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This supplementary material is structured as follows. In §S1, we provide the detailed ex-
pressions of the convected derivatives to complement §3 in the main article. In §S2, we have
shown the temporal evolution of the surface change with time using contour plots, when higher
order harmonics are included in the surface charge. This is complementary to §5.2 in the
manuscript. Finally, in §S3, we have outlined the temporal variations in the integrals JHS and
JBulk appearing in the expression of Ω2 and defined in eqn. (5.3b) in the main article. This
section complements figure 7 in the main manuscript.

S1 The Convected derivatives

In this section, we shall provide the expressions of the various components of the convected
derivative S2 of the leading order strain rate tensor D1, which are necessary for calculating the

O(ζ
2

0) particle velocities [1].
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Figure S1: Contour plot of the surface charge ζ̆(θ, ϕ, t) distribution, initially same as that in fig. 5 in the main
article, at four different times: (a) t = 0 (initial distribution); (b) t = 3 (intermediate); (c) t = 10 (rotation
slowed down) and (d) t = 40 (steady state), to underline its dynamically evolving nature. We have chosen
De = 1. Other relevant parameters are also identical to those in fig. 5 in the manuscript.

Srθ,2 = (v1.∇)Drθ,1 +Drr,1

(
vθ,1
r

− ∂vθ,1
∂r

)
+Drθ,1

(
1

r

√
1− η2

∂vθ,1
∂η

− ∂vr,1
∂r

− vr,1
r

)
+Dθθ,1

(
1

r

√
1− η2

∂vr,1
∂η

)
− 1

r
√
1− η2

∂vr,1
∂ϕ

Dϕθ,1 −
1

r
√
1− η2

∂vθ,1
∂ϕ

Drϕ,1 (S4)

Srϕ,2 = (v1.∇)Drϕ,1 +Drr,1

(
vϕ,1
r

− ∂vϕ,1
∂r

)
+Drθ,1

(
vϕ,1η

r
√
1− η2

+
1

r

√
1− η2

∂vϕ,1
∂η

)
−

Drϕ,1

(
∂vr,1
∂r

+
1

r
√

1− η2
∂vϕ,1
∂ϕ

+
vr,1
r

+
vθ,1η

r
√

1− η2

)
+Dθϕ,1

1

r

√
1− η2

∂vr,1
∂η

−Dϕϕ,1
1

r
√
1− η2

∂vr,1
∂ϕ

(S5)

Sθϕ,2 = (v1.∇)Dθϕ,1 +Drθ,1

(
vϕ,1
r

− ∂vϕ,1
∂r

)
+Dθθ,1

(
vϕ,1η

r
√
1− η2

+
1

r

√
1− η2

∂vϕ,1
∂η

)
+

Dθϕ,1

(
1

r

√
1− η2

∂vθ,1
∂η

− 2vr,1
r

− 1

r

√
1− η2

∂vϕ,1
∂ϕ

− vθ,1η

r
√

1− η2

)

2



0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure S2: Evolution of the integrals JHS (in (a)) and JBulk (in (b)), defined in eqn. (5.3a) in the main article,

along x, y and z have been plotted with time. We have chosen De = 1. The initial distribution of ζ̆(θ, ϕ) and
all other relevant parameters are the same as in figure 7.
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S2 Temporal evolution of the surface charge

Figure S1, illustrates the temporal evolution of ζ̆(θ, ϕ, t) by representing it as a contour plot at
four different time instances: t = 0 (starting point) in (a), t = 3 in (b), t = 10 in (c) and t = 40
in (d) - all other parameters as well as the starting distribution of ζ̆(θ, ϕ, t = 0) remain identical
to those in figure 5 of the main article. It is observed that overall, the surface charge evolves
in much the same way as shown in figure 4 of the manuscript. Initially, the dipole moment is
not directed along the imposed electric field and hence the particle rotates until H

(1)
1 and E∞

become co-linear, after which the rotation stops. This occurs after approximately t ≈ 15 and
thus it may be observed from panels (c) and (d) that ζ̆(θ, ϕ, t) barely changes between times
t = 10 and 40. However, in the present scenario, the particle does not contain any natural axis
of symmetry and hence unline in figure 4 of the main article, here the steady state distribution
of ζ̆ is not axisymmetric, as evident from panel (d).

S3 Plots of the integrals appearing in Ω2 in eqn. (5.3b)

in the main article

Figure S2 demonstrates the variations in JHS (panel (a)) and JBulk (panel (b)) along the three
directions, appearing in the expression for Ω2 and defined in eqn. (5.3b) in the main article.
The choice of initial ζ̆(θ, ϕ, t) as well as other parameters remains identical to those in figure
7 in the manuscript. We reiterate that JHS underlines the effect of excess polymeric stresses
from within the EDL, while JBulk indicates those from the bulk. It is observed that during the
initial phases, contributions from JHS, i.e., the stresses within the EDL is larger than JBulk
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Figure S3: Plot of the translational velocity components ((a) Ux, (b) Uy and (c) Uz) and the angular velocity
components ((d) Ωx, (e) Ωy and (f) Ωz) of the particle as a function of time for various choices of De = 0, 0.5, 1

and1.25. The initial surface charge distribution (ζ̆(θ, ϕ, t = 0)) as well as the other parameters remain identical
to those in fig. 9 in the main article.

and this forces the particle to rotate. As time progresses however, the excess polymeric stresses
in the bulk (JBulk) eventually catch up and hence the two exactly cancel each other out so
that the particle stops rotating. At this point, the dipole moment of the surface charge also
becomes co-linear with the imposed electric field.

S4 Temporal variations in U and Ω for the Janus particle

Figure S3 demonstrates the temporal variations in the translational and angular velocity com-
ponents for the Janus particle considered in §5.3 and figure 9 in the main article. The panel-wise
description remains identical to those in figure 3 of the main article. Although the overall trends
shown by both translational and angular velocities remain same as in figures 3 and 6 of the main
article, it is interesting to note that here, all the translational velocity components (Ux, Uy and
Uz) decrease with De (in contrast to what is observed in figures 3 and 6 in the main article),
which results from the viscoelastic and the Newtonian contributions to the migration velocities
(especially Uy) opposing each other. This finally leads to a suppression of the migration along
the y-direction in a viscoelastic medium, as also noted in the main article.
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