
Weakly nonlinear evolution of stochastically driven nonnormal systems : supplementary materials 1

Weakly nonlinear evolution of stochastically driven
nonnormal systems : supplementary materials

Yves-Marie Ducimetière1†, Edouard Boujo1 and François Gallaire1

1Laboratory of Fluid Mechanics and Instabilities, EPFL, CH1015 Lausanne, Switzerland

This document includes several details of calculations and methods used in the main text.

1. Discretisation of the amplitude equation in the frequency domain
We recall from the main text (Eq.(3.5) for 𝒇ℎ = 𝒇𝑜) that we seek the equilibrium solution of

the amplitude equation

{ �̂�, �̂�} d�̂�
d𝜏1

= �̂�2 [�̂�] + { �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�) = 0. (1.1)

The first step is to discretize it, in the frequency domain. For this purpose, let 𝜔𝑠 designates the
sampling frequency of the corresponding temporal signals, that are discretized using 2(𝑁 − 1)
(a power of two) uniformly distributed points between 𝑡 = 0 and 𝑡 = 𝑇 . In this manner, we
have in practice −𝜔𝑐 ⩽ 𝜔 ⩽ 𝜔𝑐 where 𝜔𝑐 = 𝜔𝑠/2, and the positive part of this frequency
interval is discretized with 𝑁 uniformly distributed points between 𝜔 = 0 and 𝜔 = 𝜔𝑐. Namely,
the discrete set of positive frequencies writes 𝜔𝑛 = (𝑛 − 1)Δ𝜔 for 𝑛 = 1, 2, ...𝑁 and Δ𝜔 =

𝜔𝑐/(𝑁 − 1). The discrete Fourier transforms varying over this interval are real-valued in 𝜔1 = 0
and 𝜔𝑁 = 𝜔𝑐, but generally complex everywhere else; for instance, �̂�(𝜔) is discretized as
[𝐵𝑟 ,1, 𝐵𝑟 ,2 + 𝑖𝐵𝑖,2, ..., 𝐵𝑟 ,𝑁−1 + 𝑖𝐵𝑖,𝑁−1, 𝐵𝑟 ,𝑁] which amounts to 2(𝑁 − 2) + 2 = 2(𝑁 − 1)
independent components in total. Only the variation over the set of positive frequencies is needed,
as the Fourier component of a real-valued signal at a negative frequency is the complex conjugate
of the one at the opposite frequency : �̂�(−𝜔) = �̂�(𝜔)∗. With (1.1) discretized, the following
simple procedure is implemented in MATLAB:

Algorithm :

(i) Choose the values for 𝑁 and 𝜔𝑐, which sets the discretisation of the frequencies.

(ii) Over the discrete set of frequencies, pre-compute once for all the determinitic fields 𝒇𝑜,
�̂�, �̂�.

(iii) Choose a value for 𝜙 (which sets the forcing amplitude).

(iv) Draw a white noise (|𝜉 (𝜔) | = 1 ∀𝜔, but random phases uniformly distributed between 0
and 2𝜋), for instance with the commands xi = exp(1i*2*pi*rand(1,N)), then
xi(1)=real(xi(1))/abs(real(xi(1))) and
xi(N)=real(xi(N))/abs(real(xi(N))).

(v) Find the �̂� that solves 𝑟 (�̂�; 𝜙, 𝜉) = 0 where 𝑟 (�̂�; 𝜙, 𝜉) � �̂�2 [�̂�] + { �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�), using
the nonlinear solver ”fsolve”; the functional �̂�2 [�̂�] is evaluated using the commands ”ifft”

† Email address for correspondence: yves-marie.ducimetiere@epfl.ch

2

and ”fft”.

(vi) Update the statistics on �̂�, for instance its ensemble average, and, if not converged go back
to (iv).

Of course the convergence in terms of 𝑁 and 𝜔𝑐 must be ensured.

2. The particular case of the NSE: discretisation of the amplitude equation in the
frequency domain

We recall from the main text that

{ �̂�, �̂�} 𝜕�̂�
𝜕𝜏1

= �̂�2 [�̂�], and

{ �̂�, �̂�} 𝜕�̂�
𝜕𝜏2

= { �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�) + �̂�3 [�̂�] −
𝜕{ �̂�, �̂�2 [�̂�]}

𝜕𝜏1
.

(2.1)

The equilibrium solution(s) of the assembled amplitude equation solves :

d�̂�
d𝜏1

=
𝜕�̂�

𝜕𝜏1
+ √

𝜖𝑜
𝜕�̂�

𝜕𝜏1
= 0 ⇔

�̂�2 [�̂�] +
√
𝜖𝑜

[
{ �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�) + �̂�3 [�̂�] −

𝜕{ �̂�, �̂�2 [�̂�]}
𝜕𝜏1

]
= 0.

(2.2)

In the following, after re-expressing the nonlinear terms �̂�2 [�̂�], �̂�3 [�̂�] and 𝜕𝜏1 { �̂�, �̂�2 [�̂�]} in (2.2)
as convolution integrals, we discretize them in the frequency domain. In this manner, we make
their dependency on the discrete set of �̂�𝑖 (𝑖 = 1, 2, ..., 𝑁) as explicit as possible. All the other,
linear, terms are simple to discretize.

2.1. Derivation of the convolution integral
We first develop:

2𝐶 (F −1 [�̂�𝑎] , F −1 [�̂�𝑏]) = ∇F −1 [�̂�𝑎] F −1 [�̂�𝑏] + ∇F −1 [�̂�𝑏] F −1 [�̂�𝑎]

=
𝑇

4𝜋2

∫ ∞

−∞
∇�̂�𝑎 (𝑝)𝑒𝑖 𝑝𝑡d𝑝

∫ ∞

−∞
�̂�𝑏 (𝑠)𝑒𝑖𝑠𝑡d𝑠 +

𝑇

4𝜋2

∫ ∞

−∞
∇�̂�𝑏 (𝑠)𝑒𝑖𝑠𝑡d𝑠

∫ ∞

−∞
�̂�𝑎 (𝑝)𝑒𝑖 𝑝𝑡d𝑝

=
𝑇

4𝜋2

∬ ∞

−∞
2𝐶 (�̂�𝑎 (𝑝), �̂�𝑏 (𝑠))𝑒𝑖 (𝑝+𝑠)𝑡d𝑝d𝑠

=
𝑇

4𝜋2

∬ ∞

−∞
2𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))𝑒𝑖𝜔𝑡d𝜔d𝑠

= F −1

[√
𝑇

2𝜋

∫ ∞

−∞
2𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

]
,

(2.3)

from which it comes immediately that :

F
[
𝐶 (F −1 [�̂�𝑎] , F −1 [�̂�𝑏])

]
=

√
𝑇

2𝜋

∫ ∞

−∞
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠. (2.4)

3

2.2. Discretisation of the convolution integral
Let 𝜔𝑠 designates the sampling frequency of the temporal signals, such that we have in practice

−𝜔𝑐 ⩽ 𝜔 ⩽ 𝜔𝑐 where 𝜔𝑐 = 𝜔𝑠/2. Over this set of frequencies, the integrand in (2.4) is defined
if and only if we have both −𝜔𝑐 ⩽ 𝑠 ⩽ 𝜔𝑐 and 𝜔 −𝜔𝑐 ⩽ 𝑠 ⩽ 𝜔 +𝜔𝑐. From now on considering
only positive frequencies, i.e 0 ⩽ 𝜔 ⩽ 𝜔𝑐, the integrand is then defined if and only if

𝜔 − 𝜔𝑐 ⩽ 𝑠 ⩽ 𝜔𝑐 . (2.5)

Thereby ∫ ∞

−∞
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 ≈

∫ 𝜔𝑐

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

=

∫ 0

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +
∫ 𝜔𝑐

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠.

(2.6)

The first of the two terms of the sum in (2.6) is transformed as∫ 0

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 =
∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�𝑎 (𝜔 + 𝑠), �̂�𝑏 (−𝑠))d𝑠

=

∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�𝑎 (𝜔 + 𝑠), �̂�∗

𝑏 (𝑠))d𝑠,
(2.7)

where we used that �̂�𝑏 (−𝑠) = �̂�∗
𝑏
(𝑠) arising from the fact that all temporal signals are real-valued.

The second of the two terms of the sum in (2.6) is transformed according to∫ 𝜔𝑐

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

=

∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐

𝜔

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

=

∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐

𝜔

𝐶 (�̂�∗
𝑎 (𝑠 − 𝜔), �̂�𝑏 (𝑠))d𝑠

=

∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�∗

𝑎 (𝑠), �̂�𝑏 (𝑠 + 𝜔))d𝑠.

(2.8)

In this manner, only the knowledge of �̂�𝑎 and �̂�𝑏 over positives frequencies is required. Overall,∫ 𝜔𝑐

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 =∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�𝑎 (𝜔 + 𝑠), �̂�∗

𝑏 (𝑠)) + 𝐶 (�̂�∗
𝑎 (𝑠), �̂�𝑏 (𝑠 + 𝜔))d𝑠.

(2.9)

Let us now discretize (2.9). As said in the previous section, positive frequencies are discretized
using 𝑁 uniformly distributed points between 𝜔 = 0 and 𝜔 = 𝜔𝑐 (𝜔𝑐 the cut-off frequency).
Namely, the discrete set of positive frequencies writes 𝜔𝑛 = (𝑛 − 1)Δ𝜔 for 𝑛 = 1, 2, ...𝑁 and
Δ𝜔 = 𝜔𝑐/(𝑁 − 1). Eventually, the discrete version of expression (2.4) reads

F
[
𝐶 (F −1 [�̂�𝑎] , F −1 [�̂�𝑏])

]
≈

√
𝑇

2𝜋

[
𝑛∑︁

𝑘=1
𝛿𝑛𝑘𝐶 (�̂�𝑎,𝑛−𝑘+1, �̂�𝑏,𝑘) +

𝑁+1−𝑛∑︁
𝑘=1

𝛿𝑁+1−𝑛
𝑘

[
𝐶 (�̂�∗

𝑎,𝑘 , �̂�𝑏,𝑛+𝑘−1) + 𝐶 (�̂�𝑎,𝑛+𝑘−1, �̂�
∗
𝑏,𝑘)

]]
,

(2.10)

where we used for instance �̂�𝑎 (𝜔𝑛 − 𝑠𝑘) = �̂�𝑎 (Δ𝜔(𝑛 − 1 − 𝑘 + 1)) = �̂�𝑎,𝑛−𝑘+1. The scalar 𝛿 𝑗

𝑖

is a quadrature coefficient where 𝑖 ∈ [1, 𝑗] is a running index. In our computations, we used the

4

trapezoidal method such that

𝛿1
1 = 0, and 𝛿

𝑗

𝑖
=

𝜔𝑐/(2(𝑁 − 1)) if 𝑖 = 1
𝜔𝑐/(𝑁 − 1) if 1 < 𝑖 < 𝑗

𝜔𝑐/(2(𝑁 − 1)) if 𝑖 = 𝑗

, for 𝑗 > 1. (2.11)

2.3. Discretisation of the amplitude equation

Discretisation of �̂�2 [�̂�] :

Using (2.10), the functional �̂�2 [�̂�] = −{ �̂�, F
[
𝐶 (F −1 [�̂�1] , F −1 [�̂�1])

]
} with �̂�1 = �̂��̂� is

discretized as :

�̂�2,𝑛 =

𝑛∑︁
𝑘=1

�̂�𝑛−𝑘+1�̂�𝑘Θ𝑛𝑘 +
𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1�̂�
∗
𝑘Ξ𝑛𝑘 , (2.12)

with

Θ𝑛𝑘 = −
√
𝑇

2𝜋
𝛿𝑛𝑘{ �̂�𝑛, 𝐶 (�̂�𝑛−𝑘+1, �̂�𝑘)}, 1 ⩽ 𝑘 ⩽ 𝑛,

Ξ𝑛𝑘 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 (�̂�𝑛+𝑘−1, �̂�

∗
𝑘)}, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛.

(2.13)

The sums in (2.12) can also be written in matrix form :

�̂�2 [�̂�] =

Θ11�̂�1 0

...
. . .

Θ1𝑁 �̂�𝑁 . . . Θ𝑁𝑁 �̂�1

�̂�1
...

�̂�𝑁

 +

Ξ11�̂�1 . . . Ξ1𝑁 �̂�𝑁

... . . .

Ξ𝑁1�̂�𝑁 0

�̂�∗

1
...

�̂�∗
𝑁

 (2.14)

Discretisation of 𝜕𝜏1 { �̂�, �̂�2 [�̂�]} = { �̂�, 𝜕𝜏1 �̂�2 [�̂�]} :

Since

�̂�2 [�̂�] = 𝑅

(
�̂�2 [�̂�] −

{ �̂�, �̂�2 [�̂�]}
{ �̂�, �̂�} �̂�

)
, (2.15)

where we recall that { �̂�, �̂�2 [�̂�]} = �̂�2 [�̂�], expression (2.12) results in the following discretisation
for the field �̂�2 [�̂�]:

�̂�2,𝑚 =

𝑚∑︁
𝑗=1

�̂�𝑚− 𝑗+1�̂� 𝑗 𝒅𝑚𝑗 +
𝑁+1−𝑚∑︁

𝑗=1
�̂�𝑚+ 𝑗−1�̂�

∗
𝑗 �̂�𝑚𝑗 , (2.16)

with

𝒅𝑚𝑗 = 𝑅𝑚

[
−
√
𝑇

2𝜋
𝛿𝑚𝑗 𝐶

(
�̂�𝑚− 𝑗+1, �̂� 𝑗

)
− 𝛼𝑚𝑗 �̂�𝑚

]
,

�̂�𝑚𝑗 = 𝑅𝑚

[
−
√
𝑇

𝜋
𝛿𝑁+1−𝑚
𝑗 𝐶 (�̂�𝑚+ 𝑗−1, �̂�

∗
𝑗) − 𝛽𝑚𝑗 �̂�𝑚

]
,

(2.17)

and where we defined 𝛼𝑚𝑗 = Θ𝑚𝑗/{ �̂�𝑚, �̂�𝑚} and 𝛽𝑚𝑗 = Ξ𝑚𝑗/{ �̂�𝑚, �̂�𝑚}. The fields 𝒅𝑚𝑗 and �̂�𝑚𝑗

verify {�̂�𝑚, 𝒅𝑚𝑗 } = {�̂�𝑚, �̂�𝑚𝑗 } = 0, implying {�̂�𝑚, �̂�2,𝑚} = 0; therefore, each Fourier component
generated at second order (i.e 𝑂 (𝜖𝑜)) is orthogonal to the Fourier component of the optimal linear

5

solution at the same frequency. The partial derivative of �̂�2,𝑚 with respect to 𝜏1 follows directly
from (2.16):

𝜕𝜏1 �̂�2,𝑛 =

𝑛∑︁
𝑘=1

(𝜕𝜏1 �̂�𝑛−𝑘+1)�̂�𝑘 𝒅𝑛𝑘 +
𝑛∑︁

𝑘=1
�̂�𝑛−𝑘+1 (𝜕𝜏1 �̂�𝑘)𝒅𝑛𝑘

+
𝑁+1−𝑛∑︁
𝑘=1

(𝜕𝜏1 �̂�𝑛+𝑘−1)�̂�∗
𝑘 �̂�𝑛𝑘 +

𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1 (𝜕𝜏1 �̂�
∗
𝑘) �̂�𝑛𝑘 .

(2.18)

Since 𝜕𝜏1 �̂� = �̂�2 [�̂�]/{ �̂�, �̂�}, we can again use (2.12) and

𝜕𝜏1 �̂�𝑚 =

𝑚∑︁
𝑗=1

�̂�𝑚− 𝑗+1�̂� 𝑗𝛼𝑚𝑗 +
𝑁+1−𝑚∑︁

𝑗=1
�̂�𝑚+ 𝑗−1�̂�

∗
𝑗 𝛽𝑚𝑗 . (2.19)

Evaluating (2.19) in 𝑚 = 𝑛 − 𝑘 + 1, 𝑚 = 𝑛 + 𝑘 − 1 and 𝑚 = 𝑘 yields, respectively:

𝜕𝜏1 �̂�𝑛−𝑘+1 =

𝑛−𝑘+1∑︁
𝑗=1

�̂�𝑛−𝑘− 𝑗+2�̂� 𝑗𝛼𝑛−𝑘+1, 𝑗 +
𝑁−𝑛+𝑘∑︁
𝑗=1

�̂�𝑛−𝑘+ 𝑗 �̂�
∗
𝑗 𝛽𝑛−𝑘+1, 𝑗 , (2.20)

𝜕𝜏1 �̂�𝑛+𝑘−1 =

𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗𝛼𝑛+𝑘−1, 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗 𝛽𝑛+𝑘−1, 𝑗 , (2.21)

and

𝜕𝜏1 �̂�
∗
𝑘 =

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗𝛼

∗
𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗 𝛽

∗
𝑘 𝑗 . (2.22)

After injecting (2.20),(2.21) and (2.22) in (2.18), and projecting on the adjoint, we end up on

{ �̂�𝑛, 𝜕𝜏1 �̂�2,𝑛} =
𝑛∑︁

𝑘=1
�̂�𝑘

©«
𝑛−𝑘+1∑︁
𝑗=1

�̂�𝑛−𝑘− 𝑗+2�̂� 𝑗G𝑛𝑘 𝑗 +
𝑁−𝑛+𝑘∑︁
𝑗=1

�̂�𝑛−𝑘+ 𝑗 �̂�
∗
𝑗H𝑛𝑘 𝑗

ª®¬
+

𝑛∑︁
𝑘=1

�̂�𝑛−𝑘+1
©«

𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗I𝑛𝑘 𝑗 +
𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗J𝑛𝑘 𝑗

ª®¬
+

𝑁+1−𝑛∑︁
𝑘=1

�̂�∗
𝑘

©«
𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗K𝑛𝑘 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗L𝑛𝑘 𝑗

ª®¬
+

𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1
©«

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗M𝑛𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗N𝑛𝑘 𝑗

ª®¬ ,

(2.23)

6

where we defined the following third-order tensors

G𝑛𝑘 𝑗 = 𝛼𝑛−𝑘+1, 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑛 − 𝑘 + 1, 1 ⩽ 𝑘 ⩽ 𝑛

H𝑛𝑘 𝑗 = 𝛽𝑛−𝑘+1, 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 − 𝑛 + 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

I𝑛𝑘 𝑗 = 𝛼𝑘 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

J𝑛𝑘 𝑗 = 𝛽𝑘 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

K𝑛𝑘 𝑗 = 𝛼𝑛+𝑘−1, 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑛 + 𝑘 − 1, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

L𝑛𝑘 𝑗 = 𝛽𝑛+𝑘−1, 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 − 𝑛 − 𝑘 + 2, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

M𝑛𝑘 𝑗 = 𝛼∗
𝑘 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

N𝑛𝑘 𝑗 = 𝛽∗𝑘 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛.

(2.24)

Discretisation of �̂�3 [�̂�] :

We recall that

�̂�3 [𝐵] = −{ �̂�, F
[
2𝐶 (F −1 [�̂�1] , F −1 [�̂�2])

]
}. (2.25)

Using again (2.10) leads to the following discretisation

(F
[
2𝐶 (F −1 [�̂�1] , F −1 [�̂�2])

]
)𝑛 =

√
𝑇

𝜋

[
𝑛∑︁

𝑘=1
𝛿𝑛𝑘𝐶 (�̂�1,𝑛−𝑘+1, �̂�2,𝑘) +

𝑁+1−𝑛∑︁
𝑘=1

𝛿𝑁+1−𝑛
𝑘

[
𝐶 (�̂�∗

1,𝑘 , �̂�2,𝑛+𝑘−1) + 𝐶 (�̂�1,𝑛+𝑘−1, �̂�
∗
2,𝑘)

]]
.

(2.26)

In addition, using (2.16) and �̂�1,𝑖 = �̂�𝑖 �̂�𝑖 , we can further express

𝐶 (�̂�1,𝑛−𝑘+1, �̂�2,𝑘) = 𝐶
©«�̂�𝑛−𝑘+1 �̂�𝑛−𝑘+1,

𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗 𝒅𝑘 𝑗 +
𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗 �̂�𝑘 𝑗

ª®¬
= �̂�𝑛−𝑘+1

𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗𝐶

(
�̂�𝑛−𝑘+1, 𝒅𝑘 𝑗

)
+

𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗𝐶

(
�̂�𝑛−𝑘+1, �̂�𝑘 𝑗

) ,
(2.27)

as well as

𝐶 (�̂�∗
1,𝑘 , �̂�2,𝑛+𝑘−1) = 𝐶

©«�̂�∗
𝑘 �̂�

∗
𝑘 ,

𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗 𝒅𝑛+𝑘−1, 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗 �̂�𝑛+𝑘−1, 𝑗

ª®¬
= �̂�∗

𝑘

𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗𝐶

(
�̂�∗𝑘 , 𝒅𝑛+𝑘−1, 𝑗

)
+

𝑁−𝑛−𝑘+2∑︁
𝑗=1

�̂�𝑛+𝑘+ 𝑗−2�̂�
∗
𝑗𝐶

(
�̂�∗𝑘 , �̂�𝑛+𝑘−1, 𝑗

) ,
(2.28)

7

and eventually

𝐶 (�̂�1,𝑛+𝑘−1, �̂�
∗
2,𝑘) = 𝐶

©«�̂�𝑛+𝑘−1 �̂�𝑛+𝑘−1,

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗 𝒅

∗
𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗 �̂�

∗
𝑘 𝑗

ª®¬
= �̂�𝑛+𝑘−1

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗𝐶

(
�̂�𝑛+𝑘−1, 𝒅

∗
𝑘 𝑗

)
+

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗𝐶

(
�̂�𝑛+𝑘−1, �̂�

∗
𝑘 𝑗

) .
(2.29)

This results in the following discretisation for �̂�3 [𝐵]:

�̂�3,𝑛 =

𝑛∑︁
𝑘=1

�̂�𝑛−𝑘+1

𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗A𝑛𝑘 𝑗 +
𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗B𝑛𝑘 𝑗

+

𝑁+1−𝑛∑︁
𝑘=1

�̂�∗
𝑘

𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗C𝑛𝑘 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗D𝑛𝑘 𝑗

+

𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗E𝑛𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗F𝑛𝑘 𝑗

 ,
(2.30)

where we defined the following third-order tensors

A𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑛𝑘{ �̂�𝑛, 𝐶 (�̂�𝑛−𝑘+1, 𝒅𝑘 𝑗)}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

B𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑛𝑘{ �̂�𝑛, 𝐶 (�̂�𝑛−𝑘+1, �̂�𝑘 𝑗)}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

C𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 (�̂�∗𝑘 , 𝒅𝑛+𝑘−1, 𝑗)}, 1 ⩽ 𝑗 ⩽ 𝑛 + 𝑘 − 1, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

D𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 (�̂�∗𝑘 , �̂�𝑛+𝑘−1, 𝑗)}, 1 ⩽ 𝑗 ⩽ 𝑁 − 𝑛 − 𝑘 + 2, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

E𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 (�̂�𝑛+𝑘−1, 𝒅

∗
𝑘 𝑗)}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

F𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 (�̂�𝑛+𝑘−1, �̂�

∗
𝑘 𝑗)}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛.

(2.31)

As a summary, upon the choice of 𝜙 and 𝝃 we are led to solve

𝑟 (�̂�; 𝜙, 𝜉) = 0, with
𝑟 (�̂�; 𝜙, 𝜉) � �̂�2 [�̂�] +

√
𝜖𝑜

[
𝛾(𝜙𝜉 − �̂�) + �̂�3 [�̂�] − { �̂�, 𝜕𝜏1 �̂�2}

]
,

(2.32)

where we defined 𝛾 = { �̂�, 𝒇𝑜}. At the discrete level, this amounts to solving for a system of 𝑁
nonlinearly coupled equations for the 𝑁 unknowns �̂�𝑛 (𝑛 = 1, 2, ..., 𝑁):

𝑟𝑛 = �̂�2,𝑛 +
√
𝜖𝑜

[
𝛾𝑛 (𝜙𝜉𝑛 − �̂�𝑛) + �̂�3,𝑛 − { �̂�𝑛, 𝜕𝜏1 �̂�2,𝑛}

]
= 0, 𝑛 = 1, 2, ..., 𝑁, (2.33)

where �̂�2,𝑛, �̂�3,𝑛 and { �̂�𝑛, 𝜕𝜏1 �̂�2,𝑛} are evaluated using respectively the simple sum (2.12) and the
double sums (2.30) and (2.23). This suggests the following procedure:

Algorithm :

8

(i) Choose the values for 𝑁 and 𝜔𝑐, which sets the discretisation of the frequencies.

(ii) Over the discrete set of frequencies, pre-compute once for all the determinitic fields 𝒇𝑜,
�̂�, �̂�, the scalar 𝛾, and the tensors Θ, Ξ, A,B,C,D,E,F ,G,H ,I,J ,K,L,M,N .

(iii) Choose a value for 𝜙 (which sets the forcing amplitude).

(iv) Draw randomly a white noise (|𝜉 (𝜔) | = 1 ∀𝜔, but random phases uniformly distributed
between 0 and 2𝜋).

(v) Solve the system (2.33) by means of a nonlinear solver, for instance fsolve on MATLAB.

(vi) Update the statistics on �̂�, for instance its ensemble average, and, if not converged go back
to (iv).

Of course the convergence in terms of 𝑁 and 𝜔𝑐 must be ensured.

3. The particular case of the NSE: numerical implementation
The linear and nonlinear NSE are solved for (𝑢𝑥 ,𝑢𝑦 ,𝑝) by means of the Finite Element Method

with Taylor-Hood (P2, P2, P1) elements, respectively, after implementation of their weak form in
the software FreeFem++. The steady solution of the nonlinear NSE is found using the iterative
Newton–Raphson method, and the linear operators are built thanks to a sparse solver available in
FreeFem++. The optimal forcing structure 𝒇𝑜 is found on the software MATLAB after discretizing
the integral expression for 𝐵∞ and performing the lower-upper (LU) decomposition of the
resolvent operators to speed-up their application. Finally, DNS are performed in FreeFem++
by applying a time scheme based on the characteristic–Galerkin method. We refer to Mantic-
Lugo & Gallaire (2016) for the validation of the codes with existing literature when possible and
for the mesh convergence analysis, since the same codes have been used.

SUPPLEMENTARY MATERIALS REFERENCES
Mantic-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism of the response

to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793, 777–97.

	Discretisation of the amplitude equation in the frequency domain
	The particular case of the NSE: discretisation of the amplitude equation in the frequency domain
	Derivation of the convolution integral
	Discretisation of the convolution integral
	Discretisation of the amplitude equation

	The particular case of the NSE: numerical implementation

