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1. Discretisation of the amplitude equation in the frequency domain
We recall from the main text (Eq.(3.5) for 𝒇ℎ = 𝒇𝑜) that we seek the equilibrium solution of

the amplitude equation

{ �̂�, �̂�} d�̂�
d𝜏1

= �̂�2 [�̂�] + { �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�) = 0. (1.1)

The first step is to discretize it, in the frequency domain. For this purpose, let 𝜔𝑠 designates the
sampling frequency of the corresponding temporal signals, that are discretized using 2(𝑁 − 1)
(a power of two) uniformly distributed points between 𝑡 = 0 and 𝑡 = 𝑇 . In this manner, we
have in practice −𝜔𝑐 ⩽ 𝜔 ⩽ 𝜔𝑐 where 𝜔𝑐 = 𝜔𝑠/2, and the positive part of this frequency
interval is discretized with 𝑁 uniformly distributed points between 𝜔 = 0 and 𝜔 = 𝜔𝑐. Namely,
the discrete set of positive frequencies writes 𝜔𝑛 = (𝑛 − 1)Δ𝜔 for 𝑛 = 1, 2, ...𝑁 and Δ𝜔 =

𝜔𝑐/(𝑁 − 1). The discrete Fourier transforms varying over this interval are real-valued in 𝜔1 = 0
and 𝜔𝑁 = 𝜔𝑐, but generally complex everywhere else; for instance, �̂�(𝜔) is discretized as
[𝐵𝑟 ,1, 𝐵𝑟 ,2 + 𝑖𝐵𝑖,2, ..., 𝐵𝑟 ,𝑁−1 + 𝑖𝐵𝑖,𝑁−1, 𝐵𝑟 ,𝑁 ] which amounts to 2(𝑁 − 2) + 2 = 2(𝑁 − 1)
independent components in total. Only the variation over the set of positive frequencies is needed,
as the Fourier component of a real-valued signal at a negative frequency is the complex conjugate
of the one at the opposite frequency : �̂�(−𝜔) = �̂�(𝜔)∗. With (1.1) discretized, the following
simple procedure is implemented in MATLAB:

Algorithm :

(i) Choose the values for 𝑁 and 𝜔𝑐, which sets the discretisation of the frequencies.

(ii) Over the discrete set of frequencies, pre-compute once for all the determinitic fields 𝒇𝑜,
�̂�, �̂�.

(iii) Choose a value for 𝜙 (which sets the forcing amplitude).

(iv) Draw a white noise (|𝜉 (𝜔) | = 1 ∀𝜔, but random phases uniformly distributed between 0
and 2𝜋), for instance with the commands xi = exp(1i*2*pi*rand(1,N)), then
xi(1)=real(xi(1))/abs(real(xi(1))) and
xi(N)=real(xi(N))/abs(real(xi(N))).

(v) Find the �̂� that solves 𝑟 (�̂�; 𝜙, 𝜉) = 0 where 𝑟 (�̂�; 𝜙, 𝜉) � �̂�2 [�̂�] + { �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�), using
the nonlinear solver ”fsolve”; the functional �̂�2 [�̂�] is evaluated using the commands ”ifft”
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and ”fft”.

(vi) Update the statistics on �̂�, for instance its ensemble average, and, if not converged go back
to (iv).

Of course the convergence in terms of 𝑁 and 𝜔𝑐 must be ensured.

2. The particular case of the NSE: discretisation of the amplitude equation in the
frequency domain

We recall from the main text that

{ �̂�, �̂�} 𝜕�̂�
𝜕𝜏1

= �̂�2 [�̂�], and

{ �̂�, �̂�} 𝜕�̂�
𝜕𝜏2

= { �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�) + �̂�3 [�̂�] −
𝜕{ �̂�, �̂�2 [�̂�]}

𝜕𝜏1
.

(2.1)

The equilibrium solution(s) of the assembled amplitude equation solves :

d�̂�
d𝜏1

=
𝜕�̂�

𝜕𝜏1
+ √

𝜖𝑜
𝜕�̂�

𝜕𝜏1
= 0 ⇔

�̂�2 [�̂�] +
√
𝜖𝑜

[
{ �̂�, 𝒇𝑜}(𝜙𝜉 − �̂�) + �̂�3 [�̂�] −

𝜕{ �̂�, �̂�2 [�̂�]}
𝜕𝜏1

]
= 0.

(2.2)

In the following, after re-expressing the nonlinear terms �̂�2 [�̂�], �̂�3 [�̂�] and 𝜕𝜏1 { �̂�, �̂�2 [�̂�]} in (2.2)
as convolution integrals, we discretize them in the frequency domain. In this manner, we make
their dependency on the discrete set of �̂�𝑖 (𝑖 = 1, 2, ..., 𝑁) as explicit as possible. All the other,
linear, terms are simple to discretize.

2.1. Derivation of the convolution integral
We first develop:

2𝐶 (F −1 [�̂�𝑎] , F −1 [�̂�𝑏]) = ∇F −1 [�̂�𝑎] F −1 [�̂�𝑏] + ∇F −1 [�̂�𝑏] F −1 [�̂�𝑎]

=
𝑇

4𝜋2

∫ ∞

−∞
∇�̂�𝑎 (𝑝)𝑒𝑖 𝑝𝑡d𝑝

∫ ∞

−∞
�̂�𝑏 (𝑠)𝑒𝑖𝑠𝑡d𝑠 +

𝑇

4𝜋2

∫ ∞

−∞
∇�̂�𝑏 (𝑠)𝑒𝑖𝑠𝑡d𝑠

∫ ∞

−∞
�̂�𝑎 (𝑝)𝑒𝑖 𝑝𝑡d𝑝

=
𝑇

4𝜋2

∬ ∞

−∞
2𝐶 (�̂�𝑎 (𝑝), �̂�𝑏 (𝑠))𝑒𝑖 (𝑝+𝑠)𝑡d𝑝d𝑠

=
𝑇

4𝜋2

∬ ∞

−∞
2𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))𝑒𝑖𝜔𝑡d𝜔d𝑠

= F −1

[√
𝑇

2𝜋

∫ ∞

−∞
2𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

]
,

(2.3)

from which it comes immediately that :

F
[
𝐶 (F −1 [�̂�𝑎] , F −1 [�̂�𝑏])

]
=

√
𝑇

2𝜋

∫ ∞

−∞
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠. (2.4)
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2.2. Discretisation of the convolution integral
Let 𝜔𝑠 designates the sampling frequency of the temporal signals, such that we have in practice

−𝜔𝑐 ⩽ 𝜔 ⩽ 𝜔𝑐 where 𝜔𝑐 = 𝜔𝑠/2. Over this set of frequencies, the integrand in (2.4) is defined
if and only if we have both −𝜔𝑐 ⩽ 𝑠 ⩽ 𝜔𝑐 and 𝜔 −𝜔𝑐 ⩽ 𝑠 ⩽ 𝜔 +𝜔𝑐. From now on considering
only positive frequencies, i.e 0 ⩽ 𝜔 ⩽ 𝜔𝑐, the integrand is then defined if and only if

𝜔 − 𝜔𝑐 ⩽ 𝑠 ⩽ 𝜔𝑐 . (2.5)

Thereby ∫ ∞

−∞
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 ≈

∫ 𝜔𝑐

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

=

∫ 0

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +
∫ 𝜔𝑐

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠.

(2.6)

The first of the two terms of the sum in (2.6) is transformed as∫ 0

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 =
∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�𝑎 (𝜔 + 𝑠), �̂�𝑏 (−𝑠))d𝑠

=

∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�𝑎 (𝜔 + 𝑠), �̂�∗

𝑏 (𝑠))d𝑠,
(2.7)

where we used that �̂�𝑏 (−𝑠) = �̂�∗
𝑏
(𝑠) arising from the fact that all temporal signals are real-valued.

The second of the two terms of the sum in (2.6) is transformed according to∫ 𝜔𝑐

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

=

∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐

𝜔

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠

=

∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐

𝜔

𝐶 (�̂�∗
𝑎 (𝑠 − 𝜔), �̂�𝑏 (𝑠))d𝑠

=

∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�∗

𝑎 (𝑠), �̂�𝑏 (𝑠 + 𝜔))d𝑠.

(2.8)

In this manner, only the knowledge of �̂�𝑎 and �̂�𝑏 over positives frequencies is required. Overall,∫ 𝜔𝑐

𝜔−𝜔𝑐

𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 =∫ 𝜔

0
𝐶 (�̂�𝑎 (𝜔 − 𝑠), �̂�𝑏 (𝑠))d𝑠 +

∫ 𝜔𝑐−𝜔

0
𝐶 (�̂�𝑎 (𝜔 + 𝑠), �̂�∗

𝑏 (𝑠)) + 𝐶 (�̂�∗
𝑎 (𝑠), �̂�𝑏 (𝑠 + 𝜔))d𝑠.

(2.9)

Let us now discretize (2.9). As said in the previous section, positive frequencies are discretized
using 𝑁 uniformly distributed points between 𝜔 = 0 and 𝜔 = 𝜔𝑐 (𝜔𝑐 the cut-off frequency).
Namely, the discrete set of positive frequencies writes 𝜔𝑛 = (𝑛 − 1)Δ𝜔 for 𝑛 = 1, 2, ...𝑁 and
Δ𝜔 = 𝜔𝑐/(𝑁 − 1). Eventually, the discrete version of expression (2.4) reads

F
[
𝐶 (F −1 [�̂�𝑎] , F −1 [�̂�𝑏])

]
≈

√
𝑇

2𝜋

[
𝑛∑︁

𝑘=1
𝛿𝑛𝑘𝐶 (�̂�𝑎,𝑛−𝑘+1, �̂�𝑏,𝑘) +

𝑁+1−𝑛∑︁
𝑘=1

𝛿𝑁+1−𝑛
𝑘

[
𝐶 (�̂�∗

𝑎,𝑘 , �̂�𝑏,𝑛+𝑘−1) + 𝐶 (�̂�𝑎,𝑛+𝑘−1, �̂�
∗
𝑏,𝑘)

] ]
,

(2.10)

where we used for instance �̂�𝑎 (𝜔𝑛 − 𝑠𝑘) = �̂�𝑎 (Δ𝜔(𝑛 − 1 − 𝑘 + 1)) = �̂�𝑎,𝑛−𝑘+1. The scalar 𝛿 𝑗

𝑖

is a quadrature coefficient where 𝑖 ∈ [1, 𝑗] is a running index. In our computations, we used the
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trapezoidal method such that

𝛿1
1 = 0, and 𝛿

𝑗

𝑖
=


𝜔𝑐/(2(𝑁 − 1)) if 𝑖 = 1
𝜔𝑐/(𝑁 − 1) if 1 < 𝑖 < 𝑗

𝜔𝑐/(2(𝑁 − 1)) if 𝑖 = 𝑗

, for 𝑗 > 1. (2.11)

2.3. Discretisation of the amplitude equation

Discretisation of �̂�2 [�̂�] :

Using (2.10), the functional �̂�2 [�̂�] = −{ �̂�, F
[
𝐶 (F −1 [�̂�1] , F −1 [�̂�1])

]
} with �̂�1 = �̂��̂� is

discretized as :

�̂�2,𝑛 =

𝑛∑︁
𝑘=1

�̂�𝑛−𝑘+1�̂�𝑘Θ𝑛𝑘 +
𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1�̂�
∗
𝑘Ξ𝑛𝑘 , (2.12)

with

Θ𝑛𝑘 = −
√
𝑇

2𝜋
𝛿𝑛𝑘{ �̂�𝑛, 𝐶 (�̂�𝑛−𝑘+1, �̂�𝑘)}, 1 ⩽ 𝑘 ⩽ 𝑛,

Ξ𝑛𝑘 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 ( �̂�𝑛+𝑘−1, �̂�

∗
𝑘)}, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛.

(2.13)

The sums in (2.12) can also be written in matrix form :

�̂�2 [�̂�] =

Θ11�̂�1 0

...
. . .

Θ1𝑁 �̂�𝑁 . . . Θ𝑁𝑁 �̂�1



�̂�1
...

�̂�𝑁

 +

Ξ11�̂�1 . . . Ξ1𝑁 �̂�𝑁

... . . .

Ξ𝑁1�̂�𝑁 0



�̂�∗

1
...

�̂�∗
𝑁

 (2.14)

Discretisation of 𝜕𝜏1 { �̂�, �̂�2 [�̂�]} = { �̂�, 𝜕𝜏1 �̂�2 [�̂�]} :

Since

�̂�2 [�̂�] = 𝑅

(
�̂�2 [�̂�] −

{ �̂�, �̂�2 [�̂�]}
{ �̂�, �̂�} �̂�

)
, (2.15)

where we recall that { �̂�, �̂�2 [�̂�]} = �̂�2 [�̂�], expression (2.12) results in the following discretisation
for the field �̂�2 [�̂�]:

�̂�2,𝑚 =

𝑚∑︁
𝑗=1

�̂�𝑚− 𝑗+1�̂� 𝑗 𝒅𝑚𝑗 +
𝑁+1−𝑚∑︁

𝑗=1
�̂�𝑚+ 𝑗−1�̂�

∗
𝑗 �̂�𝑚𝑗 , (2.16)

with

𝒅𝑚𝑗 = 𝑅𝑚

[
−
√
𝑇

2𝜋
𝛿𝑚𝑗 𝐶

(
�̂�𝑚− 𝑗+1, �̂� 𝑗

)
− 𝛼𝑚𝑗 �̂�𝑚

]
,

�̂�𝑚𝑗 = 𝑅𝑚

[
−
√
𝑇

𝜋
𝛿𝑁+1−𝑚
𝑗 𝐶 ( �̂�𝑚+ 𝑗−1, �̂�

∗
𝑗 ) − 𝛽𝑚𝑗 �̂�𝑚

]
,

(2.17)

and where we defined 𝛼𝑚𝑗 = Θ𝑚𝑗/{ �̂�𝑚, �̂�𝑚} and 𝛽𝑚𝑗 = Ξ𝑚𝑗/{ �̂�𝑚, �̂�𝑚}. The fields 𝒅𝑚𝑗 and �̂�𝑚𝑗

verify {�̂�𝑚, 𝒅𝑚𝑗 } = {�̂�𝑚, �̂�𝑚𝑗 } = 0, implying {�̂�𝑚, �̂�2,𝑚} = 0; therefore, each Fourier component
generated at second order (i.e 𝑂 (𝜖𝑜)) is orthogonal to the Fourier component of the optimal linear
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solution at the same frequency. The partial derivative of �̂�2,𝑚 with respect to 𝜏1 follows directly
from (2.16):

𝜕𝜏1 �̂�2,𝑛 =

𝑛∑︁
𝑘=1

(𝜕𝜏1 �̂�𝑛−𝑘+1)�̂�𝑘 𝒅𝑛𝑘 +
𝑛∑︁

𝑘=1
�̂�𝑛−𝑘+1 (𝜕𝜏1 �̂�𝑘)𝒅𝑛𝑘

+
𝑁+1−𝑛∑︁
𝑘=1

(𝜕𝜏1 �̂�𝑛+𝑘−1)�̂�∗
𝑘 �̂�𝑛𝑘 +

𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1 (𝜕𝜏1 �̂�
∗
𝑘) �̂�𝑛𝑘 .

(2.18)

Since 𝜕𝜏1 �̂� = �̂�2 [�̂�]/{ �̂�, �̂�}, we can again use (2.12) and

𝜕𝜏1 �̂�𝑚 =

𝑚∑︁
𝑗=1

�̂�𝑚− 𝑗+1�̂� 𝑗𝛼𝑚𝑗 +
𝑁+1−𝑚∑︁

𝑗=1
�̂�𝑚+ 𝑗−1�̂�

∗
𝑗 𝛽𝑚𝑗 . (2.19)

Evaluating (2.19) in 𝑚 = 𝑛 − 𝑘 + 1, 𝑚 = 𝑛 + 𝑘 − 1 and 𝑚 = 𝑘 yields, respectively:

𝜕𝜏1 �̂�𝑛−𝑘+1 =

𝑛−𝑘+1∑︁
𝑗=1

�̂�𝑛−𝑘− 𝑗+2�̂� 𝑗𝛼𝑛−𝑘+1, 𝑗 +
𝑁−𝑛+𝑘∑︁
𝑗=1

�̂�𝑛−𝑘+ 𝑗 �̂�
∗
𝑗 𝛽𝑛−𝑘+1, 𝑗 , (2.20)

𝜕𝜏1 �̂�𝑛+𝑘−1 =

𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗𝛼𝑛+𝑘−1, 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗 𝛽𝑛+𝑘−1, 𝑗 , (2.21)

and

𝜕𝜏1 �̂�
∗
𝑘 =

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗𝛼

∗
𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗 𝛽

∗
𝑘 𝑗 . (2.22)

After injecting (2.20),(2.21) and (2.22) in (2.18), and projecting on the adjoint, we end up on

{ �̂�𝑛, 𝜕𝜏1 �̂�2,𝑛} =
𝑛∑︁

𝑘=1
�̂�𝑘

©«
𝑛−𝑘+1∑︁
𝑗=1

�̂�𝑛−𝑘− 𝑗+2�̂� 𝑗G𝑛𝑘 𝑗 +
𝑁−𝑛+𝑘∑︁
𝑗=1

�̂�𝑛−𝑘+ 𝑗 �̂�
∗
𝑗H𝑛𝑘 𝑗

ª®¬
+

𝑛∑︁
𝑘=1

�̂�𝑛−𝑘+1
©«

𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗I𝑛𝑘 𝑗 +
𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗J𝑛𝑘 𝑗

ª®¬
+

𝑁+1−𝑛∑︁
𝑘=1

�̂�∗
𝑘

©«
𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗K𝑛𝑘 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗L𝑛𝑘 𝑗

ª®¬
+

𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1
©«

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗M𝑛𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗N𝑛𝑘 𝑗

ª®¬ ,

(2.23)
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where we defined the following third-order tensors

G𝑛𝑘 𝑗 = 𝛼𝑛−𝑘+1, 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑛 − 𝑘 + 1, 1 ⩽ 𝑘 ⩽ 𝑛

H𝑛𝑘 𝑗 = 𝛽𝑛−𝑘+1, 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 − 𝑛 + 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

I𝑛𝑘 𝑗 = 𝛼𝑘 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

J𝑛𝑘 𝑗 = 𝛽𝑘 𝑗 { �̂�𝑛, 𝒅𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

K𝑛𝑘 𝑗 = 𝛼𝑛+𝑘−1, 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑛 + 𝑘 − 1, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

L𝑛𝑘 𝑗 = 𝛽𝑛+𝑘−1, 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 − 𝑛 − 𝑘 + 2, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

M𝑛𝑘 𝑗 = 𝛼∗
𝑘 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

N𝑛𝑘 𝑗 = 𝛽∗𝑘 𝑗 { �̂�𝑛, �̂�𝑛,𝑘}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛.

(2.24)

Discretisation of �̂�3 [�̂�] :

We recall that

�̂�3 [𝐵] = −{ �̂�, F
[
2𝐶 (F −1 [�̂�1] , F −1 [�̂�2])

]
}. (2.25)

Using again (2.10) leads to the following discretisation

(F
[
2𝐶 (F −1 [�̂�1] , F −1 [�̂�2])

]
)𝑛 =

√
𝑇

𝜋

[
𝑛∑︁

𝑘=1
𝛿𝑛𝑘𝐶 (�̂�1,𝑛−𝑘+1, �̂�2,𝑘) +

𝑁+1−𝑛∑︁
𝑘=1

𝛿𝑁+1−𝑛
𝑘

[
𝐶 (�̂�∗

1,𝑘 , �̂�2,𝑛+𝑘−1) + 𝐶 (�̂�1,𝑛+𝑘−1, �̂�
∗
2,𝑘)

] ]
.

(2.26)

In addition, using (2.16) and �̂�1,𝑖 = �̂�𝑖 �̂�𝑖 , we can further express

𝐶 (�̂�1,𝑛−𝑘+1, �̂�2,𝑘) = 𝐶
©«�̂�𝑛−𝑘+1 �̂�𝑛−𝑘+1,

𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗 𝒅𝑘 𝑗 +
𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗 �̂�𝑘 𝑗

ª®¬
= �̂�𝑛−𝑘+1


𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗𝐶

(
�̂�𝑛−𝑘+1, 𝒅𝑘 𝑗

)
+

𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗𝐶

(
�̂�𝑛−𝑘+1, �̂�𝑘 𝑗

) ,
(2.27)

as well as

𝐶 (�̂�∗
1,𝑘 , �̂�2,𝑛+𝑘−1) = 𝐶

©«�̂�∗
𝑘 �̂�

∗
𝑘 ,

𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗 𝒅𝑛+𝑘−1, 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗 �̂�𝑛+𝑘−1, 𝑗

ª®¬
= �̂�∗

𝑘


𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗𝐶

(
�̂�∗𝑘 , 𝒅𝑛+𝑘−1, 𝑗

)
+

𝑁−𝑛−𝑘+2∑︁
𝑗=1

�̂�𝑛+𝑘+ 𝑗−2�̂�
∗
𝑗𝐶

(
�̂�∗𝑘 , �̂�𝑛+𝑘−1, 𝑗

) ,
(2.28)
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and eventually

𝐶 (�̂�1,𝑛+𝑘−1, �̂�
∗
2,𝑘) = 𝐶

©«�̂�𝑛+𝑘−1 �̂�𝑛+𝑘−1,

𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗 𝒅

∗
𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗 �̂�

∗
𝑘 𝑗

ª®¬
= �̂�𝑛+𝑘−1


𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗𝐶

(
�̂�𝑛+𝑘−1, 𝒅

∗
𝑘 𝑗

)
+

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗𝐶

(
�̂�𝑛+𝑘−1, �̂�

∗
𝑘 𝑗

) .
(2.29)

This results in the following discretisation for �̂�3 [𝐵]:

�̂�3,𝑛 =

𝑛∑︁
𝑘=1

�̂�𝑛−𝑘+1


𝑘∑︁
𝑗=1

�̂�𝑘− 𝑗+1�̂� 𝑗A𝑛𝑘 𝑗 +
𝑁+1−𝑘∑︁
𝑗=1

�̂�𝑘+ 𝑗−1�̂�
∗
𝑗B𝑛𝑘 𝑗


+

𝑁+1−𝑛∑︁
𝑘=1

�̂�∗
𝑘


𝑛+𝑘−1∑︁
𝑗=1

�̂�𝑛+𝑘− 𝑗 �̂� 𝑗C𝑛𝑘 𝑗 +
𝑁−𝑛−𝑘+2∑︁

𝑗=1
�̂�𝑛+𝑘+ 𝑗−2�̂�

∗
𝑗D𝑛𝑘 𝑗


+

𝑁+1−𝑛∑︁
𝑘=1

�̂�𝑛+𝑘−1


𝑘∑︁
𝑗=1

�̂�∗
𝑘− 𝑗+1�̂�

∗
𝑗E𝑛𝑘 𝑗 +

𝑁+1−𝑘∑︁
𝑗=1

�̂�∗
𝑘+ 𝑗−1�̂� 𝑗F𝑛𝑘 𝑗

 ,
(2.30)

where we defined the following third-order tensors

A𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑛𝑘{ �̂�𝑛, 𝐶 ( �̂�𝑛−𝑘+1, 𝒅𝑘 𝑗 )}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

B𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑛𝑘{ �̂�𝑛, 𝐶 ( �̂�𝑛−𝑘+1, �̂�𝑘 𝑗 )}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑛

C𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 ( �̂�∗𝑘 , 𝒅𝑛+𝑘−1, 𝑗 )}, 1 ⩽ 𝑗 ⩽ 𝑛 + 𝑘 − 1, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

D𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 ( �̂�∗𝑘 , �̂�𝑛+𝑘−1, 𝑗 )}, 1 ⩽ 𝑗 ⩽ 𝑁 − 𝑛 − 𝑘 + 2, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

E𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 ( �̂�𝑛+𝑘−1, 𝒅

∗
𝑘 𝑗 )}, 1 ⩽ 𝑗 ⩽ 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛

F𝑛𝑘 𝑗 = −
√
𝑇

𝜋
𝛿𝑁+1−𝑛
𝑘 { �̂�𝑛, 𝐶 ( �̂�𝑛+𝑘−1, �̂�

∗
𝑘 𝑗 )}, 1 ⩽ 𝑗 ⩽ 𝑁 + 1 − 𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 + 1 − 𝑛.

(2.31)

As a summary, upon the choice of 𝜙 and 𝝃 we are led to solve

𝑟 (�̂�; 𝜙, 𝜉) = 0, with
𝑟 (�̂�; 𝜙, 𝜉) � �̂�2 [�̂�] +

√
𝜖𝑜

[
𝛾(𝜙𝜉 − �̂�) + �̂�3 [�̂�] − { �̂�, 𝜕𝜏1 �̂�2}

]
,

(2.32)

where we defined 𝛾 = { �̂�, 𝒇𝑜}. At the discrete level, this amounts to solving for a system of 𝑁
nonlinearly coupled equations for the 𝑁 unknowns �̂�𝑛 (𝑛 = 1, 2, ..., 𝑁):

𝑟𝑛 = �̂�2,𝑛 +
√
𝜖𝑜

[
𝛾𝑛 (𝜙𝜉𝑛 − �̂�𝑛) + �̂�3,𝑛 − { �̂�𝑛, 𝜕𝜏1 �̂�2,𝑛}

]
= 0, 𝑛 = 1, 2, ..., 𝑁, (2.33)

where �̂�2,𝑛, �̂�3,𝑛 and { �̂�𝑛, 𝜕𝜏1 �̂�2,𝑛} are evaluated using respectively the simple sum (2.12) and the
double sums (2.30) and (2.23). This suggests the following procedure:

Algorithm :
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(i) Choose the values for 𝑁 and 𝜔𝑐, which sets the discretisation of the frequencies.

(ii) Over the discrete set of frequencies, pre-compute once for all the determinitic fields 𝒇𝑜,
�̂�, �̂�, the scalar 𝛾, and the tensors Θ, Ξ, A,B,C,D,E,F ,G,H ,I,J ,K,L,M,N .

(iii) Choose a value for 𝜙 (which sets the forcing amplitude).

(iv) Draw randomly a white noise (|𝜉 (𝜔) | = 1 ∀𝜔, but random phases uniformly distributed
between 0 and 2𝜋).

(v) Solve the system (2.33) by means of a nonlinear solver, for instance fsolve on MATLAB.

(vi) Update the statistics on �̂�, for instance its ensemble average, and, if not converged go back
to (iv).

Of course the convergence in terms of 𝑁 and 𝜔𝑐 must be ensured.

3. The particular case of the NSE: numerical implementation
The linear and nonlinear NSE are solved for (𝑢𝑥 ,𝑢𝑦 ,𝑝) by means of the Finite Element Method

with Taylor-Hood (P2, P2, P1) elements, respectively, after implementation of their weak form in
the software FreeFem++. The steady solution of the nonlinear NSE is found using the iterative
Newton–Raphson method, and the linear operators are built thanks to a sparse solver available in
FreeFem++. The optimal forcing structure 𝒇𝑜 is found on the software MATLAB after discretizing
the integral expression for 𝐵∞ and performing the lower-upper (LU) decomposition of the
resolvent operators to speed-up their application. Finally, DNS are performed in FreeFem++
by applying a time scheme based on the characteristic–Galerkin method. We refer to Mantic-
Lugo & Gallaire (2016) for the validation of the codes with existing literature when possible and
for the mesh convergence analysis, since the same codes have been used.

SUPPLEMENTARY MATERIALS REFERENCES
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