17)
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NS,ϵ{q0q0q0, q1q1q1} = N S
1 {q1q1q1}+ Rρ

2,3,4{q1q1q1}N S
2 {q0q0q0}+ Rρ

2,3,4{q0q0q0}N S
2 {q1q1q1}

+2Rρ
5{q0q0q0}R

ρ
5{q1q1q1}N S

3 {q0q0q0}+ Rρ
5{q0q0q0}R

ρ
5{q0q0q0}N S

3 {q1q1q1}
(A 18)

NS,ϵ2{q0q0q0, q1q1q1, q2q2q2} = N S
1 {q2q2q2}+ Rρ

2,3,4{q2q2q2}N S
2 {q0q0q0}+ Rρ

2,3,4{q0q0q0}N S
2 {q2q2q2}

+2Rρ
5{q0q0q0}R

ρ
5{q2q2q2}N S

3 {q0q0q0}+ Rρ
5{q0q0q0}R

ρ
5{q0q0q0}N S

3 {q2q2q2}
+Rρ

2,3,4{q1q1q1}N S
2 {q1q1q1}+ 2Rρ

5{q0q0q0}R
ρ
5{q1q1q1}N S

3 {q1q1q1}
+Rρ

5{q1q1q1}R
ρ
5{q1q1q1}N S

3 {q0q0q0}

(A 19)

NS,ϵ3{q0q0q0, q1q1q1, q2q2q2, q3q3q3} = N S
1 {q3q3q3}+ Rρ

2,3,4{q3q3q3}N S
2 {q0q0q0}+ Rρ

2,3,4{q0q0q0}N S
2 {q3q3q3}

+2Rρ
5{q0q0q0}R

ρ
5{q3q3q3}N S

3 {q0q0q0}+ Rρ
5{q0q0q0}R

ρ
5{q0q0q0}N S

3 {q3q3q3}
+Rρ

2,3,4{q1q1q1}N S
2 {q2q2q2}+ 2Rρ

5{q0q0q0}R
ρ
5{q1q1q1}N S

3 {q2q2q2}
+Rρ

5{q1q1q1}R
ρ
5{q2q2q2}N S

3 {q0q0q0}+ Rρ
2,3,4{q2q2q2}N S

2 {q1q1q1}
+2Rρ

5{q0q0q0}R
ρ
5{q2q2q2}N S

3 {q1q1q1}+ Rρ
5{q2q2q2}R

ρ
5{q1q1q1}N S

3 {q0q0q0}
+Rρ

5{q1q1q1}R
ρ
5{q1q1q1}N S

3 {q1q1q1}

(A 20)

N SS{q̃̃q̃q} is also expanded in similar way:

N SS{q̃̃q̃q} = NSS,1{q0q0q0}+ ϵNSS,ϵ{q0q0q0, q1q1q1}+ ϵ2NSS,ϵ2{q0q0q0, q1q1q1, q2q2q2}+ ϵ3NSS,ϵ3{q0q0q0, q1q1q1, q2q2q2, q3q3q3}+ ...
(A 21)

where,

NSS,1{q0q0q0} = Rρ
2,3{q0q0q0}N SS

2 {q0q0q0} (A 22)

NSS,ϵ{q0q0q0, q1q1q1} = Rρ
2,3{q0q0q0}N SS

2 {q1q1q1}+ Rρ
2,3{q1q1q1}N SS

2 {q0q0q0} (A 23)

NSS,ϵ2{q0q0q0, q1q1q1, q2q2q2} = Rρ
2,3{q0q0q0}N SS

2 {q2q2q2}+ Rρ
2,3{q2q2q2}N SS

2 {q0q0q0}+ Rρ
2,3{q1q1q1}N SS

2 {q1q1q1}
(A 24)

NSS,ϵ3{q0q0q0, q1q1q1, q2q2q2, q3q3q3} = Rρ
2,3{q0q0q0}N SS

2 {q3q3q3}+ Rρ
2,3{q3q3q3}N SS

2 {q0q0q0}
+Rρ

2,3{q1q1q1}N SS
2 {q2q2q2}+ Rρ

2,3{q2q2q2}N SS
2 {q1q1q1}

(A 25)

We define the linearized Navier-Stokes operator i.e. L acting on any vector field ppp as
follows:

Lppp =
(
N1{q0q0q0}ppp+ Nϵ{q0q0q0, ppp}q0q0q0

)
+ Sc

(
NS,1{q0q0q0}ppp+ NS,ϵ{q0q0q0, ppp}q0q0q0

)
+ S2

c

(
NSS,1{q0q0q0}ppp+ NSS,ϵ{q0q0q0, ppp}q0q0q0

)
−
(
LTppp+ ScLS

Tppp
) (A 26)

We define the vector field ppp(r, θ, z, t1, t2) = Ap(t2)p̂mp̂mp̂m(r, z)ei(mθ−ωt1). The operator Lm

is obtained from L by the transformation ∂/∂θ → im and the operation Lmp̂mp̂mp̂m can be
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written as follows:

Lmp̂mp̂mp̂m =
(
N1

(0,m){q0q0q0}p̂mp̂mp̂m + Nϵ
(m,0){q0q0q0, p̂mp̂mp̂m}q0q0q0

)
+ Sc

(
NS,1

m {q0q0q0}p̂mp̂mp̂m + NS,ϵ
m {q0q0q0, p̂mp̂mp̂m}q0q0q0

)
+ S2

c

(
NSS,1

m {q0q0q0}p̂mp̂mp̂m + NSS,ϵ
m {q0q0q0, p̂mp̂mp̂m}q0q0q0

)
−
(
LT,mp̂mp̂mp̂m + ScLS

T,mp̂mp̂mp̂m
)

(A 27)

We now define following vector fields to explain the various operator-vector operations
used in eq. A 27:

rrr(r, θ, z, t1, t2) = Ar(t2)r̂̂r̂r(r, z)e
i(rθ−ωrt1)

sss(r, θ, z, t1, t2) = As(t2)ŝ̂ŝs(r, z)e
i(sθ−ωst1)

(A 28)

N1{q0q0q0}sss operation can be expanded as follows:

N1{q0q0q0}sss = Ase
isθe−iωst1N1

(0,s){q0q0q0}ŝ̂ŝs (A 29)

Using eq. A 12,

N1
(0,s){q0q0q0}ŝ̂ŝs = N

(0,s)
1 {q0q0q0}ŝ̂ŝs+ Rρ

2,4{q0q0q0}N2{q0q0q0}ŝ̂ŝs+ Rρ
5{q0q0q0}R

ρ
5{q0q0q0}N3{q0q0q0}ŝ̂ŝs (A 30)

Similarly,

Nϵ{q0q0q0, rrr}sss = ArAse
i(r+s)θe−i(ωr+ωs)t1Nϵ

(r,s){q0q0q0, r̂̂r̂r}ŝ̂ŝs (A 31)

Using eq. A 13,

Nϵ
(r,s){q0q0q0, rrr}sss = N

(r,s)
1 {r̂̂r̂r}ŝ̂ŝs+ Rρ

2,4{q0q0q0}N2{r̂̂r̂r}ŝ̂ŝs+ Rρ
2,4{r̂̂r̂r}N2{q0q0q0}ŝ̂ŝs

+ 2Rρ
5{q0q0q0}R

ρ
5{r̂̂r̂r}N3{q0q0q0}ŝ̂ŝs+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N3{r̂̂r̂r}ŝ̂ŝs

(A 32)

The matrix-vector operation N
(r,s)

1 {r̂̂r̂r}ŝ̂ŝs is obtained by setting ∂ρ̃/∂θ = irρ̃ in the first
element of last row and ∂/∂θ = is in the expression for N1{q̃̃q̃q} in eq. A 3.

Similarly, we expand the various other operations used in eq. A 27 using eqs. A 17,
A 18, A 22 and A23 as follows:

NS,1
s {q0q0q0}ŝ̂ŝs = N S,s

1 {q0q0q0}ŝ̂ŝs+ Rρ
5{p̂̂p̂p}N

S,s
2 {q0q0q0}ŝ̂ŝs+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N

S,s
3 {q0q0q0}ŝ̂ŝs (A 33)

NS,ϵ
s {q0q0q0, r̂̂r̂r}ŝ̂ŝs = N S,s

1 {r̂̂r̂r}ŝ̂ŝs+ Rρ
2,3,4{r̂̂r̂r}N

S,s
2 {q0q0q0}ŝ̂ŝs+ Rρ

2,3,4{q0q0q0}N
S,s

2 {r̂̂r̂r}ŝ̂ŝs

+2Rρ
5{q0q0q0}R

ρ
5{r̂̂r̂r}N

S,s
3 {q0q0q0}ŝ̂ŝs+ Rρ

5{q0q0q0}R
ρ
5{q0q0q0}N

S,s
3 {r̂̂r̂r}ŝ̂ŝs

(A 34)

NSS,1
s {q0q0q0}ŝ̂ŝs = Rρ

2,3{q0q0q0}N
SS,s

2 {q0q0q0}ŝ̂ŝs (A 35)

NSS,ϵ
s {q0q0q0, r̂̂r̂r}ŝ̂ŝs = Rρ

2,3{q0q0q0}N
SS,s

2 {r̂̂r̂r}ŝ̂ŝs+ Rρ
2,3{r̂̂r̂r}N

SS,s
2 {q0q0q0}ŝ̂ŝs (A 36)

Appendix B. Coefficients in the evolution equations of A1 and A0

The coefficients in the evolution equation for A1(t2) i.e. eq. 2.10 are defined as follows:

αA1
=

1

⟨q̂†1̂q
†
1̂q
†
1,B0q̂1̂q1̂q1⟩

〈
q̂†1̂q
†
1̂q
†
1,−

[
(−iω1)B

S
1 {q̂∆̂q∆̂q∆}q̂1̂q1̂q1 + S(0,1){q0q0q0, q̂∆̂q∆̂q∆}q̂1̂q1̂q1 + S(1,0){q0q0q0, q̂1̂q1̂q1}q̂∆̂q∆̂q∆

+ R0{q0q0q0, q̂1̂q1̂q1, q̂∆̂q∆̂q∆}q0q0q0 + R0{q0q0q0, q̂∆̂q∆̂q∆, q̂1̂q1̂q1}q0q0q0 + NS,1
1 {q0q0q0}q̂1̂q1̂q1

+ 2ScNSS,1
1 {q0q0q0}q̂1̂q1̂q1 − LS

T,0q̂1̂q1̂q1 + (−iω1)B
S
2 {q0q0q0}q̂1̂q1̂q1

+ NS,ϵ
0 {q0q0q0, q̂1̂q1̂q1}q0q0q0 + 2ScNSS,ϵ

0 {q0q0q0, q̂1̂q1̂q1}q0q0q0
]〉

(B 1)
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βA1A1 =
1

⟨q̂†1̂q
†
1̂q
†
1,B0q̂1̂q1̂q1⟩

〈
q̂†1̂q
†
1̂q
†
1,
[
I(−1,2){q0q0q0, q̂∗1̂q

∗
1̂q
∗
1}q̂A1A1
q̂A1A1q̂A1A1 + I(0,1){q0q0q0, q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1
}q̂1̂q1̂q1 + I(2,−1){q0q0q0, q̂A1A1

q̂A1A1q̂A1A1}q̂1̂q1̂q1

+ S(1,0){q0q0q0, q̂1̂q1̂q1}q̂A1A∗
1

q̂A1A∗
1

q̂A1A∗
1
+ R−1{q0q0q0, q̂1̂q1̂q1, q̂1̂q1̂q1}q̂∗1̂q

∗
1̂q
∗
1 +Q1{q0q0q0, q̂∗1̂q

∗
1̂q
∗
1 , q̂1̂q1̂q1}q̂1̂q1̂q1

+ Q0{q0q0q0, q̂1̂q1̂q1, q̂A1A∗
1

q̂A1A∗
1

q̂A1A∗
1
}q0q0q0 +Q0{q0q0q0, q̂∗1̂q

∗
1̂q
∗
1 , q̂A1A1
q̂A1A1q̂A1A1

}q0q0q0 + Pϵ3{q̂1̂q1̂q1, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1}q0q0q0

+ Pϵ3{q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1}q0q0q0 + Pϵ3{q̂∗1̂q

∗
1̂q
∗
1 , q̂1̂q1̂q1, q̂1̂q1̂q1}q0q0q0 + ScPS,ϵ3

0 {q̂1̂q1̂q1, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1}q0q0q0

+ ScPS,ϵ3

0 {q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1}q0q0q0 + ScPS,ϵ3

0 {q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1, q̂1̂q1̂q1}q0q0q0

]〉
(B 2)

The coefficients in the evolution equation for A0(t2) i.e. eq. 2.9 are defined as follows:

αA0
=

1

⟨q̂†0̂q
†
0̂q
†
0,B0q̂0̂q0̂q0⟩

〈
q̂†0̂q
†
0̂q
†
0,−

[
(−iω0)B

S
1 {q̂∆̂q∆̂q∆}q̂0̂q0̂q0 + S(0,0){q0q0q0, q̂∆̂q∆̂q∆}q̂0̂q0̂q0 + S(0,0){q0q0q0, q̂0̂q0̂q0}q̂∆̂q∆̂q∆

+ R0{q0q0q0, q̂0̂q0̂q0, q̂∆̂q∆̂q∆}q0q0q0 + R0{q0q0q0, q̂∆̂q∆̂q∆, q̂0̂q0̂q0, }q0q0q0 + NS,1
1 {q0q0q0}q̂0̂q0̂q0

+ 2ScNSS,1
1 {q0q0q0}q̂0̂q0̂q0 − LS

T,0q̂
0q̂0q̂0 + (−iω0)B

S
2 {q0q0q0}q̂0̂q0̂q0

+ NS,ϵ
0 {q0q0q0, q̂0̂q0̂q0}q0q0q0 + 2ScNSS,ϵ

0 {q0q0q0, q̂0̂q0̂q0}q0q0q0
]〉

(B 3)

βA0f =
⟨q̂†0̂q

†
0̂q
†
0, q̂âqâqa⟩

2⟨q̂†0̂q
†
0̂q
†
0,B0q̂0̂q0̂q0⟩

(B 4)

βA0A1
=

1

⟨q̂†0̂q
†
0̂q
†
0,B0q̂0̂q0̂q0⟩

〈
q̂0†q̂0†q̂0†,

[
I(−1,1){q0q0q0, q̂∗1̂q

∗
1̂q
∗
1}q̂A1A0
q̂A1A0q̂A1A0

+ I(1,−1){q0q0q0, q̂A1A0
q̂A1A0q̂A1A0

}q̂∗1̂q
∗
1̂q
∗
1 + I(−1,1){q0q0q0, q̂A∗

1A0
q̂A∗

1A0q̂A∗
1A0

}q̂1̂q1̂q1

+ I(1,−1){q0q0q0, q̂1̂q1̂q1}q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0 + I(0,0){q0q0q0, q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1
}q̂0̂q0̂q0 + S(0,0){q0q0q0, q̂0̂q0̂q0}q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1

+ Q0{q0q0q0, q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1}q̂0̂q0̂q0 +Q1{q0q0q0, q̂∗1̂q

∗
1̂q
∗
1 , q̂0̂q0̂q0}q̂1̂q1̂q1 +Q−1{q0q0q0, q̂1̂q1̂q1, q̂0̂q0̂q0}q̂∗1̂q

∗
1̂q
∗
1

+T0{q0q0q0, q̂0̂q0̂q0, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1
, q̂A1A0
q̂A1A0q̂A1A0

, q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0

}q0q0q0
]〉

(B 5)

Appendix C. Operator definitions

We define following vector fields for describing the various matrix operators used in
this paper:

p̃̃p̃p(r, θ, z, t1, t2) = Ap(t2)p̂̂p̂p(r, z)e
i(pθ−ωpt1)

r̃̃r̃r(r, θ, z, t1, t2) = Ar(t2)r̂̂r̂r(r, z)e
i(rθ−ωrt1)

s̃̃s̃s(r, θ, z, t1, t2) = As(t2)ŝ̂ŝs(r, z)e
i(sθ−ωst1)

(C 1)
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T0{q0q0q0, q̂0̂q0̂q0, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1
, q̂A1A0
q̂A1A0q̂A1A0

, q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0

}q0q0q0 =
[
Q0{q0q0q0, q̂0̂q0̂q0, q̂A1A∗

1
q̂A1A∗

1
q̂A1A∗

1
}

+ Q0{q0q0q0, q̂1̂q1̂q1, q̂A∗
1A0

q̂A∗
1A0q̂A∗
1A0

}+Q0{q0q0q0, q̂∗1̂q
∗
1̂q
∗
1 , q̂A1A0
q̂A1A0q̂A1A0

}

+ Pϵ3{q̂0q̂0q̂0, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1}+ Pϵ3{q̂0̂q0̂q0, q̂∗1̂q

∗
1̂q
∗
1 , q̂1̂q1̂q1}

+ Pϵ3{q̂1̂q1̂q1, q̂0̂q0̂q0, q̂∗1̂q
∗
1̂q
∗
1}+ Pϵ3{q̂∗1̂q

∗
1̂q
∗
1 , q̂0̂q0̂q0, q̂1̂q1̂q1}

+ Pϵ3{q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂0̂q0̂q0}+ Pϵ3{q̂∗1̂q

∗
1̂q
∗
1 , q̂1̂q1̂q1, q̂0̂q0̂q0}

+ Sc

(
PS,ϵ3

0 {q̂0̂q0̂q0, q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1}+ PS,ϵ3

0 {q̂0̂q0̂q0, q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1}

)
+ Sc

(
PS,ϵ3

0 {q̂1̂q1̂q1, q̂0̂q0̂q0, q̂∗1̂q
∗
1̂q
∗
1}+ PS,ϵ3

0 {q̂∗1̂q
∗
1̂q
∗
1 , q̂0̂q0̂q0, q̂1̂q1̂q1}

)
+ Sc

(
PS,ϵ3

0 {q̂1̂q1̂q1, q̂∗1̂q
∗
1̂q
∗
1 , q̂

0q̂0q̂0}+ PS,ϵ3

0 {q̂∗1̂q
∗
1̂q
∗
1 , q̂1̂q1̂q1, q̂0̂q0̂q0}

)]
q0q0q0

(C 2)

where,

Pϵ3{p̂̂p̂p, r̂̂r̂r, ŝ̂ŝs}q0q0q0 = Rρ
5{p̂̂p̂p}R

ρ
5{r̂̂r̂r}N3{ŝ̂ŝs}q0q0q0 (C 3)

PS,ϵ3

0 {p̂̂p̂p, r̂̂r̂r, ŝ̂ŝs}q0q0q0 = Rρ
5{p̂̂p̂p}R

ρ
5{r̂̂r̂r}N

S,0
3 {ŝ̂ŝs}q0q0q0 (C 4)

Qs{q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs = Rs{q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs+ Rs{q0q0q0, r̂̂r̂r, p̂̂p̂p}ŝ̂ŝs (C 5)

I(p,r){q0q0q0, p̂̂p̂p}r̂̂r̂r = (−iωr)B
S
1 {p̂̂p̂p}r̂̂r̂r + S(p,r){q0q0q0, p̂̂p̂p}r̂̂r̂r (C 6)

Rs{q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs = Pϵ2{q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs+ ScPS,ϵ2

s {q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs+ S2
cPSS,ϵ2

s {p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs (C 7)

S(p,r){q0q0q0, p̂̂p̂p}r̂̂r̂r = Nϵ
(p,r){q0q0q0, p̂̂p̂p}r̂̂r̂r + ScNS,ϵ

r {q0q0q0, r̂̂r̂r}r̂̂r̂r + S2
cNSS,ϵ

r {q0q0q0, p̂̂p̂p}r̂̂r̂r (C 8)

Pϵ2{q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs = Rρ
2,4{p̂̂p̂p}N2{r̂̂r̂r}ŝ̂ŝs+ 2Rρ

5{q0q0q0}R
ρ
5{p̂̂p̂p}N3{r̂̂r̂r}ŝ̂ŝs

+ Rρ
5{p̂̂p̂p}R

ρ
5{r̂̂r̂r}N3{q0q0q0}ŝ̂ŝs

(C 9)

PS,ϵ2

s {q0q0q0, p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs = Rρ
2,4{p̂̂p̂p}N

S,s
2 {r̂̂r̂r}ŝ̂ŝs+ 2Rρ

5{q0q0q0}R
ρ
5{p̂̂p̂p}N

S,s
3 {r̂̂r̂r}ŝ̂ŝs

+ Rρ
5{p̂̂p̂p}R

ρ
5{r̂̂r̂r}N

S,s
3 {q0q0q0}ŝ̂ŝs

(C 10)

PSS,ϵ2

s {p̂̂p̂p, r̂̂r̂r}ŝ̂ŝs = Rρ
2,3{p̂̂p̂p}N

SS,s
2 {r̂̂r̂r}ŝ̂ŝs (C 11)
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